Predicted Corrosion Performance of Organofunctional Silane Coated Steel Reinforcement for Concrete Structures: An Overview
Abstract
:1. Introduction
2. Surface Coatings of Reinforced Steel
2.1. Epoxy Coatings
2.1.1. General Technology Aspects
2.1.2. Corrosion Performance
- (a)
- providing a physical barrier from the surrounding environment;
- (b)
- limiting the formation of anodic and cathodic sites;
- (c)
- restricting the ionic conduction between anodic and cathodic sites at the steel surface.
2.1.3. Bond Strength in Concrete
2.2. Hot-Dip Galvanized Coatings
2.2.1. General Technology Aspects
2.2.2. Corrosion Performance
2.2.3. Bond Strength in Concrete
2.3. Organofunctional Silane Coatings
2.3.1. General Technology Aspects
2.3.2. Corrosion Performance
2.3.3. Bond Strength in Concrete
3. Conclusions
Funding
Conflicts of Interest
References
- Angst, U.M. Challenges and opportunities in corrosion of steel in concrete. Mater. Struct. 2018, 51, 4. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, D.; Chu, H.; Ma, H.; Liu, Y.; Gao, Y.; Shi, J.; Sun, W. The passive film growth mechanism of new corrosion-resistant steel rebar in simulated concrete pore solution: Nanometer Structure and Electrochemical Study. Materials 2017, 10, 412. [Google Scholar] [CrossRef] [PubMed]
- Ghods, P.; Isgor, O.B.; Carpenter, G.J.C.; Li, J.; McRae, G.A.; Gu, G.P. Nano-scale study of passive films and chloride-induced depassivation of carbon steel rebar in simulated concrete pore solutions using FIB/TEM. Cem. Concr. Res. 2013, 47, 55–68. [Google Scholar] [CrossRef]
- Carnot, A.; Frateur, I.; Marcus, P.; Tribollet, B. Corrosion mechanisms of steel concrete moulds in the presence of a demoulding agent. J. Appl. Electrochem. 2002, 32, 865–869. [Google Scholar] [CrossRef]
- Ghods, P.; Isgor, O.B.; McRae, G.; Miller, T. The effect of concrete pore solution composition on the quality of passive oxide films on black steel reinforcement. Cem. Concr. Compos. 2009, 31, 2–11. [Google Scholar] [CrossRef]
- Williamson, J.; Isgor, O.B. The effect of simulated concrete pore solution composition and chlorides on the electronic propertes of passive films on carbon steel rebar. Corros. Sci. 2016, 106, 82–95. [Google Scholar] [CrossRef]
- Zheng, H.; Poon, C.S.; Li, W. Mechanistic study on initial passivation and surface chemistry of steel bars in nano-scale cement pastes. Cem. Concr. Compos. 2020, 112, 103661. [Google Scholar] [CrossRef]
- Song, Z.; Zhang, Y.; Liu, L.; Pu, Q.; Jiang, L.; Chu, H.; Luo, Y.; Liu, Q.; Cai, H. Use of XPS for quantitative evaluation of tensile-stress-induced degradation of passive film on carbon steel in simulated concrete pore solutions. Constr. Build. Mater. 2021, 274, 121779. [Google Scholar] [CrossRef]
- Liu, X.; MacDonald, D.D.; Wang, M.; Xu, Y. Effect of dissolved oxygen, temperature, and pH on polarization behavior of carbon steel in simulated concrete pore solution. Electrochim. Acta 2021, 366, 137437. [Google Scholar] [CrossRef]
- Freire, L.; Nóvoa, X.R.; Montemor, M.F.; Carmezim, M.J. Study of passive films formed on mild steel in alkaline media by the application of anodic potentials. Mater. Chem. Phys. 2009, 114, 962–972. [Google Scholar] [CrossRef]
- Volpi, E.; Olietti, A.; Stefanoni, M.; Trasatti, S.P. Electrochemical characterization of mild steel in alkaline solutions simulating concrete environment. J. Electroanal. Chem. 2015, 736, 38–46. [Google Scholar] [CrossRef]
- Sánchez-Moreno, M.; Takenouti, H.; García-Jareno, J.J.; Vicente, F.; Alonso, C. A theoretical approach of impedance spectroscopy during the passivation of steel in alkaline media. Electrochim. Acta 2009, 54, 7222–7226. [Google Scholar] [CrossRef]
- Gunay, H.B.; Ghods, P.; Isgor, O.B.; Carpenter, G.J.C. Characterization of atomic structure of oxide films on carbon steel in simulated concrete pore solutions using EELS. Appl. Surf. Sci. 2013, 274, 195–202. [Google Scholar] [CrossRef]
- Green, W.K. Electrochemical and Chemical Changes in Chloride Contaminated Reinforced Concrete Following Cathodic Polarization; University of Manchester Institute of Science and Technology: Manchester, UK, 1991. [Google Scholar]
- Li, B.; Huan, Y.; Zhang, W. Passivation and corrosion behavior of P355 carbon steel in simulated concrete pore solution at pH 12.5 to 14. Int. J. Electrochem. Sci. 2017, 12, 10402–10420. [Google Scholar] [CrossRef]
- Poursaee, A. Temperature dependence of the formation of the passivation layer on carbon steel in high alkaline environment of concrete pore solution. Electrochem. Commun. 2016, 73, 24–28. [Google Scholar] [CrossRef]
- Alhozaimy, A.; Hussain, R.R.; Al-Negheimish, A. Significance of oxygen concentration on the quality of passive film formation for steel reinforced concrete structures during the initial curing of concrete. Cem. Concr. Compos. 2016, 65, 171–176. [Google Scholar] [CrossRef]
- Angst, U.M.; Isgor, O.B.; Hansson, C.M. Beyond the chloride threshold concept for predicting corrosion of steel in concrete. Appl. Phys. Rev. 2022, 9, 011321. [Google Scholar] [CrossRef]
- Poursaee, A.; Hansson, C.M. Reinforcing steel passivation in mortar and pore solution. Cem. Concr. Res. 2007, 37, 1127–1133. [Google Scholar] [CrossRef]
- Cai, Y.; Zheng, H.; Hu, X.; Lu, J.; Poon, C.S.; Li, W. Comparative studies on passivation and corrosion behaviours of two types of steel bars in simulated concrete pore solutions. Constr. Build. Mater. 2021, 266, 120971. [Google Scholar] [CrossRef]
- Poursaee, A. Corrosion of steel bars in satuarted Ca(OH)2 and concrete pore solution. Concr. Res. Lett. 2010, 1, 90–97. [Google Scholar]
- Koga, G.Y.; Albert, B.; Roche, V.; Nogueira, R.P. A comparative study of mild steel passivation embedded in Belite-Ye’elimite-Ferrite and Portland cement mortars. Electrochim. Acta 2018, 261, 66–77. [Google Scholar] [CrossRef]
- González, J.A.; Ramírez, E.; Bautista, A.; Feliu, S. The bahaviour of pre-rusted steel in concrete. Cem. Concr. Res. 1996, 26, 501–511. [Google Scholar] [CrossRef]
- Novák, P.; Malá, R.; Joska, L. Influence of pre-rusting on steel corrosion in concrete. Cem. Concr. Res. 2001, 31, 589–593. [Google Scholar] [CrossRef]
- Andrade, C.; Alonso, A. On-site measurements of corrosion rate of reinforcements. Constr. Build. Mater. 2001, 15, 141–145. [Google Scholar] [CrossRef]
- Dangla, P.; Dridi, W. Rebar corrosion in carbonated concrete exposed to variable humidity conditions. Interpret. Tuutti’s Curve Corros. Sci. 2009, 51, 1747–1756. [Google Scholar] [CrossRef]
- Green, K.W. Steel reinforcement corrosion in concrete—An overview of some fundamentals. Corros. Eng. Sci. Technol. 2020, 55, 289–302. [Google Scholar] [CrossRef]
- Ngala, V.T.; Page, C.L. Effects of carbonation on pores structure and diffusional properties of hydrated cement pastes. Cem. Concr. Res. 1997, 27, 995–1007. [Google Scholar] [CrossRef]
- Ming, J.; Wu, M.; Shi, J. Passive film modification by concrete carbonation: Re-visiting a corrosion-resistant steel with Cr and Mo. Cem. Concr. Compos. 2021, 123, 104178. [Google Scholar] [CrossRef]
- Steffens, A.; Dinkler, D.; Ahrens, H. Modeling carbonation for corrosion risk prediction of concrete structures. Cem. Concr. Res. 2002, 32, 935–941. [Google Scholar] [CrossRef]
- Angst, U.; Moro, F.; Geiker, M.; Kessler, S.; Beushausen, H.; Andrade, C.; Lahdensivu, J.; Köliö, A.; Imamoto, K.; von Greve-Dierfeld, S.; et al. Corrosion of steel in carbonated concrete: Mechanisms, practical experience, and research priorities—A critical review by RILEM TC 281-CCC. RILEM Tech. Lett. 2020, 5, 85–100. [Google Scholar] [CrossRef]
- Tan, Y.T.; Wijesinghe, S.L.; Blackwood, D.J. The inhibitive effect of bicarbonate and carbonate ions on carbon steel in simulated concrete pore solution. Corros. Sci. 2014, 88, 152–160. [Google Scholar] [CrossRef]
- Huet, B.; L’Hostis, V.; Miserque, F.; Idrissi, H. Electrochemical behavior of mild steel in concrete: Influence of pH and carbonate content of concrete pore solution. Electrochim. Acta 2005, 51, 172–180. [Google Scholar] [CrossRef]
- Serdar, M.; Poyet, S.; L’Hostis, V.; Bjegovic, D. Carbonation of low-alkalinity mortars: Influence on corrosion of steel and on mortar microstructure. Cem. Concr. Res. 2017, 101, 33–45. [Google Scholar] [CrossRef]
- Bertolini, L.; Elsner, B.; Pedeferri, P.; Polder, R.B. Corrosion of Steel in Concrete: Prevention, Diagnosis, Repair; Wiley-VCH: Weinheim, Germany, 2004. [Google Scholar]
- Enculscu, M. Carbonation in mortars and concretes with white and coloured cements. In Proceedings of the RILEM International Symposium on Carbonation of Concrete, Fulmer Grange, London, UK, 5–6 April 1976. [Google Scholar]
- Collepardi, M. The New Concrete; Grafiche Tintoretto: Lancenigo, Italy, 2010. [Google Scholar]
- Glass, G.K.; Buenfeld, N.R. Chloride-induced corrosion of steel in concrete. Prog. Struct. Eng. Mater. 2000, 2, 448–458. [Google Scholar] [CrossRef]
- Liu, Q.; Hu, Z.; Wang, X.; Zhao, H.; Qian, K.; Li, L.; Meng, Z. Numerical study on cracking and its effect on chloride transport in concrete subjected to external load. Constr. Build. Mater. 2022, 325, 126797. [Google Scholar] [CrossRef]
- Sandberg, P. Chloride Initiated Reinforcement Corrosion in Marine Concrete; Report TVBM-1015; Lund University: Lund, Sweden, 1998. [Google Scholar]
- Tuutti, K. Corrosion of Steel in Concrete; CBI Research; Cement and Concrete Research Institute: Stockholm, Sweden, 1982. [Google Scholar]
- Kuroda, M.; Watanabe, T.; Terashi, N. Increase of bond strength at interfacial transition zone by the use of fly ash. Cem. Concr. Res. 2000, 30, 253–258. [Google Scholar] [CrossRef]
- Sidorova, A.; Vazquez-Ramonich, E.; Barra-Bizinotto, M.; Roa-Rovira, J.J.; Jimenez-Pique, E. Study of the recycled aggregates nature’s influence on the aggregate-cement paste interface and ITZ. Constr. Build. Mater. 2014, 68, 677–684. [Google Scholar] [CrossRef]
- Ghods, P.; Isgor, O.B.; McRae, G.A.; Gu, G.P. Electrochemical investigation of chloride- induced depassivation of black steel rebar under simulated service condition. Corros. Sci. 2010, 52, 1649–1659. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, J. Corrosion resistance of carbon steel in alkaline concrete pore solution containing phytate and chloride ions. Corros. Sci. 2022, 205, 110451. [Google Scholar] [CrossRef]
- Glass, G.K.; Reddy, B.; Buenfeld, N.R. The participation of bound chloride in passive film breakdown on steel in concrete. Corros. Sci. 2000, 42, 2013–2021. [Google Scholar] [CrossRef]
- Moreno, M.; Morris, W.; Alvarez, M.G.; Duffó, G.S. Corrosion of reinforcing steel in simulated concrete pore solutions Effect of carbonation and chloride content. Corros. Sci. 2004, 46, 2681–2699. [Google Scholar] [CrossRef]
- Angst, U.; Elsner, B.; Jamali, A.; Adey, B. Concrete cover cracking owing to reinforcement corrosion-theoretical considerations and practical experience. Mater. Corros. 2012, 63, 1069–1077. [Google Scholar] [CrossRef]
- Glass, G.K.; Buenfeld, N.R. The influence of chloride binding on the chloride induced corrosion risk in reinforced concrete. Corros. Sci. 2000, 42, 329. [Google Scholar] [CrossRef]
- Mi, T.; Li, Y.; Liu, W.; Dong, Z.; Gong, Q.; Min, C.; Xing, F.; Wang, Y.; Chu, S.H. The effect of carbonation on chloride redistribution and corrosion of steel reinforcement. Constr. Build. Mater. 2023, 363, 129641. [Google Scholar] [CrossRef]
- Saremi, M.; Mahallati, E. A study on chloride-induced depassivation of mild steel in simulated concrete pore solution. Cem. Concr. Res. 2002, 32, 1915–1921. [Google Scholar] [CrossRef]
- Feng, X.; Zuo, Y.; Tang, Y.; Zhao, X.; Lu, X. The degradation of passive film on carbon steel in concrete pore solution under compressive and tensile strength. Electrochim. Acta 2011, 58, 258–263. [Google Scholar] [CrossRef]
- Jaffer, S.J.; Hansson, C.M. Chloride-induced corrosion products of steel in cracked- concrete subjected to different loading conditions. Cem. Concr. Res. 2009, 39, 116–125. [Google Scholar] [CrossRef]
- Lu, R.K.S.; Zhang, Y. A novel elastic-body-rotation model for concrete cover spalling caused by non-uniform corrosion of reinforcement. Constr. Build. Mater. 2019, 213, 549–560. [Google Scholar]
- Jamali, A.; Angst, U.; Adey, B.; Elsener, B. Modeling of corrosion-induced concrete cover cracking: A critical analysis. Constr. Build. Mater. 2013, 42, 225–237. [Google Scholar] [CrossRef]
- Zhang, J.; Ling, X.; Guan, Z. Finite element modeling of concrete cover crack propagation due to non-uniform corrosion of reinforcement. Constr. Build. Mater. 2017, 132, 487–499. [Google Scholar] [CrossRef]
- Jiang, C.; Wu, Y.-F.; Dai, M.J. Degradation of steel-to-concrete bond due to corrosion. Constr. Build. Mater. 2018, 158, 1073–1080. [Google Scholar] [CrossRef]
- Coccia, S.; Imperatore, S.; Rinaldi, Z. Influence of corrosion on the bond strength of strength of steel rebars in concrete. Mater. Struct. 2016, 49, 537–551. [Google Scholar] [CrossRef]
- Chen, D.; Mahadevan, S. Chloride-induced reinforcement corrosion and concrete cracking simulation. Cem. Concr. Compos. 2008, 30, 227–238. [Google Scholar] [CrossRef]
- Van Belleghem, B.; Maes, M.; Soetens, T. Throwing power and service life of galvanic cathodic protection with embedded discrete anodes for steel reinforcement in chloride contaminated concrete. Constr. Build. Mater. 2021, 310, 125187. [Google Scholar] [CrossRef]
- Wilson, K.; Jawed, M.; Ngala, V. The selection and use of cathodic protection systems for the repair of reinforced concrete structures. Constr. Build. Mater. 2013, 39, 19–25. [Google Scholar] [CrossRef]
- Goyal, A.; Olorunnipa, E.K.; Pouya, H.S.; Ganijian, E.; Olubanwo, A.O. Potential and current distribution across different layers of reinforcement in reinforced concrete cathodic protection system-A numerical study. Constr. Build. Mater. 2020, 262, 120580. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, A.; Zhang, L.; Liu, J.; Han, Y.; Shu, H.; Wang, J. Study on the influence of compound rust inhibitor on corrosion of steel bars in chloride concrete by electrical parameters. Constr. Build. Mater. 2020, 262, 120763. [Google Scholar] [CrossRef]
- Dhouibi, L.; Triki, E.; Salta, M.; Rodrigues, P.; Raharinaivo, A. Studies on corrosion inhibition of steel reinforcement by phosphate and nitrite. Mater. Struct. 2003, 36, 530–540. [Google Scholar] [CrossRef]
- Shehnazdeep; Pradhan, B. A study on effectiveness of inorganic and organic corrosion inhibitors on rebar corrosion in concrete: A review. Mater. Today Proc. 2022, 65, 1360–1366. [Google Scholar] [CrossRef]
- Zomorodian, A.; Bagonyi, R.; Al-Tabbaa, A. The efficiency of eco-friendly corrosion inhibitors in protecting steel reinforcement. J. Build. Eng. 2021, 38, 102171. [Google Scholar] [CrossRef]
- Elshami, A.A.; Bonnet, S.; Khelidj, A.; Sail, L. Novel anticorrosive zinc phosphate coating for corrosion prevention of reinforced concrete. Eur. J. Environ. Civ. Eng. 2017, 21, 572–593. [Google Scholar] [CrossRef]
- Simescu, F.; Idrissi, H. Effect of zinc phosphate chemical conversion coating on corrosion behaviour of mild steel in alkaline medium: Protection of rebars in reinforced concrete. Sci. Technol. Adv. Mater. 2008, 9, 045009. [Google Scholar] [CrossRef]
- Burchett, K.R. Metal Treatment to Prevent Corrosion and Blemishes in Metal Reinforced Concrete Structures. United States Patent 3619441, 6 November 1971. [Google Scholar]
- Kumar, V. Protection of steel reinforcement for concrete-A review. Corros. Rev. 1998, 16, 317–358. [Google Scholar] [CrossRef]
- Lollini, F.; Carsana, M.; Gastaldi, M.; Redaell, E. Corrosion behaviour of stainless steel reinforcement in concrete. Corros. Rev. 2019, 37, 3–19. [Google Scholar] [CrossRef]
- Bertolini, L.; Pedeferri, P. Laboratory and field experience on the use of stainless steel to improve durability of reinforced concrete. Corros. Rev. 2002, 20, 129–152. [Google Scholar] [CrossRef]
- Rabi, M.; Cashell, K.A.; Shamass, R.; Desnerck, P. Bond behaviour of austenitic stainless steel reinforced concrete. Eng. Struct. 2020, 221, 111027. [Google Scholar] [CrossRef]
- García-Alonso, M.C.; Escudero, M.L.; Miranda, J.M.; Vega, M.I.; Capilla, F.; Correia, M.J.; Salta, M.; Bennani, A.; González, J.A. Corrosion behaviour of new stainless steels reinforcing bars embedded in concrete. Cem. Concr. Res. 2007, 37, 1463–1471. [Google Scholar] [CrossRef]
- Khanna, A.S. High-Performance Organic Coatings; Woodhead Publishing and CRC Press: Cambridge, UK, 2008. [Google Scholar]
- Concrete Reinforcing Steel Institute (CRSI), Epoxy Interest Group, History of Epoxy-Coated Rebar. Available online: http://www.epoxyinterestgroup.org/about/history-of-epoxy-coated-rebar (accessed on 11 April 2023).
- Montes, P.; Bremmer, T.W.; Kondratova, I. Eighteen-year performance of epoxy-coated rebar in a tunnel structure subjected to a very aggressive chloride-contaminated environment. Corrosion 2004, 60, 974–981. [Google Scholar] [CrossRef]
- Romniceanu, A.; Weyers, R.E.; Riffle, J.S.; Sprinkel, M.M. Parameters governing corrosion protection efficacy of fusion-bonded epoxy coatings on reinforcing bar. ACI Mater. J. 2008, 105, 459–467. [Google Scholar]
- Clifton, J.; Beeghly, H.; Mathey, R. Nonmetallic Coatings for Concrete Reinforcing Bars; National Bureau of Standards: Washington, DC, USA, 1974. [Google Scholar]
- El-Hawary, M.M. Evaluation of bond strength of epoxy-coated bars in concrete exposed to marine environment. Constr. Build. Mater. 1999, 13, 357–362. [Google Scholar] [CrossRef]
- Poursaee, A. Corrosion of Steel in Concrete Structures; Woodhead Publishing: Sawston, UK, 2016. [Google Scholar]
- Broomfield, J.P. Corrosion of Steel in Concrete; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon, UK, 2023. [Google Scholar]
- Reis, J.M.L.; Amorim, F.M.; da Silva, A.H.M.F.T.; da Costa Mattos, H.S. Influence of temperature on the behavior of DGEBA (bisphenol A diglycidyl ether) epoxy adhesive. Int. J. Adhes. Adhes. 2015, 58, 88–92. [Google Scholar] [CrossRef]
- Brostow, W.; Dutta, M.; Rusek, P. Modified epoxy coatings on mild steel: Tribology and surface energy. Eur. Polym. J. 2010, 46, 2181–2189. [Google Scholar] [CrossRef]
- Nunez, L.; Villanueva, M.; Fraga, F.; Nunez, M.R. Influence of water absorption on the mechanical properties of a DGEBA (n50)/1, 2 DCH epoxy system. J. Appl. Polym. Sci. 1999, 74, 353–358. [Google Scholar] [CrossRef]
- Shin, A.; Shon, M. Effects of coating thickness and surface treatment on the corrosion protection of diglycidyl ether bisphenol-A based epoxy coated carbon steel. J. Ind. Eng. Chem. 2010, 16, 884–890. [Google Scholar] [CrossRef]
- Kreahling, R.P.; Kline, D.E. Thermal conductivity, specific heat, and dynamic mechanical behavior of diglycidyl ether of bisphenol A cured with m-phenylenediamine. J. Appl. Polym. Sci. 1969, 13, 2411–2425. [Google Scholar] [CrossRef]
- Poole, A.; van Herwijnen, P.; Weideli, H.; Thomas, M.C.; Ransbotyn, G.; Vance, C. Review of the toxicology, human exposure and safety assessment for bisphenol A diglycidylether (BADGE). Food Addit. Contam. 2004, 21, 905–919. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Kang, S.G.; Choe, Y.; Lee, S.G. Mechanism of adhesion of the diglycidyl ether of bisphenol A (DGEBA) to the Fe(100) surface. Compos. Sci. Technol. 2016, 126, 9–16. [Google Scholar] [CrossRef]
- Nakazawa, M. Mechanism of adhesion of epoxy resin to steel surface. Nippon. Steel Tech. Rep. 1994, 63, 16–22. [Google Scholar]
- Shechter, L.; Wynstra, J. Glycidyl ether reactions with alcohols, phenols, carboxylic acids, and acid anhydrides. Ind. Eng. Chem. 1956, 48, 86–93. [Google Scholar] [CrossRef]
- Arimitsu, K.; Fuse, S.; Kudo, K.; Furutani, M. Imidazole derivates as latent curing agents for epoxy thermosetting resins. Mater. Lett. 2015, 161, 408–410. [Google Scholar] [CrossRef]
- Shechter, L.; Wynstra, J.; Kurkjy, R.P. Glycidyl ether reactions with amines. Ind. Eng. Chem. 1956, 48, 94–97. [Google Scholar] [CrossRef]
- Lou, C.; Liu, X. Functional dendritic curing agent for epoxy resin: Processing, mechanical performance and curing/toughening mechanism. Compos. Part B Eng. 2018, 136, 20–27. [Google Scholar] [CrossRef]
- Ehlers, J.-E.; Rondan, N.G.; Huynh, L.K.; Pham, H.; Marks, M.; Truong, T.N. Theoretical study on mechanisms of the epoxy-amine curing reaction. Macromolecules 2007, 40, 4370–4377. [Google Scholar] [CrossRef]
- Rigail-Cedeño, A.; Sung, C.S.P. Fluorescence and IR characterization of epoxy cured with aliphatic amines. Polymer 2005, 46, 9378–9384. [Google Scholar] [CrossRef]
- Weldon, D.J. Failure Analysis of Paints and Coatings; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Kamde, D.K.; Pillai, R.G. Effect of sunlight/ultraviolet exposure on the corrosion of fusion-bonded epoxy (FBE) coated steel rebar in concrete. Corros. J. 2020, 76, 843–860. [Google Scholar] [CrossRef] [PubMed]
- Sagüés, A.A.; Lau, K.; Powers, R.G. Corrosion of epoxy-coated rebar in marine bridges-Part 1: A 30-year perspective. Corrosion 2010, 66, 065001-01–1065001-13. [Google Scholar] [CrossRef]
- Mahltig, B.; Böttcher, H.; Rauch, K.; Dieckmann, U.; Nitsche, R.; Fritz, T. Optimized UV protecting coatings by combination of organic and inorganic UV absorbers. Thin Solid Film. 2005, 485, 108–114. [Google Scholar] [CrossRef]
- Nikafshar, S.; Zabini, O.; Ahmadi, M.; Mirmohseni, A.; Taseidifar, M.; Naebe, M. The effects of UV light on the chemical and mechanical properties of a transparent epoxy- diamine system in the presence of an organic UV absorber. Materials 2017, 10, 180. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi-Kahrizsangi, A.; Shariatpanahi, H.; Neshati, J.; Akbarinezhad, E. Degradation of modified carbon black/epoxy nanocomposite coatings under ultraviolet exposure. Appl. Surf. Sci. 2015, 353, 530–539. [Google Scholar] [CrossRef]
- Liu, M.; Horrocks, A.R. Effect of carbon black on UV stability of LLDPE films under artificial weathering conditions. Polym. Degrad. Stab. 2002, 75, 485–499. [Google Scholar] [CrossRef]
- Mira, J.; López-Pérez, J.A.; Rivas, J.; López-Quintela, M.A.; Caciuffo, R.; Rinaldi, D.; Fiorani, D. Dynamic magnetic behaviour of interacting γ-Fe2O3 nanoparticles dispersed in epoxy resin. IEEE Trans. Magn. 1997, 33, 3724–3726. [Google Scholar] [CrossRef]
- Shi, X.; Nguyen, T.A.; Suo, Z.; Liu, Y.; Avci, R. Effect of nanoparticles on the anticorrosion and mechanical properties of epoxy coating. Surf. Coat. Technol. 2009, 204, 237–245. [Google Scholar] [CrossRef]
- Wang, Z.G.; Zhang, F.Q.; Song, N.; Ni, L.Z. The influence of barium sulfate on the mechanical properties of glass/epoxy resin composite. Polym. Polym. Compos. 2008, 16, 257–262. [Google Scholar] [CrossRef]
- Piazza, D.; Lorandi, N.P.; Pasqual, C.I.; Scienza, L.C.; Zattera, A.J. Influence of microcomposite and a nanocomposite on the properties of an epoxy-based powder coating. Mater. Sci. Eng. A 2011, 528, 6769–6775. [Google Scholar] [CrossRef]
- Siddabattuni, S.; Schuman, T.P.; Dogan, F. Improved polymer nanocomposite dielectric breakdown performance trough barium titanate to epoxy interface control. Mater. Sci. Eng. B 2011, 176, 1422–1429. [Google Scholar] [CrossRef]
- Monetta, T.; Bellucci, F.; Nicolais, L. Protective properties of epoxy-based organic coatings on mild steel. Prog. Org. Coat. 1993, 21, 353–369. [Google Scholar] [CrossRef]
- Pfeifer, D.; Landgren, R.; Krauss, P. Performance of epoxy-coated rebars: A review of CRSI research studies. Transp. Res. Circ. 1993, 403, 57–65. [Google Scholar]
- Kondratova, I.; Erdogdu, S.; Bremner, T. Field and laboratory performance of epoxy-coated reinforcement in cracked and uncracked concrete. In Proceedings of the Transportation Research Board 77th Annual Meeting, Washington, DC, USA, 11–15 January 1998. [Google Scholar]
- Manning, D. Corrosion performance of epoxy-coated reinforcing steel: North American experience. Constr. Build. Mater. 1996, 10, 349–365. [Google Scholar] [CrossRef]
- Kamde, D.P.; Zintel, M.; Kessler, S.; Pillai, R.G. Performance indicators and specifications for fusion-bonded-epoxy (FBE)-coated steel rebars in concrete exposed to chlorides. Sustain. Resilient Infrastruct. 2023, 8, 265–283. [Google Scholar] [CrossRef]
- Kamde, D.P.; Pillai, R.G. Corrosion initiation mechanisms and service life estimation of concrete systems with fusion-bonded-epoxy (FBE) coated steel exposed to chlorides. Constr. Build. Mater. 2021, 277, 122314. [Google Scholar] [CrossRef]
- Kouřil, M.; Stoulil, J.; Bystrianský, J.; Malá, R.; Novák, P. Korozivzdorné oceli pro výztuže betonu. Koroze A Ochr. Mater. 2002, 46, 62–67. [Google Scholar]
- ASTM A775; Standard Specification for Epoxy-Coated Steel Reinforcing Bars. Annual Book of ASTM Standards. ASTM: West Conshohocken, PA, USA, 2001; pp. 385–392.
- IS 13620:1993; Fusion Bonded Epoxy Coated Reinforcing Bars-Specification. Indian Standard: New Delhi, India, 1993.
- Miller, G.G.; Kepler, J.L.; Darwin, D. Effect of epoxy coating thickness on bond strength of reinforcing bars. ACI Struct. J. 2003, 100, 314–320. [Google Scholar]
- Kobayashi, K.; Takewaka, K. Experimental studies on epoxy coated reinforcing steel for corrosion protection. Int. J. Cem. Lightweight Concr. 1984, 6, 99–116. [Google Scholar] [CrossRef]
- Weyers, R.E.; Sprinkel, M.M.; Brown, M.C. Summary Report on the Performance of Epoxy-Coated Reinforcing Steel in Virginia; Virginia Transportation Research Council: Charlottesville, VA, USA, 2006; p. 22903. [Google Scholar]
- Zhou, J.; Lucas, J.P. Hygrothermal effects of epoxy resin. Part I: The nature of water in epoxy. Polymer 1999, 40, 5505–5512. [Google Scholar] [CrossRef]
- Ji, W.-G.; Hu, J.-M.; Zhang, J.-Q.; Cao, C.-N. Reducting the water absorption in epoxy coatings by silane monomer incorporation. Corros. Sci. 2006, 48, 3731–3739. [Google Scholar] [CrossRef]
- Ramezanzadeh, B.; Niroumandrad, S.; Ahmadi, A.; Mahdavian, M.; Moghadam, M.H.M. Enhancement of barrier and corrosion protection performance of an epoxy coating through wet transfer of amino functionalized graphene oxide. Corros. Sci. 2016, 103, 283–304. [Google Scholar] [CrossRef]
- Soles, C.L.; Yee, A.F. A discussion of the molecular mechanisms of moisture transport in epoxy resins. J. Polym. Sci. Part B Polym. Phys. 2000, 38, 792–802. [Google Scholar] [CrossRef]
- Nguen, T.; Martin, J.W. Modes and mechanisms for the degradation of fusion-bonded epoxy-coated steel in a marine concrete environment. J. Coat. Technol. 2004, 1, 81–92. [Google Scholar] [CrossRef]
- Shafikhani, M.; Chidiac, S.E. Quantification of concrete chloride diffusion coefficient—A critical review. Cem. Concr. Compos. 2019, 99, 225–250. [Google Scholar] [CrossRef]
- Andrade, C. Calculation of chloride diffusion coefficients in concrete from ionic migration measurements. Cem. Concr. Res. 1993, 23, 724–742. [Google Scholar] [CrossRef]
- Schneider, O.; Kelly, R.G. Localized coating failure of epoxy-coated aluminium alloy 2024-T3 in 0.5 M NaCl solutions: Correlation between coating degradation, blister formation and local chemistry within blisters. Corros. Sci. 2007, 49, 594–619. [Google Scholar] [CrossRef]
- Pélissier, K.; Thierry, D. Powder and high-solid coatings as anticorrosive solutions for marine and offshore applications? A Review. Coatings 2020, 10, 916. [Google Scholar] [CrossRef]
- Kamde, D.K.; Kessler, S.; Pillai, R.G. Condition assessment of reinforced concrete systems with fusion bonded epoxy coated rebars. Corrosion 2021, 77, 1332–1343. [Google Scholar] [CrossRef] [PubMed]
- Darwin, A.B.; Scantlebury, J.D. Retarding of corrosion processes on reinforcement bar in concrete with an FBE coating. Cem. Concr. Compos. 2002, 24, 73–78. [Google Scholar] [CrossRef]
- Walker, D.E.; Wilcox, G.D. Molybdate based conversion coatings for zinc and zinc alloy surfaces: A review. Trans. IMF 2008, 86, 251–259. [Google Scholar] [CrossRef]
- Golabadi, M.; Aliofkhazraei, M.; Toorani, M.; Rouhaghdam, A.S. Corrosion and cathodic disbondment resistance of epoxy coatingon zinc phosphate conversion coating containing Ni2+ and Co2+. J. Ind. Eng. Chem. 2017, 47, 154–168. [Google Scholar] [CrossRef]
- Ghanbari, A.; Attar, M.M. The effect of zirconium-based surface treatment on the cathodic disbanding resistance of epoxy coated mild steel. Appl. Surf. Sci. 2014, 316, 429–434. [Google Scholar] [CrossRef]
- Vakili, H.; Ramezanzadeh, B.; Amini, R. The corrosion performance and adhesion properties of the epoxy coating applied on the steel substrates treated by cerium-based conversion coatings. Corros. Sci. 2015, 94, 466–475. [Google Scholar] [CrossRef]
- Sharma, N.; Sharma, S.; Sharma, S.K.; Mehta, R. Evaluation of corrosion inhibition and self healing capabilities of nanoclay and tung oil microencapsulated epoxy coatings on rebars in concrete. Constr. Build. Mater. 2020, 259, 120278. [Google Scholar] [CrossRef]
- Singh, K.; Nanda, T.; Mehta, R. Compatibilization of polypropylene fibers in epoxy based GFRP/clay nanocomposites for improved impact strength. Compos. Part A 2017, 98, 207–217. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, J. Design of a smart protective coating with molybdate loaded halloysite nanotubes towards corrosion protection in reinforced concrete. Cem. Concr. Compos. 2024, 147, 105419. [Google Scholar] [CrossRef]
- López-Calvo, H.Z.; Montes-Garcia, P.; Kondratova, I.; Bremner, T.W.; Thomas, M.D.A. Epoxy-coated bars as corrosion control in cracked reinforced concrete. Mater. Corros. 2013, 64, 599–608. [Google Scholar] [CrossRef]
- Johnston, D.W.; Zia, P. Bond Characteristics of Epoxy-Coated Reinforcing Bars; FHWA-NC-82-002; Federal Highway Administration: Washington, DC, USA, 1982. [Google Scholar]
- Treece, R.A.; Jirsa, J.O. Bond strength of epoxy-coated reinforcing bars. ACI Mater. J. 1989, 86, 167–174. [Google Scholar]
- Cusens, A.R. Pullout tests of epoxy-coated reinforcement in concrete. Cem. Concr. Compos. 1992, 14, 269–276. [Google Scholar] [CrossRef]
- Pop, I.; De Schutter, G.; Desnerck, P.; Onet, T. Bond between powder type self- compacting concrete and steel reinforcement. Constr. Build. Mater. 2013, 41, 824–833. [Google Scholar] [CrossRef]
- Tahershamsi, M.; Fernandez, I.; Zandi, K.; Lundgren, K. Four levels to assess anchorage capacity of corroded reinforcement in concrete. Eng. Struct. 2017, 147, 434–447. [Google Scholar] [CrossRef]
- Mancini, G.; Tondolo, F. Effect of bond degradation due to corrosion—A literatury survey. Struct. Concr. 2014, 15, 404–418. [Google Scholar] [CrossRef]
- De Anda, L.; Courtier, C.; Moehle, J. Bond strength of prefabricated epoxy-coated reinforcement. ACI Mater. J. 2006, 103, 226–234. [Google Scholar]
- Lee, J.; Sheesley, E.; Jing, Y.; Xi, Y.; Willam, K. The effect of heating and cooling on the bond strength between concrete and steel reinforcement bars with and without epoxy coating. Constr. Build. Mater. 2018, 177, 230–236. [Google Scholar] [CrossRef]
- Choi, O.C.; Hadje-Ghaffari, H.; Darwin, D.; McCabe, S.L. Bond of epoxy-coated reinforcement: Bar parametres. ACI Mater. J. 1991, 2, 207–217. [Google Scholar]
- Assaad, J.J.; Issa, C.A. Bond strength of epoxy-coated bars in underwater concrete. Constr. Build. Mater. 2012, 30, 667–674. [Google Scholar] [CrossRef]
- Pokorný, P.; Kouřil, M.; Stoulil, J.; Bouška, P.; Simon, P.; Juránek, P. Problems and normative evaluation of bond-strength tests for coated reinforcement and concrete. Mater. Technol. 2015, 49, 847–856. [Google Scholar] [CrossRef]
- Cairns, J.; Abdullah, R. Fundamental tests on the effect of an epoxy coating on bond strength. ACI Mater. J. 1994, 91, 331–338. [Google Scholar]
- Pandurangan, K.; Santhakumar, A.R.; Rao, G.A. Effect of fusion bonded epoxy coating and rib geometry on the bond strength of reinforced concrete. Indian Concr. J. 2013, 34, 33–43. [Google Scholar]
- Kayyali, O.A.; Yeomans, S.R. Bond and slip of coated reinforcement in concrete. Constr. Build. Mater. 1995, 9, 219–226. [Google Scholar] [CrossRef]
- Swamy, R.N.; Koyama, S. Epoxy coated rebars, the panacea for steel corrosion in concrete. Constr. Build. Mater. 1989, 3, 86–91. [Google Scholar] [CrossRef]
- Grundhoffer, T.M.; French, C.W.; Leon, R.T. Bond Behaviour of Uncoated and Epoxy-Coated Reinforcement in Concrete; Final Report for University of Minnesota; Center of Transportation Studies and National Science Foundation: Minneapolis, MN, USA, 1992. [Google Scholar]
- Idun, E.K.; Darwin, D. Bond of epoxy-coated reinforcement: Coefficient of friction and rib face angle. ACI Struct. J. 1999, 96, 609–615. [Google Scholar]
- Huang, Y.; Zhang, Y.; Li, X.; Ying, J. Bond of epoxy-coated steel bars to seawater sea sand recycled concrete. Structures 2021, 30, 866–876. [Google Scholar] [CrossRef]
- Wang, X.-H.; Chen, B.; Tang, P. Experimental and analytical study on bond strength of normal uncoated and epoxy-coated reinforcing bars. Constr. Build. Mater. 2018, 189, 612–628. [Google Scholar] [CrossRef]
- Nie, R.; Huang, Y.; Li, X.; Sun, H.; Li, D.; Ying, J. Bond of epoxy-coated reinforcement to seawater coral aggregate concrete. Ocean. Eng. 2020, 208, 107350. [Google Scholar] [CrossRef]
- Hadje-Ghaffari, H.; Choi, O.C.; Darwin, D.; McCabe, S.L. Bond of epoxy coated reinforcement: Cover, casting position, slump, and consolidation. ACI Struct. J. 1994, 91, 59–68. [Google Scholar]
- Committee, A.C. Building Code Requirements for Reinforced Concrete; American Concrete Institute: Farmington Hills, MI, USA, 2005. [Google Scholar]
- AASHTO. Standard Specification for Heighway Bridges; American Association of State Highway and Transportation Officials: Washington, DC, USA, 1989. [Google Scholar]
- Yeomans, S.R. Galvanized Steel Reinforcement in Concrete; Elsevier: Canberra, Australia, 2004. [Google Scholar]
- Stejkal, B. Evaluation of the Performance of Galvanized Steel Reinforcement in Concrete Bridge Decks; CTL Project 050324; Construction Technology Laboratories: Skokie, IL, USA, 1992. [Google Scholar]
- Dallin, G. Continously Coated Galvanized Steel Reinforcing Bars, Literature Review of the Advantages of Zinc Coatings versus Zinc/Zinc-Iron Coatings; GalvInfo Centre, International Zinc Association: Brussels, Belgium, 2013. [Google Scholar]
- Olsen, C.; Nagi, M. Evaluation of the Performance of Galvanized Steel in Concrete Bridge Decks; ILZRO Project ZC-10; Construction Technology Laboratories: Skokie, IL, USA, 2002. [Google Scholar]
- Hegyi, A.; Păstrav, M.; Rus, M. Environmental and economic aspects of anticorrosion protection by hot-dipped galvanized method rebars in concrete. J. Appl. Eng. Sci. 2015, 5, 18–29. [Google Scholar]
- Yeomans, S.R. Galvanized steel reinforcement—A prespect view. In Real World Concrete—Symposium of R. N. Swamy; American Concrete Institute: Farmington Hills, MI, USA, 1995; pp. 57–70. [Google Scholar]
- Maldonado, L. Chloride threshold for corrosion of galvanized reinforcement in concrete exposed in the Mexican Caribbean. Mater. Corros. 2009, 60, 536–539. [Google Scholar] [CrossRef]
- Rasheeduzzafar, F.; Balder, M.; Khan, M. Performance corrosion-resisting steels in chloride-bearing concrete. ACI Mater. J. 1992, 89, 439–448. [Google Scholar]
- McDonald, D.B. Corrosion evaluation of epoxy-coated, metallic-clad and solid metallic reinforcing bars in concrete. Aust. Civ. Eng. Trans. 2002, 44, 103–107. [Google Scholar]
- Marder, A.R. The metallurgy of zinc-coated steel. Prog. Mater. Sci. 2000, 45, 191–271. [Google Scholar] [CrossRef]
- Culcasi, J.D.; Seré, P.R.; Elsner, C.I.; Di Sarli, A.R. Control of the growth of zinc-iron phases in the hot-dip galvanizing process. Surf. Coat. Technol. 1999, 122, 21–23. [Google Scholar] [CrossRef]
- Hu, X.; Watanabe, T. Relationship between the crystallographic structure of electrodeposited Fe-Zn alloy film and its thermal equilibrium diagram. Mater. Trans. 2001, 42, 1969–1976. [Google Scholar] [CrossRef]
- Yu, J.; Liu, W.; Zhou, W.; Zhang, J.; Wu, L. Cross-sectional TEM observation of iron-zinc intermetallic Γ and Γ1 phases in commercial galvannealed IF steel sheets. Mater. Des. 2007, 28, 249–253. [Google Scholar] [CrossRef]
- Koster, A.S.; Schoone, J.C. Structure of the cubic iron-zinc phase Fe22Zn78. Acta Crystallogrpaphica B37 1981, 37, 1905–1907. [Google Scholar] [CrossRef]
- Okamoto, N.L.; Yasuhara, A.; Inui, H. Order-disorder structure of the δ1k phase in the Fe-Zn system determined by scanning transmissionelectron microscopy. Acta Mater. 2014, 81, 345–357. [Google Scholar] [CrossRef]
- Okamoto, N.L.; Tanaka, K. Structure refinement of the δ1p phase in the Fe-Zn system by single-crystal X-ray diffraction combined with scanning transmission electron microscopy. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 2014, 7, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Bastin, G.F.; Loo, F.J.J.; Rieck, G.D. On the δ-phase in the Fe-Zn system. Int. J. Mater. Res. 1977, 68, 359–361. [Google Scholar] [CrossRef]
- Brown, P.J. The structure of the ζ—Phase in the transicion metal—Zinc alloy systems. Acta Crystallogr. 1962, 15, 608. [Google Scholar] [CrossRef]
- Belin, R.; Tillard, M.; Monconduit, L. Redetermination of the iron-zinc phase FeZn13. Acta Crystallogr. (Sect. C) 2000, 56, 267–268. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, N.L.; Inomoto, M.; Adachi, H.; Takebayashi, H.; Inui, H. Micropillar compression deformation of single crystals of the intermetallic compound ζ—FeZn13. Acta Mater. 2014, 65, 229–239. [Google Scholar] [CrossRef]
- Pokorný, P.; Kolísko, J.; Balík, L.; Novák, P. Effect of chemical composition of steel on the structure of hot—Dip galvanized coating. Metalurgija 2016, 55, 115–118. [Google Scholar]
- Manna, M.; Naidu, G.; Rani, N.; Bandyopadhyay, N. Characterisation of coating on rebar surface using hot-dip Zn and Zn-4.9 Al-0.1 misch metal bath. Surf. Coat. Technol. 2008, 202, 1510–1516. [Google Scholar] [CrossRef]
- Kania, H.; Mendala, J.; Kozuba, J.; Saternus, M. Development of bath chemical composition for bath hot-dip galvanizing—A review. Materials 2020, 13, 4168. [Google Scholar] [CrossRef]
- Zhang, X. Corrosion and Electrochemistry of Zinc; Plenum Press: New York, NY, USA, 1996. [Google Scholar]
- Macias, A.; Andrade, C. Corrosion of galvanized steel in diluate Ca(OH)2 solutions (pH 11.0–12.6). Br. Corros. J. 1987, 22, 162–171. [Google Scholar] [CrossRef]
- Vorkapic, J.Ž.; Dražič, D.M.; Despic, A.R. Corrosion of pure and amalgamated zinc in concentrated alkali hydroxide solutions. J. Electrochem. Soc. 1974, 121, 1385–1392. [Google Scholar] [CrossRef]
- Andrade, C.; Holst, J.D.; Nürnberger, U.; Whiteley, J.D.; Woodman, N. Protection System for Reinforcement; CEB-Bulletin D’Information: Lousanne, Switzerland, 1992. [Google Scholar]
- Bowsher, B. Corrosion Protection of Reinforcing Steels; Technical Report Fib-Bulletin 49; IFSC: Lousanne, Switzerland, 2009. [Google Scholar]
- Macias, A.; Andrade, C. Corrosion rate of galvanized steel immersed in saturated solutions of Ca(OH)2 in the pH range 12–13.8. Br. Corros. J. 1983, 18, 82–87. [Google Scholar] [CrossRef]
- Blanco, M.T.; Macias, A.; Andrade, C. SEM study of the corrosion products of galvanized reinforcements immersed in solutions in the pH range 12.6–13.6. Br. Corros. J. 1984, 19, 41–48. [Google Scholar] [CrossRef]
- Macias, A.; Andrade, C. Corrosion of galvanized steel reinforcements in alkaline solutions. Part 1: Electrochemical results. Br. Corros. J. 1987, 22, 113–118. [Google Scholar] [CrossRef]
- Macias, A.; Andrade, C. Corrosion of galvanized steel reinforcements in alkaline solutions. Part 2: SEM study and identification of corrosion products. Br. Corros. J. 1987, 22, 119–129. [Google Scholar] [CrossRef]
- Wienerová, K.; Kouřil, M.; Stoulil, J. Koroze a ochrana zinkované oceli v prostředí betonu. Koroze A Ochr. Mater. 2010, 54, 148–154. [Google Scholar]
- Pokorný, P.; Kouřil, M.; Kučera, V. Kinetics of zinc corrosion in concrete as a function of water and oxygen availability. Materials 2019, 12, 2786. [Google Scholar] [CrossRef] [PubMed]
- Menzel, K. Zur Korrosion von Verzinktem Stahl in Kontakt mit Beton, IWB (Mitteilungen); Universität Stuttgart: Stuttgart, Germany, 1992. [Google Scholar]
- Ramírez, E.; Gonzáles, J.A.; Bautista, A. The protective efficiency of galvanizing against corrosion of steel in mortar and in Ca(OH)2 saturated solutions containing chlorides. Cem. Concr. Res. 1996, 26, 1525–1536. [Google Scholar] [CrossRef]
- Garnica-Rodríguez, A.; Montoya, R.; Rodríguez-Gomez, F.J.; Pérez-López, T.; Genesca, J. Effect of fast potential change on the early stage of zinc passivation in a saturated calcium hydroxide solution. Front. Mater. 2022, 9, 877728. [Google Scholar] [CrossRef]
- Bautista, A.; Gonzales, J.A. Analysis of the protective efficiency of galvanizing agains corrosion of reinforcements embedded in chloride contaminated concrete. Cem. Concr. Res. 1996, 26, 214–223. [Google Scholar] [CrossRef]
- Hime, W.G.; Machin, M. Performance variances of galvanized steel in mortar and concrete. Corrosion 1993, 49, 858–860. [Google Scholar] [CrossRef]
- Sergi, G.; Short, N.R.; Page, C.L. Corrosion of galvanized and galvanealed steel in solution of pH 9.0 to 14.0. Corrosion 1985, 41, 618–624. [Google Scholar] [CrossRef]
- Maahn, E.; Sorensen, B. The influence of microstructure on the corrosion properties of hot-dip galvanized reinforcement in concrete. Corrosion 1986, 42, 187–196. [Google Scholar] [CrossRef]
- Bird, C.E. The influence of minor constituents in portland cement on the behaviour of galvanized steel in concrete. Corros. Prev. Control. 1964, 17–21. [Google Scholar]
- Tan, Z.Q.; Hansson, C.M. Effect of surface condition on the initial corrosion of galvanized reinforcing steel embedded in concrete. Corros. Sci. 2008, 50, 2512–2522. [Google Scholar] [CrossRef]
- Sistonen, E.; Cwirzen, A.; Puttonen, J. Corrosion mechanism of hot-dip galvanized reinforcement bar in cracked concrete. Corros. Sci. 2008, 50, 3416–3428. [Google Scholar] [CrossRef]
- Andrade, C.; Macias, A. Galvanized Reinforcement in Concrete, Surface Coatings—2; Wilson, A.D., Nicholson, J.W., Prosser, H.J., Eds.; Elsevier Applied Science Publisher Ltd.: Amsterdam, The Netherlands, 1988; pp. 137–182. [Google Scholar]
- Bellezze, T.; Malavolta, M.; Quaranta, A.; Ruffini, N.; Roventi, G. Corrosion behaviour in concrete of tree differently galvanized steel bars. Cem. Concr. Compos. 2006, 28, 246–255. [Google Scholar] [CrossRef]
- Arenas, M.A.; Casado, C.; Nobel-Pujol, V.; de Damborenea, J. Influence of the conversion coating on the corrosion of galvanized reinforcing steel. Cem. Concr. Compos. 2006, 28, 267–275. [Google Scholar] [CrossRef]
- Sánchez, M.; Alonso, M.C.; Cecílio, P.; Montemor, M.F.; Andrade, C. Electrochemical and analytical assessment of galvanized steel reinforcement pre-treated with Ce and La salts under alkaline media. Concr. Compos. 2006, 28, 256–266. [Google Scholar] [CrossRef]
- Di Franco, F.; Zaffora, A.; Megna, B.; Santamaria, M. Heterogenous crystallization of zinc hydroxystannate on galvanized steel for enhancing the bond strength at the rebar/concrete interface. Chem. Eng. J. 2021, 405, 126943. [Google Scholar] [CrossRef]
- Wang, Y.; Kong, G.; Che, C.; Zhang, B. Inhibitive effect of sodium molybdate on the corrosion behavior of galvanized steel in simulated concrete pore solution. Constr. Build. Mater. 2018, 162, 383–392. [Google Scholar] [CrossRef]
- Rovnaníková, P.; Bayer, P. Study of interficial transition zone between cement paste and zinc coated steel reinforcement. Corros. Undergr. Struct. 2003, 65–70. [Google Scholar]
- Rovnaníková, P.; Bayer, P. Role of the physical–chemical methods for evaluation of the relation between galvanized steel-cement stone. CERM 2004, 469–474. [Google Scholar]
- Rovnaníková, P.; Bayer, P. Microstructure of hardened portlandcement paste in galvanized reinforcement surroundings. In Proceedings of the 9—The Association of Czech and Slovak Galvanizing; AČSZ: Ostrava, Czech Republic, 2003; pp. 57–62. [Google Scholar]
- Ryant, L.; Vorel, J.; Řepík, M. Kotvení Pozinkované Výztuže, Výzkumná Zpráva ze Středoškolské Odborné Činnosti; Stavební Škola J. Gočára: Prague, Czechia, 2009. [Google Scholar]
- Rovnaníková, P.; Bayer, P. Vlastnosti cementového tmelu v betonu na styku s pozinkovanou výztuží, conference. In 11. Betonářské dny 2004; ČSSI: Praha, Czech Republic, 2004; pp. 542–547. [Google Scholar]
- Belaïd, F.; Arliguie, G.; François, R. Porous structure of ITZ around galvanized and ordinary steel reinforced. Cem. Concr. Res. 2001, 31, 1561–1566. [Google Scholar] [CrossRef]
- Rovnaníková, P.; Bayer, P. Změny v mikrostuktuře cementovéhotmelu na styku s pozinkovanou výztuží v čase. Konf. AKI 2003, 19–20. [Google Scholar]
- Pokorný, P.; Vacek, V.; Prodanovic, N.; Zabloudil, A.; Hurtig, K. The effect of addition potassium permanganate on bond strength of hot-dip galvanized plain bars with cement paste. Materials 2023, 16, 2556. [Google Scholar] [CrossRef] [PubMed]
- Fratesi, R.; Mariconi, G.; Coppola, L. The influence of steel galvanization on rebars behaviour in concrete. In Corrosion of Reinforcement in Concrete Construction; The Royal Society of Chemistry: London, UK, 1996; pp. 630–640. [Google Scholar]
- Mike, J.A. Bond of Hot Dip Galvanized Reinforcement in Concrete. Master’s Thesis, American University of Beirut, Beirut, Libanon, 2001. [Google Scholar]
- Arliguie, G.; Grandet, J.; Ollivier, J.P. Orientation de la portlandite dans les mortiers et bétons de ciment Portland: Influence de la nature et de l’état de surface du support de cristallisation. Mater. Struct. 1985, 18, 263–267. [Google Scholar] [CrossRef]
- Barmes, B.D.; Diamond, S.; Dolch, W.L. The contact zone between portland cement paste and glass aggregate surfaces. Cem. Concr. Res. 1978, 8, 233–243. [Google Scholar] [CrossRef]
- Khalaf, M.N.; Page, C.L. Steel/mortar interfaces: Microstructural features and mode of failure. Cem. Concr. Res. 1979, 9, 197–208. [Google Scholar] [CrossRef]
- Maldonado, L.; Quiroz-Zavala, O.; Díaz-Ballote, L. Bond between galvanized steel and concrete prepared with limestone aggregates. AntiCorrosion Methods Mater. 2010, 57, 305–313. [Google Scholar] [CrossRef]
- Pokorný, P.; Kostelecká, M.; Prodanovic, N.; Sýkora, M. Effect of calcium hydroxyzincate on bond strength of hot-dip galvanized plain bars with normal strength concrete. Cem. Concr. Compos. 2022, 130, 104540. [Google Scholar] [CrossRef]
- Bellezze, T.; Monosi, S.; Roventi, G.; Fratesi, R. Inhibition of galvanized rebars active corrosion in fresh concrete using hydrogen peroxide. In Proceedings of the European Corrosion Congress EUROCORR 2013, Estoril, Portugal, 1–5 September 2013. [Google Scholar]
- Muller, H.H. Behaviour of Galvanized Rebars in Concrete, Durability of Building Materials and Components; E & FN Spon/Chapman & Hall: London, UK, 1993; pp. 147–156. [Google Scholar]
- Sistonen, E.; Peltola, S. Quality specifications for hot-dip galvanised reinforcement to ensure the target service life. In Proceedings of the Nordic Concrete Research Meeting–XIX, Sandefjord, Norway, 13–15 June 2005; pp. 133–134. [Google Scholar]
- Sistonen, E. Service Life of Hot Dip Galvanized Reinforcement Bars in Carbonated and Chloride Contaminated Concrete. Ph.D. Thesis, Helsinki University of Technology, Espoo, Finland, 2000. [Google Scholar]
- Slater, W.A.; Richard, F.E.; Scofield, G.G. Tests of Bond Resistance between Concrete and Steel; Technological Papers of the Bureau of Standards, No. 173; Washington Government Printing Office: Washington, DC, USA, 1920. [Google Scholar]
- Yeomans, S.R. Comparative Studies of Galvanized and Epoxy coated Steel Reinforcement in Concrete; Research Report No. R103; The University of New South Wales: Canberra, Australia, 1991; pp. 1–15. [Google Scholar]
- Belaïd, F.; Arliguie, G.; François, R. Effect of bars properties on bond strength of galvanized reinforcement. J. Mater. Civ. Eng. 2001, 13, 454–458. [Google Scholar] [CrossRef]
- Robinson, K.E. The Bond Strength of Galvanized Reinforcement; Technical Report TRA/220; Cement and Concrete Association 52; Grosvendor Gardens: London, UK, 1956. [Google Scholar]
- Guklid, I.; Hofsøy, A. Hot dip galvanized steel reinforcement (Varmforsinket armeringsstål). Tek. Ukebl. Oslo 1965, 2, 37–43. [Google Scholar]
- Deyá, C. Silane as adhesion promoter in damaged areas. Prog. Org. Coat. 2016, 90, 28–33. [Google Scholar] [CrossRef]
- Parhizkar, N.; Ramezanzadeh, B.; Shahrabi, T. Corrosion protection and adhesion properties of the epoxy coating applied on the steel substrate pre-treated by a sol-gel based silane coating filled with amino and isocyanate silane functionalized graphene oxide nanosheets. Appl. Surf. Sci. 2018, 439, 45–59. [Google Scholar] [CrossRef]
- Figueira, R.B.; Silva, C.J.R.; Pereira, E.V. Hybrid sol-gel coatings for corrosion protection of hot-dip galvanized steel in alkaline medium. Surf. Coat. Technol. 2015, 265, 191–204. [Google Scholar] [CrossRef]
- Figueira, R.B.; Silva, C.J.R.; Pereira, E.V. Hybrid sol–gel coatings for corrosion protection of galvanized steel in simulated concrete pore solution. J. Coat. Technol. Res. 2016, 13, 355–373. [Google Scholar] [CrossRef]
- Polder, R.B.; Borsje, H.; de Vries, H. Hydrophobic Treatment of Concrete against Chloride Penetration; Corrosion of Reinforcement in Concrete Construction; The Royal Society of Chemistry: London, UK, 1996; pp. 546–555. [Google Scholar]
- Cherry, B.; Green, W. Corrosion and Protection of Reinforced Concrete; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon, UK, 2021. [Google Scholar]
- Shen, L.; Jiang, H.; Wang, T.; Chen, K.; Zhang, H. Peformance of silane-based surface treatments for protecting degraded historic concrete. Prog. Org. Coat. 2019, 129, 209–216. [Google Scholar] [CrossRef]
- Vipulanandan, C.; Parihar, A.; Issac, M. Testing and modeling composite coatings with silanes with silanes for protecting reinforced concrete in saltwater environment. J. Mater. Civ. Eng. 2011, 23, 1602–1608. [Google Scholar] [CrossRef]
- Petrie, E. Handbook of Adhesives; McGraw Hill: New York, NY, USA, 2007. [Google Scholar]
- Dow Corning. A guide to silane solutions from Dow Corning. In Chemical Manufacturing Solutions; Dow Corning: Midland, MI, USA, 2005. [Google Scholar]
- Carter, P.D. Evaluation of dampproofing performance and effective penetration depth of silane seelers in concrete. ACI Struct. J.-Spec. Publ. 1994, 151, 95–118. [Google Scholar]
- Wong, K.H.; Weyers, E.; Cady, P.D. The retardation of reinforcing steel corrosion by alkyl-alkoxy silane. Cem. Concr. Res. 1983, 13, 778–788. [Google Scholar] [CrossRef]
- Berke, N.S.; DeNicola, P.K.; Ade, K.M.; Rungta, A. Organofunctional silane corrosion inhibitor surface treatment of concrete to mitigate corrosion due to chlorides or carbonation. In Proceedings of the CORROSION 2017, New Orleans, LA, USA, 26–30 March 2017. [Google Scholar]
- Medeiros, M.; Helene, P. Efficacy of surface hydrophobic agents in reducing water and chloride ion penetration in concrete. Mater. Struct. 2008, 41, 59–71. [Google Scholar] [CrossRef]
- Geng, Y.; Li, S.; Hou, D.; Chen, X.; Jin, Z. Effect of SiO2 sol/silane emulsion in reducing water and chloride ion penetration in concrete. Coatings 2020, 10, 682. [Google Scholar] [CrossRef]
- Li, S.; Zhang, W.; Liu, J.; Hou, D.; Geng, Y.; Chen, X.; Gao, Y.; Jin, Z.; Yin, B. Protective mechanism of silane on concrete upon marine exposure. Coatings 2019, 9, 558. [Google Scholar] [CrossRef]
- Tittarelli, F.; Mariconi, G. The effect of silane-based hydrophobic admixture on corrosion of reinforcing steel in concrete. Cem. Concr. Res. 2008, 38, 1354–1357. [Google Scholar] [CrossRef]
- Aguiar, J.B.; Júnior, C. Carbonation of surface protected concrete. Constr. Build. Mater. 2013, 49, 478–483. [Google Scholar] [CrossRef]
- Shan, H.; Xu, J.; Jiang, L.; Wang, Z. A novel electrochemical technique for enhancing silane penetration depth into mortar. Constr. Build. Mater. 2017, 144, 645–649. [Google Scholar] [CrossRef]
- Christodoulou, C.; Goudier, C.I.; Austin, S.A.; Webb, J.; Glass, G.K. Long-term performance of surface impregnation of reinforced concrete structures with silane. Constr. Build. Mater. 2013, 48, 708–716. [Google Scholar] [CrossRef]
- Schueremans, L.; Van Gemert, D.; Giessler, S. Chloride penetration in RC-structures in marine environments in marine environment–long term assessment of a preventive hydrophobic treatment. Constr. Build. Mater. 2007, 21, 1238–1249. [Google Scholar] [CrossRef]
- Basheer, P.A.M.; Basheer, L.; Cleland, D.J.; Long, A.E. Surface treatments for concrete: Assessment methods and reported performance. Constr. Build. Mater. 1997, 11, 413–429. [Google Scholar] [CrossRef]
- Sandeford, P.; Bendell, G.; Mansoor, A. Corrosion manegment strategy for reinforced concrete wharf infrastructure located at the mouth of the Brisbane River. Corros. Mater. 2009, 34, 32–37. [Google Scholar]
- Dai, J.G.; Akira, Y.; Wittmann, F.H.; Yokota, H.; Zhang, P. Water repellent surface impregnation for extension of service life of reinforced concrte structures in marine environments: The role of cracks. Cem. Concr. Compos. 2010, 32, 101–109. [Google Scholar] [CrossRef]
- Polder, R.B.; de Vries, H. Prevention of reinforcement corrosion by hydrophobic tratment of concrete. Heron 2001, 46, 227–238. [Google Scholar]
- Tosun, K.; Felekoglu, B.; Baradan, B. Effectivness of alkyl alkoxy silane treatment in mitigating alkali-silica reaction. ACI Mater. J. 2008, 105, 20–27. [Google Scholar]
- Moradllo, M.K.; Sudbrink, B.; Ley, M.T. Determining the effective service life of silane treatments in concrete bridge decks. Constr. Build. Mater. 2016, 116, 121–127. [Google Scholar] [CrossRef]
- Liu, J.; Cai, J.; Shi, L.; Liu, J.; Zhou, X.; Mu, S.; Hong, J. The inhibition behaviour of a water-soluble silane for reinforcing steel in 3.5 % NaCl saturated Ca(OH)2 solution. Constr. Build. Mater. 2018, 189, 95–101. [Google Scholar] [CrossRef]
- Shen, L.; Zhang, H. Corrosion inhibition and adsorption behavior of (3-aminopropyl)-triethoxysilane on steel surface in the simulated concrete pore solution contaminated with chloride. J. Mol. Liq. 2022, 363, 119896. [Google Scholar] [CrossRef]
- Ryu, H.-S.; Singh, J.K.; Yang, H.M.; Lee, H.-S.; Ismail, M.A. Evaluation of corrosion resistance properties of N, N′-Dimethyl ethanolamine corrosion inhibitor in saturated Ca(OH)2 solution with different concentrations of chloride ions by electrochemical experiments. Constr. Build. Mater. 2016, 114, 223–231. [Google Scholar] [CrossRef]
- Ormellese, M.; Lazzari, L.; Goidanich, S.; Fumagalli, G.; Brenna, A. A study of organic substances as inhibitors for chloride-induced corrosion in concrete. Corros. Sci. 2009, 51, 2959–2968. [Google Scholar] [CrossRef]
- Shen, L.; Jiang, H.; Cao, J.; Zhang, M.; Zhang, H. A comparison study of the performance of three electro-migrating corrosion inhibitors in improving the concrete durability and rehabilitating decayed reinforced concrete. Constr. Build. Mater. 2020, 238, 117673. [Google Scholar] [CrossRef]
- Shen, L.; Jiang, H.; Cao, J.; Zhang, H. The effect of electro-migrating 3- aminopropyltriethoxysilane on the improvement of the reinforced concrete durability. Constr. Build. Mater. 2019, 214, 101–110. [Google Scholar] [CrossRef]
- Zou, Z.; Yang, G.; Chen, F.; Long, F.; Li, Q.; Jiang, R.; Zhang, H. Re-alkalization effect experiment and a new re-alkalization control model of carbonated concrete. Adv. Mater. Sci. Eng. 2022, 2022, 6213832. [Google Scholar] [CrossRef]
- McArthur, H.; D’Arcy, S.; Barker, J. Cathodic protection by impressed DC currents for construction, maintenance and refurbishment in reinforced concrete. Constr. Build. Mater. 1993, 7, 85–93. [Google Scholar] [CrossRef]
- Bouteiller, V.; Tissier, Y.; Maria-Victoria, E.; Chaussadent, T.; Joiret, S. The application of electrochemical chloride extraction to reinforced concrete–A review. Constr. Build. Mater. 2022, 351, 128931. [Google Scholar] [CrossRef]
- Orellan, J.C.; Escadeillas, G.; Arliguie, G. Electrochemical chloride extraction: Efficiency and side effects. Cem. Concr. Res. 2004, 34, 227–234. [Google Scholar] [CrossRef]
- Bolzoni, F.; Brenna, A.; Ormellese, M. Recent advances in the use of inhibitors to prevent chloride-induced corrosion in reinforced concrete. Cem. Concr. Res. 2022, 154, 106719. [Google Scholar] [CrossRef]
- Cui, L.; Hang, M.; Huang, H.; Gao, X. Experimental study on multi-component corrosion inhibitor for steel bar in chloride environment. Constr. Build. Mater. 2021, 313, 125533. [Google Scholar] [CrossRef]
- Xu, C.; Jin, W.L.; Wang, H.L.; Wu, H.T.; Huang, N.; Li, Z.Y.; Mao, J.H. Organic corrosion inhibitor of triethylentetramine into chloride contamination concrete by electro-injection method. Constr. Build. Mater. 2016, 115, 602–617. [Google Scholar] [CrossRef]
- Sawada, S.; Page, C.L.; Page, M.M. Electrochemical injection of organic corrosion inhibitors into concrete. Corros. Sci. 2005, 47, 2063–2078. [Google Scholar] [CrossRef]
- Kubo, J.; Sawada, S.; Page, C.L.; Page, M.M. Electrochemical inhibitor injection for control of reinforcement corrosion in carbonated concrete. Mater. Corros. 2008, 59, 107–113. [Google Scholar] [CrossRef]
- Sawada, S.; Kubo, J.; Page, C.L.; Page, M.M. Electrochemical injection of organic corrosion inhibitors into carbonated cementitious materials: Part 1. Effects on pore solution chemistry. Corros. Sci. 2007, 49, 1186–1204. [Google Scholar]
- Karthick, S.P.; Madhavamayandi, A.; Muralidharan, S.; Saraswathy, V. Electrochemical proces to improve the durability of concrete structures. J. Build. Eng. 2016, 7, 273–280. [Google Scholar] [CrossRef]
- Goyal, A.; Ganjian, E.; Pouya, H.S.; Tyrer, M. Inhibitor efficiency of migratory corrosion inhibitors to reduce corrosion in reinforced concrete exposed to high chloride environment. Constr. Build. Mater. 2021, 303, 124461. [Google Scholar] [CrossRef]
- Liu, T.; Wei, H.; Zhou, A.; Zou, D.; Jian, H. Multiscale investigation on tensile properties of ultra-high performance concrete with silane coupling agent modified steel fibers. Cem. Concr. Compos. 2020, 111, 103638. [Google Scholar] [CrossRef]
- Sun, M.; Wen, D.J.; Wang, H.W. Influence of corrosion on the interface between zinc phospate steel fiber and cement. Mater. Corros. 2012, 63, 67–72. [Google Scholar] [CrossRef]
- Aggelis, D.G.; Soulioti, D.V.; Barkoula, N.M.; Paipetis, A.S.; Matikas, T.E. Influence of fiber chemical coating on the acoustic emission behavior of steel fiber reinforced concrete. Cem. Concr. Compos. 2012, 34, 62–67. [Google Scholar] [CrossRef]
- Sebaibi, N.; Benzerzour, M.; Abriak, N.E.; Binetruy, C. Mechanical properties of concrete- reinforced fibers and powders with crushed thermoset composites: The influence of fiber/matrix interaction. Constr. Build. Mater. 2012, 29, 332–338. [Google Scholar] [CrossRef]
- Bilba, K.; Arsene, M.A. Silane treatment of bagasse fiber for reinforcement of cementitious composites. Compos. Part A Appl. Sci. Manuf. 2008, 39, 1488–1495. [Google Scholar] [CrossRef]
- Benzerzour, M.; Sebaibi, N.; Abriak, N.E.; Binetruy, C. Waste-fiber cement matrix bond characteristics improved by using silane-treated fibers. Constr. Build. Mater. 2012, 37, 1–6. [Google Scholar] [CrossRef]
- Soulioti, D.V.; Barkoula, N.M.; Koutsianopoulos, F.; Charalambakis, N.; Matikas, T.E. The effect of fibre chemical treatment on the steel fibre/cementitious matrix interface. Constr. Build. Mater. 2013, 40, 77–83. [Google Scholar] [CrossRef]
- Liu, T.; Bai, R.; Chen, Z.; Li, Y.; Yang, Y. Tailoring of polyethylene fiber surface by coating silane coupling agent for strain hardening cementitious composite. Constr. Build. Mater. 2021, 278, 122263. [Google Scholar] [CrossRef]
- Xiang, Y.; Xie, Y.; Long, G. Effect of basalt fiber surface silane coupling agent coating on fiber-reinforced asphalt: From macro-mechanical performance to micro-interfacial mechanism. Constr. Build. Mater. 2018, 179, 107–116. [Google Scholar] [CrossRef]
- Feng, Y.; Wang, Q.; Li, L.; Ma, Y.; Li, X. Multiscale analysis of silane coupling agent modified rubber-fiber concrete interfaces. Mater. Today Commun. 2023, 35, 105960. [Google Scholar] [CrossRef]
- Du, S.; Luan, C.; Yuan, L.; Du, P.; Zhou, Z.; Wang, J. Investigation on the effect of silane coupling agent treatment of steel fibers on the durability of UHPC. Arch. Civ. Mech. Eng. 2023, 23, 1–13. [Google Scholar] [CrossRef]
- Zhou, A.; Yu, Z.; Wei, H.; Tam, L.; Liu, T.; Zou, D. Undestranding the toughening mechanism of silane coupling agents in the interfacial bonding in steel fiber-reinforced cementitious composites. Appl. Mater. Interfaces 2020, 12, 44163–44171. [Google Scholar] [CrossRef] [PubMed]
- Casagrande, C.A.; Cavalaro, S.H.P.; Repette, W.L. Ultra-high performance fiber-reinforced cementitious composite with steel microfibres functionalized with silane. Constr. Build. Mater. 2018, 178, 495–506. [Google Scholar] [CrossRef]
- Du, S.; Zhou, Y.; Sun, H.; Liu, W.; Luan, C.; Yuan, L.; Wang, J.; Du, P.; Zhou, Z.; Cheng, X. The effect of silane surface treatment on the mechanical properties of UHPFRC. Constr. Build. Mater. 2021, 304, 124580. [Google Scholar] [CrossRef]
- Materne, T.; Buyl, F.; Witucki, G.L. Organosilane Technology in Coating Application: Review and Perspectives; Dow Corning: Midland, MI, USA, 2010; pp. 1–16. [Google Scholar]
- Xiong, G.; Luo, B.; Wu, X.; Li, G.; Chen, L. Influence of silane coupling agent on quality of interfacial transition zone between concrete substrate and repair materials. Cem. Concr. Compos. 2006, 28, 97–101. [Google Scholar] [CrossRef]
- Yoo, D.; Shin, H.; Yang, J.; Yoon, S. Material and bond properties of ultra high performance fiber reinforced concrete with micro steel fibers. Compos. Part B Eng. 2014, 58, 122–133. [Google Scholar] [CrossRef]
- Kwon, S.; Nishiwaki, T.; Kikuta, T.; Mihashi, H. Development of ultra-high performance hybrid fiber-reinforced cement-based composites. ACI Mater. J. 2014, 111, 309–318. [Google Scholar] [CrossRef]
- Larsen, I.L.; Thorstensen, R.T. The influence of steel fibers on compressive and tensile strength of ultra high performance concrete: A review. Constr. Build. Mater. 2020, 256, 119459. [Google Scholar] [CrossRef]
- Park, S.H.; Kim, D.J.; Ryu, G.S.; Koh, K.T. Tensile behaviour of ultra high performance hybrid reinforced concrete. Cem. Nad. Concr. Compos. 2012, 34, 172–184. [Google Scholar] [CrossRef]
- Yu, R.; Song, Q.; Wang, X.; Zhang, Z.; Shui, Z.; Brouwers, H.J.H. Sustainable development of ultra-high performance fibre reinforced concrete (UHPFRC): Towards to an optimized concrete matrix and efficient fibre application. J. Clean. Prod. 2017, 162, 220–233. [Google Scholar] [CrossRef]
- Pi, Z.; Xiao, H.; Du, J.; Liu, M.; Li, H. Interfacial microstructure and bond strength of nano-SiO2-coated steel fibers in cement matrix. Cem. Concr. Compos. 2019, 103, 1–10. [Google Scholar] [CrossRef]
- Kim, S.; Choi, S.; Yoo, D. Surface modification of steel fibers using chemical solutions and their pullout behaviors from ultra-high-performance concrete. J. Build. Eng. 2020, 32, 101709. [Google Scholar] [CrossRef]
- Greenwood, N.N.; Earnshaw, A. Chemistry of the Elements; Elsevier Science and Technology: London, UK, 1997. [Google Scholar]
- House, J.E. Inorganic Chemistry; Elsevier Science Publishing: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Housecroft, C.E.; Sharp, A.G. Inorganic Chemistry; Pearson Education Limited: London, UK, 2018. [Google Scholar]
- Owen, M.J.; Dvornic, P.R. Silicone Surface Science; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Hiyama, T.; Oestreich, M. Organosilicon Chemistry: New Approaches and Reactions; Wiley-VCH: Weinheim, Germany, 2019. [Google Scholar]
- Thames, S.F.; Panjnani, K.G. Organosilane polymer chemistry: A review. J. Inorg. Organomet. Polym. 1996, 6, 59–94. [Google Scholar] [CrossRef]
- Hoyt, J.K. Synthesis and Characterization of Nitrile Containing Polysiloxanes and Their Corresponding Network as Aircraft Sealant Materials. Master’s Thesis, Blacksburg, VA, USA, 1999. [Google Scholar]
- Issa, A.A.; Luyt, A.S. Kinetics of alkoxysilanes and organoalkoxysilanes polymerization: A review. Polymers 2019, 11, 537. [Google Scholar] [CrossRef]
- Issa, A.A.; El-Azazy, M.; Luyt, A.S. Kinetics of alkoxysilanes hydrolysis: An empirical approach. Sci. Rep. 2019, 9, 17624. [Google Scholar] [CrossRef] [PubMed]
- Beari, F.; Brand, M.; Jenkner, P.; Lehnert, R.; Metternich, H.J.; Monkiewicz, J.; Siesler, H.W. Organofunctional alkoxysilanes in dilute aqueous solution: New accounts on the dynamic structural mutability. J. Organomet. Chem. 2001, 625, 208–216. [Google Scholar] [CrossRef]
- Chemtob, A.; Ni, L.; Croutxé-Barghorn, C.; Boury, B. Order hybrids from template-free organosilane self-assembly. Chem. A Eur. J. 2014, 20, 1790–1806. [Google Scholar] [CrossRef]
- Plueddemann, E.P. Adhesion trough silane coupling agents. J. Adhes. 1970, 2, 184–201. [Google Scholar] [CrossRef]
- Altmann, S.; Pfeiffer, J. The hydrolysis/condensation behaviour of methacryloyloxyalkylfunctional alkoxysilanes: Structure-reactivity relations. Monatshefte Für Chem. 2003, 134, 1081–1092. [Google Scholar] [CrossRef]
- Arkles, B.; Steinmetz, J.R.; Zazyczny, J.; Mehta, P. Factors contributing to the stability of alkoxysilanes in aqueous solution. J. Adhes. Sci. Technol. 1992, 6, 193–206. [Google Scholar] [CrossRef]
- Jung, H.; Kulkarni, R.; Collier, C.P. Dip-pen nanolithography of reactive alkoxysilanes on glass. J. Am. Chem. Soc. 2003, 125, 12096–12097. [Google Scholar] [CrossRef]
- Mukherjee, S.P. Sol-gel processes in glass science and technology. J. Non- Cryst. Solids 1980, 42, 477–488. [Google Scholar] [CrossRef]
- Priola, A.; Gozzelino, G.; Ferrero, F. Adhesion of UV-curable resins containing alkoxysilane monomers on glass surfaces. Int. J. Adhes. Adhes. 1990, 10, 77–80. [Google Scholar] [CrossRef]
- Constâncio, C.; Franco, L.; Russo, A.; Anjinho, C.; Pires, J.; Vaz, M.F.; Carvalho, A.P. Studies on polymeric conservation treatments of ceramictiles with Paraloid B-72 and two alkoxysilanes. J. Appl. Polym. Sci. 2010, 116, 2833–2839. [Google Scholar] [CrossRef]
- Hirano, H.; Kadota, J.; Yamashita, T.; Agari, Y. Treatment of inorganic filler surface by silane-coupling agent: Investigation of treatment condition and analysis of bonding state of reacted agent. Int. J. Chem. Biol. 2012, 6, 29–33. [Google Scholar]
- González-Coneo, J.; Zarzuela, R.; Elhaddad, F.; Carrascosa, L.M.; Gil, M.L.A.; Mosquera, M.J. Alkylsiloxane/alkoxysilane sols as hydrophobic treatments for concrete: A comparative study of bulk vs surface application. J. Build. Eng. 2022, 46, 103729. [Google Scholar] [CrossRef]
- Garcia-Lodeiro, I.; Carmona-Quiroga, P.M.; Zarzuela, R.; Mosquera, M.J.; Varela, M.T.B. Chemistry of the interaction between an alkoxysilane-based impregnation treatment and cementitious phases. Cem. Concr. Res. 2021, 142, 106351. [Google Scholar] [CrossRef]
- Liu, Y.; Lv, X.; Bao, J.; Xie, J.; Tang, X.; Che, J.; Ma, Y.; Tong, J. Characterization of silane treated and untreated natural cellulosic fibre from corn stalk waste as potential reinforcement in polymer composites. Carbohydr. Polym. 2019, 218, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xie, J.; Wu, N.; Wang, L.; Ma, Y.; Tong, J. Influence of silane treatment on the mechanical, tribological and morphological properties of corn stalk fiber reinforced polymer composites. Tribol. Int. 2019, 131, 398–405. [Google Scholar] [CrossRef]
- Schneider, M.H.; Brebner, K.I. Wood-polymer combinations: The chemical modification of wood by alkoxysilane coupling agents. Wood Sci. Technol. 1985, 19, 67–73. [Google Scholar] [CrossRef]
- Taniyama, H.; Takagi, K. Study on controlling the surface structure and properties of a cellulose nanocrystal film modified using alkoxysilanes in green solvents. Langmuier 2022, 38, 5550–5556. [Google Scholar] [CrossRef] [PubMed]
- Cerny, P.; Bartos, P.; Kriz, P.; Olsan, P.; Spatenka, P. Higly hydrophobic organosilane-functionalized cellulose: A promising filler for thermoplastic composites. Materials 2021, 14, 2005. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Hill, C.A.S.; Xiao, Z.; Militz, H.; Mai, C. Silane coupling agents used for natural fiber/polymer composites: A review. Compos. Part A 2010, 41, 806–819. [Google Scholar] [CrossRef]
- Deflorian, F.; Rossi, S.; Fedrizzi, L. Silane pre-treatments on copper and aluminium. Electrochim. Acta 2006, 51, 6097–6103. [Google Scholar] [CrossRef]
- Palanivel, V.; Zhu, D.; van Ooij, W.J. Nanoparticle-filled silane films as chromate replecements for aluminium alloys. Prog. Org. Coat. 2003, 47, 384–392. [Google Scholar] [CrossRef]
- Petrunin, M.A.; Maksaeva, L.B.; Yurasova, T.A.; Terekhova, E.V.; Kotenev, V.A.; Tsivadze, A.Y. Adsorption of alkoxysilanes on aluminium surface from aqueous solutions. Prot. Met. Phys. Chem. Surf. 2013, 49, 655–661. [Google Scholar] [CrossRef]
- Fan, H.; Li, S.; Zhao, Z.; Wang, H.; Shi, Z.; Zhang, L. Inhibition of brass corrosion in sodium chloride solutions by self-assembled silane films. Corros. Sci. 2011, 53, 4273–4281. [Google Scholar] [CrossRef]
- Deflorian, F.; Rossi, S.; Fedrizzi, L.; Fedel, M. Integrated electrochemical approaches for the investigation of silane pre-treatments for painting copper. Prog. Org. Coat. 2008, 63, 338–344. [Google Scholar] [CrossRef]
- Zucchi, F.; Grassi, V.; Frignani, A.; Monticelli, C.; Trabanelli, G. Influence of a silane treatment on the corrosion resistance of a WE43 magnesium alloy. Surf. Coat. Technol. 2006, 200, 4136–4143. [Google Scholar] [CrossRef]
- Liu, X.; Yue, Z.; Romeo, T.; Weber, J.; Scheuermann, T.; Moulton, S. Biofunctionalized anti-corrosive silane coatings for magnesium alloys. Acta Biomater. 2013, 9, 8671–8677. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.N.; Guo, H.M.; Wang, F.; Lu, Y.; Lin, W.T.; Li, J.; Zheng, Y.F.; Fan, Y.B. Degradation, hemolysis, and cytotoxicity of silane coatings on biodegradable magnesium alloy. Mater. Lett. 2017, 193, 266–269. [Google Scholar] [CrossRef]
- Gong, F.; Shen, J.; Gao, R.; Xie, X.; Luo, X. Enhanced corrosion resistance of magnesium alloy by a silane-based solution treatment after an in-situ formation of the Mg(OH)2 layer. Appl. Surf. Sci. 2016, 365, 268–274. [Google Scholar] [CrossRef]
- Bexell, U.; Grehk, T.M. A corrosion study of hot-dip galvanized steel sheet pre-treated with γ-mercaptopropyltrimethoxysilane. Surf. Coat. Technol. 2007, 201, 4734–4742. [Google Scholar] [CrossRef]
- Asadi, N.; Naderi, R.; Saremi, M.; Arman, S.Y.; Fedel, M.; Deflorian, F. Study of corrosion protection of mild steel by eco-friendly silane sol-gel coating. J. Sol-Gel Sci. Technol. 2014, 70, 329–338. [Google Scholar] [CrossRef]
- Abdulmajid, A.; Hamidon, T.S.; Hussin, M.H. Characterization and corrosion inhibition studies of protective sol-gel films modified with tannin extracts on low carbon steel. J. Sol-Gel Sci. Technol. 2022, 104, 287–299. [Google Scholar] [CrossRef]
- Alibakhshi, E.; Akbarian, M.; Ramezanzadeh, M.; Ramezanzadeh, B.; Mahdavian, M. Evaluation of the corrosion protection performance of mild steel coated with hybrid sol- gel silane coating in 3.5 wt.% NaCl solution. Prog. Org. Coat. 2018, 123, 190–200. [Google Scholar] [CrossRef]
- Subramanian, V.; van Ooij, W.J. Silane based metal pretreatments as alternatives to chromating. Surf. Eng. 1999, 15, 168–172. [Google Scholar] [CrossRef]
- Pu, Z.; van Ooij, W.J.; Mark, J.E. Hydrolysis kinetics and stability of bis (ethoxysilyl) ethane in water-ethanol solution by FTIR spectroscopy. J. Adhes. Sci. Technol. 1997, 11, 29–47. [Google Scholar]
- van Ooij, W.J.; Sabata, A. Characterization of films of organofunctional silanes by TOFSIMS and XPS. J. Adhes. Sci. Technol. 1991, 5, 843–863. [Google Scholar] [CrossRef]
- Sabata, A.; van Ooij, W.J.; Koch, R.J. The interphase in painted metals pretreated by functional silanes. J. Adhes. Sci. Technol. 1993, 7, 1153–1170. [Google Scholar] [CrossRef]
- van Ooij, W.J.; Zhu, D. Corrosion protection of metals by water-based silane mixtures of bis-[trimethoxysilylpropyl]amine and vinyltriacetoxysilane. Prog. Org. Coat. 2004, 49, 42–53. [Google Scholar]
- Gao, Z.; Zhang, D.; Lia, X.; Jiang, S.; Zhang, Q. Current status, opportunities and challenges in chemical conversion coatings for zinc. Colloids Surf. A 2018, 546, 221–236. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, D.; Liu, Z.; Li, X.; Jiang, S.; Zhang, Q. Formation mechanisms of environmentally acceptable chemical conversion coatings for zinc: A review. J. Coat. Technol. Res. 2019, 16, 1–13. [Google Scholar] [CrossRef]
- Zaferani, S.H.; Peikari, M.; Zaarei, D.; Danaee, I.; Fakhraei, J.M.; Mohammadi, M. Using silane films to produce an alternativ efor chromate conversion coatings. Corrosion 2013, 69, 372–387. [Google Scholar] [CrossRef]
- Du, Y.J.; Damron, M.; Tang, G.; Zheng, H.; Chu, C.-J.; Osborne, J.H. Inorganic/organic hybrid coatings for aircraft aluminum alloy substrates. Prog. Org. Coat. 2001, 41, 226–232. [Google Scholar]
- Andreatta, F.; Lanzutti, A.; Paussa, L.; Fedrizzi, L. Addition of phosphates or copper nitrate in a fluotitanate conversion coating containing a silane coupling agent for aluminium alloy AA6014. Prog. Org. Coat. 2014, 77, 2107–2115. [Google Scholar] [CrossRef]
- Becker, M. Chromate-free chemical conversion coatings for aluminum alloys. Corros. Rev. 2019, 37, 321–342. [Google Scholar] [CrossRef]
- Cave, N.G.; Kinloch, A.J. The effect of the silane deposition conditions on the durability of aluminium joints pretreated using 3-aminopropyltrimethoxysilane. J. Adhes. 1991, 34, 175–187. [Google Scholar] [CrossRef]
- van Ooij, W.J.; Zhu, D.Q.; Prasad, G.; Jayaseelan, S.; Fu, Y.; Teredesai, N. Silane based cromate replacements for corrosion control, paint adhesion, and rubber bonding. Surf. Eng. 2000, 16, 386–396. [Google Scholar] [CrossRef]
- van Ooij, W.J.; Zhu, D.; Stacy, M.; Seth, A.; Mugada, T.; Gandhi, J.; Puomi, P. Corrosion protection properties of organofunctional silanes–An overview. Tsinghua Sci. Technol. 2005, 10, 639–664. [Google Scholar] [CrossRef]
- Salon, M.-C.B.; Belgacem, M.N. Hydrolysis-cendensation kinetics of different silane coupling agents. Phosphorus Sulfur Silicon Relat. Elem. 2011, 186, 240–254. [Google Scholar] [CrossRef]
- Salon, M.C.H.B.; Abdelmouleh, M.; Boufi, S.; Belgacem, M.N.; Gandini, A. Silane adsorption onto cellulose fibers: Hydrolysis and condensation reactions. J. Colloid Interface Sci. 2005, 289, 249–261. [Google Scholar] [CrossRef]
- Salon, M.C.H.B.; Belgacem, M.N. Competition between hydrolysis and condensation reactions of trialkoxysilanes, as a function of the amount of water and the nature of the organic group. Colloids Surf. A Physicochem. Eng. Asp. 2010, 366, 147–154. [Google Scholar] [CrossRef]
- Kang, H.-J.; Meesiri, W.; Blum, F.D. Nuclear magnetic resonance studies of the hydrolysis and molecular motion of aminopropylsilane. Mater. Sci. Eng. A 1990, 126, 265–270. [Google Scholar] [CrossRef]
- Chambers, R.C.; Jones, W.E.; Haruvy, Y.; Webber, S.E.; Fox, M.A. Influence of steric effects on the kinetics of ethyltrimethoxysilane hydrolysis in a fast sol-gel system. Chem. Mater. 1993, 5, 1481–1486. [Google Scholar] [CrossRef]
- Papirer, E.; Balard, H. Influence of surface chemistry and surface morphology on the acid-base interaction capacities of glass fibers and silicas. J. Adhes. Sci. Technol. 1990, 4, 1–371. [Google Scholar] [CrossRef]
- Daniels, M.W.; Francis, L.F. Silane adsorption behavior; microstructure, and properties of glycidoxypropyltrimethoxysilane-modified colloidal silica coatings. J. Colloid Interface Sci. 1998, 205, 191–200. [Google Scholar] [CrossRef]
- Matinlinna, J.P.; Lung, C.Y.K.; Tsoi, J.K.H. Silane adhesion mechanism in dental applications and surface treatments: A review. Dent. Mater. 2018, 34, 13–28. [Google Scholar] [CrossRef]
- Matinlinna, J.P.; Lassila, L.V.J.; Vallittu, P.K. The effect of five silane coupling agents on the bond strength of a luting cement to a silica-coated titanium. Dent. Mater. 2007, 23, 1173–1180. [Google Scholar]
- McNeil, K.J.; DiCaprio, J.A.; Walsh, D.A.; Pratt, R.F. Kinetics and mechanism of hydrolysis of a silicate triester, tris(2-methoxyethoxy)phenylsilane. J. Am. Chem. Soc. 1980, 102, 1859–1865. [Google Scholar] [CrossRef]
- Brinker, C.J. Hydrolysis and condensation of silicates: Effects on structure. J. Non-Cryst. Solids 1988, 100, 31–50. [Google Scholar] [CrossRef]
- West, R. Cyclic organosilicon compounds. II. Ring size and reactivity in the alkali-catalyzed hydrolysis of silanes. J. Am. Chem. Soc. 1954, 76, 6015–6017. [Google Scholar] [CrossRef]
- Steward, O.W.; Pierce, O.R. The effect of substituent fluoroalkyl groups on the alkali- catalyzed hydrolysis of silanes. J. Am. Chem. Soc. 1959, 81, 1983–1985. [Google Scholar] [CrossRef]
- Torry, S.A.; Campbell, A.; Cunliffe, A.V.; Tod, D.A. Kinetic analysis of organosilane hydrolysis and condensation. Int. J. Adhes. Adhes. 2006, 26, 40–49. [Google Scholar] [CrossRef]
- Jiang, H.; Zheng, Z.; Wang, X. Kinetic study of methyltriethoxysilane (MTES) hydrolysis by FTIR spectroscopy under different temperatures and solvents. Vib. Spectrosc. 2008, 46, 1–7. [Google Scholar] [CrossRef]
- Jiang, H.; Zheng, Z.; Li, Z.; Wang, X. Effects of temperature and solvent on the hydrolysis of alkoxysilane under alkaline conditions. Ind. Eng. Chem. Res. 2006, 45, 8617–8622. [Google Scholar] [CrossRef]
- Somasundaram, S. Silane coatings of metallic biomaterials for biomedical implants: A preliminary review. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018, 106B, 2901–2918. [Google Scholar] [CrossRef] [PubMed]
- Petrunin, M.A.; Gladkikh, N.A.; Maleeva, M.A.; Maksaeva, L.B.; Yurasova, T.A. The usw of organosilanes to inhibit metal corrosion. A review. Int. J. Corros. Scale Inhib. 2019, 8, 882–907. [Google Scholar]
- Gandhi, J.S.; Singh, S.; van Ooij, W.J.; Puomi, P. Evidence for formation of metallo-siloxane bonds by comparison of dip-coated and electrodeposited silane films. J. Adhes. Sci. Technol. 2006, 20, 1741–1768. [Google Scholar] [CrossRef]
- Song, J.; van Ooij, W.J. Bonding and corrosion protection mechanisms of γ-APS and BTSE silane films on aluminum substrates. J. Adhes. Sci. Technol. 2003, 17, 2191–2221. [Google Scholar] [CrossRef]
- Woo, H.; Reucroft, P.J.; Jacob, R.J. Electrodeposition of organofunctional silanes and its influence on structural adhesive bonding. J. Adhes. Sci. Technol. 1993, 7, 681–697. [Google Scholar] [CrossRef]
- Shacham, R.; Anvir, D.; Mandler, D. Electrodeposition of methylated sol-gel filmson conducting surface. Adv. Mater. 1999, 11, 384–388. [Google Scholar] [CrossRef]
- Toledano, R.; Shacham, R.; Anvir, D.; Mandler, D. Electrochemical co-deposition of sol- gel/metal thin nanocomposite films. Chem. Mater. 2008, 20, 4276–4283. [Google Scholar] [CrossRef]
- Sheffer, M.; Groysman, A.; Mandler, D. Electrodeposition of sol-gel films on Al for corrosion protection. Corros. Sci. 2003, 45, 2893–2904. [Google Scholar] [CrossRef]
- Hu, J.-M.; Liu, L.; Zhang, J.-Q.; Cao, C.-N. Effects of electrodeposition potencial on the corrosion properties of bis-1,2-[triethoxysilyl] ethane films on aluminium alloy. Electrochim. Acta 2006, 51, 3944–3949. [Google Scholar] [CrossRef]
- Wu, L.-K.; Hu, J.-M.; Zhang, J.-Q. Electrodeposition of zinc-doped silane films for corrosion protection of mild steels. Corros. Sci. 2012, 59, 348–351. [Google Scholar] [CrossRef]
- Li, M.; Yang, Y.-Q.; Liu, L.; Hu, J.-M.; Zhang, J.-Q. Electro-assisted preparation of dodecyltrimethoxysilane/TiO2 composite films for corrosion protection of AA2024-T3 (aluminium alloy). Electrochim. Acta 2010, 55, 3008–3014. [Google Scholar] [CrossRef]
- Jiang, L.-L.; Wu, L.-K.; Hu, J.-M.; Zhang, J.-Q.; Cao, C.-N. Electrodeposition of protective organosilane films from a thin layer of precursor solution. Corros. Sci. 2012, 60, 309–313. [Google Scholar] [CrossRef]
- Wu, L.-K.; Zhang, J.-T.; Hu, J.-M.; Zhang, J.Q. Improved corrosion performance of electrophoretic coatings by silane addition. Corros. Sci. 2012, 56, 58–66. [Google Scholar] [CrossRef]
- Gandhi, J.S.; van Ooij, W.J. Improved corrosion protection of aluminum alloys by electrodeposited silanes. J. Mater. Eng. Perform. 2004, 13, 475–480. [Google Scholar] [CrossRef]
- Ding, S.Z.; Liu, L.; Hu, J.-M.; Zhang, J.-Q.; Cao, C.-N. Nitrate ions as cathodic alkalization promoters for the electro-assisted deposition of sol-gel thin films. Scr. Mater. 2008, 59, 297–300. [Google Scholar] [CrossRef]
- Hu, J.-M.; Liu, L.; Zhang, J.-Q.; Cao, C.-N. Electrodeposition of silane films on aluminum alloys for corrosion protection. Prog. Org. Coat. 2007, 58, 265–271. [Google Scholar] [CrossRef]
- Wu, L.K.; Liu, L.; Li, J.; Hu, J.M.; Zhang, J.Q.; Cao, C.N. Electrodeposition of cerium (III)-modified bis [triethoxysilypropyl]tetra-sulphide films on AA2024-T3 (aluminium alloy) for corrosion protection. Surf. Coat. Technol. 2010, 204, 3920–3926. [Google Scholar] [CrossRef]
- Daniels, M.W.; Sefcik, J.; Francis, L.F.; McCormick, A.V. Reactions of a trifunctional silane coupling agent in the presence of colloidal silica sols in polar media. J. Colloid Interface Sci. 1999, 219, 351–356. [Google Scholar] [CrossRef] [PubMed]
- Montemor, M.F.; Rosqvist, A.; Fagerholm, H.; Ferreira, M.G.S. The early corrosion behaviour of hot dip galvanised steel pre-treated with bis-1,2-(triethoxysilyl)ethane. Prog. Org. Coat. 2004, 51, 188–194. [Google Scholar] [CrossRef]
- Child, T.F.; van Ooij, W.J. Application of silane technology to prevent corrosion of metals and improve paint adhesion. Int. J. Surf. Eng. Coat. 1999, 77, 64–70. [Google Scholar] [CrossRef]
- Pantoja, M.; Abenojar, J.; Martínez, M.A.; Velasco, F. Silane pretreatment of electrogalvanized steels: Effect on adhesive properties. Int. J. Adhes. Adhes. 2016, 65, 54–62. [Google Scholar] [CrossRef]
- Sivakumar, P.; Du, S.M.; Selter, M.; Daye, J.; Cho, J. Improved adhesion of polyurethane-based nanocomposite coatings to tin surface through silane coupling agents. Int. J. Adhes. Adhes. 2021, 110, 102948. [Google Scholar] [CrossRef]
- van Ooij, W.J.; Zhu, D.; Palanivel, V.; Lamar, J.A.; Stacy, M. Overview: The potential of silanes for chromate replacement in metal finishing industries. Silicon Chem. 2006, 3, 11–30. [Google Scholar] [CrossRef]
- Nishiyama, N.; Horie, K. Hydrolysis and condensation mechanisms of a silane coupling agent studied by 13C and 29Si NMR. J. Appl. Polym. Sci. 1987, 34, 1619–1630. [Google Scholar] [CrossRef]
- Plueddemann, E.P. Silane Coupling Agent; Plenum Press: New York, NY, USA, 1991. [Google Scholar]
- Onal, A.N.; Aksüt, A.A. Corrosion inhibition of aluminium alloys by tolyltriazole in chloride solution. Anti-Corros. Methods Mater. 2000, 47, 339–349. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.W.; Xie, Y.; Zhang, H.H.; Du, X.Q.; Zhang, Z. Preparation of hydrophobic silane/graphene oxide composite coating implanted with benzotriazole to improve the anti-corrosion performance of copper. J. Alloys Compd. 2022, 893, 162305. [Google Scholar] [CrossRef]
- Palanivel, V.; Huang, Y.; van Ooij, W.J. Effects of addition of corrosion inhibitors to silane films on the performance of AA2024-T3 a 0.5 M NaCl solution. Prog. Org. Coat. 2005, 53, 153–168. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, H.; Zhang, D.Q.; Zheng, H.; Gao, L. Complex films formed on Al alloy surface via vapor phase assembly of benzotriazole and dodecyltrimethoxysilane. Anti- Corros. Methods Mater. 2023, 70, 182–188. [Google Scholar] [CrossRef]
- Zheludkevich, M.L.; Serra, R.; Montemor, M.F.; Salvado, I.M.M.; Ferreira, M.G.S. Corrosion protective properties of nanostructured sol-gel hybrid coatings to AA2024- T3. Surf. Coat. Technol. 2006, 200, 3084–3094. [Google Scholar] [CrossRef]
- Motte, C.; Poelman, M.; Roobroeck, A.; Fedel, M.; Deflorian, F.; Olivier, M.-G. Improvement of corrosion protection offered to galvanized steel by incorporation of lanthanide modified nanoclays in silane layer. Prog. Org. Coat. 2012, 74, 326–333. [Google Scholar] [CrossRef]
- Trabelsi, W.; Triki, E.; Dhouibi, L.; Ferreira, M.G.S.; Zheludkevich, M.L.; Montemor, M.F. The use of pre-treatments based on doped silane solutions for improved corrosion resistance of galvanized steel substrates. Surf. Coat. Technol. 2006, 200, 4240–4250. [Google Scholar] [CrossRef]
- Luo, F.; Li, Q.; Zhong, X.K.; Gao, H.; Dai, Y.; Chen, F.N. Corrosion electrochemical behaviors of silane coating coated magnesium alloy in NaCl solution containing cerium nitrite. Mater. Corros. 2012, 63, 148–154. [Google Scholar] [CrossRef]
- Wang, H.; Akid, R. Encapsulated cerium nitrate inhibitors to provide high-performance anti-corrosion sol-gel coatings on mild steel. Corros. Sci. 2008, 50, 1142–1148. [Google Scholar] [CrossRef]
- Zand, R.Z.; Verbeken, K.; Adriaens, A. Influence of the cerium concentration on the corrosion performance of Ce-doped silica hybrid coatings on hot dip galvanized steel substrates. Int. J. Electrochem. Sci. 2013, 8, 548–563. [Google Scholar] [CrossRef]
- Xian, X.; Nai, C.; Li, L.; Zhao, S. The formation proces of Zr-doped silane film on carbon steel during immersing in Zr(NO3)4/silane mixed solutions. Anti-Corros. Methods Mater. 2017, 64, 1–9. [Google Scholar] [CrossRef]
- Shi, H.; Liu, F.; Han, E. Corrosion behaviour of sol-gel coatings doped with cerium salts on 2024-T3 aluminum alloy. Mater. Chem. Phys. 2010, 124, 291–297. [Google Scholar] [CrossRef]
- Yu, P.; Hayes, S.A.; O’Keefe, M.; Stoffer, J.O.; O’Keefe, T.J. The phase stability of cerium species in aqueous systems:II the Ce(III/IV)–H2O-H2O2/O2 systems. Equilibrium considerations and pourbaix diagram calculations. J. Electrochem. Soc. 2006, 153, C74. [Google Scholar] [CrossRef]
- Yu, P.; O’Keefe, T.J. The phase stability of cerium species in aqueous systems III. The Ce(III/IV)-H2O-H2O2/O2. Systems dimeric Ce(IV) species. J. Electrochem. Soc. 2006, 153, C80–C85. [Google Scholar] [CrossRef]
- Montemor, M.F.; Ferreira, M.G.S. Electrochemical study of modified bis-[triethoxysilylpropyl] tetrasulfide silane films applied on the AZ31 Mg alloy. Electrochim. Acta 2007, 52, 7486–7495. [Google Scholar] [CrossRef]
- Montemor, M.F.; Pinto, R.; Ferreira, M.G.S. Chemical composition and corrosion protection of silane films modified with CeO2 nanoparticles. Electrochem. Acta 2009, 54, 5179–5189. [Google Scholar] [CrossRef]
- Montemor, M.F.; Trabelsi, W.; Lamaka, S.V.; Yasakau, K.A.; Zheludkevich, M.L.; Bastos, A.C.; Ferreira, M.G.S. The synergistic combination of bis-silane and CeO2·ZrO2 nanoparticles on the electrochemical behaviour of galvanised steel in NaCl solutions. Electrochim. Acta 2008, 53, 5913–5922. [Google Scholar] [CrossRef]
- Brusciotti, F.; Batan, A.; De Graeve, I.; Wenkin, M.; Biessemans, M.; Willem, R.; Reniers, F.; Pireaux, J.J.; Piens, M.; Vereecken, J.; et al. Characterization of thin water- based silane pre-treatments on aluminium with the incorporation of nano-dispersed CeO2 particles. Surf. Coat. Technol. 2010, 205, 603–613. [Google Scholar] [CrossRef]
- Peng, T.; Man, R. Rare earth and silane as chromate replacers for corrosion protection on galvanized steel. J. Rare Earths 2009, 27, 159–163. [Google Scholar] [CrossRef]
- Samiee, R.; Ramezanzadeh, B.; Mahdavian, M.; Alibakhshi, E. Corrosion inhibition performance and healing ability of a hybrid silane coating in the presence of praseodymium (III) cations. J. Electrochem. Soc. 2018, 165, C777–C786. [Google Scholar] [CrossRef]
- Mahmoudi, R.; Kardar, P.; Arabi, A.M.; Amini, R.; Pasbakhsh, P. The active corrosion performance of silane coating treated by praseodymium encapsulated with halloysite nanotubes. Prog. Org. Coat. 2020, 138, 105404. [Google Scholar] [CrossRef]
- Arnott, D.R.; Hinton, B.R.W.; Ryan, N.E. Cationic-film-forming inhibitors for the protection of the AA 7075 aluminum alloy against corrosion in aqueous chloride solution. Corrosion 1989, 45, 12–18. [Google Scholar] [CrossRef]
- Zhang, X.-L. The role of yttrium oxide on the corrosion resistance of BTSE silane films on AA6061. Met. Finish. 2011, 109, 39–43. [Google Scholar] [CrossRef]
- Zhang, S.-L.; Zhang, M.-M.; Yao, Y.; Sun, F. Silane films modified with yttrium oxide nanoparticles for improved corrosion resistance of AA6061-T6. Corrosion 2012, 68, 045005-1–045005-6. [Google Scholar] [CrossRef]
- Talha, M.; Ma, Y.; Xu, M.; Wang, Q.; Lin, Y.; Kong, X. Recent advancements in corrosion protection of magnesium alloys by silane-based sol-gel coatings. Ind. Eng. Chem. Res. 2020, 59, 19840–19857. [Google Scholar] [CrossRef]
- Suegama, P.H.; de Melo, H.G.; Recco, A.A.C.; Tschiptschin, A.P.; Aoki, I.V. Corrosion behavior of carbon steel protected with single and bi-layer of silane films filled with silica nanoparticles. Surf. Coat. Technol. 2008, 202, 2850–2858. [Google Scholar] [CrossRef]
- Nie, Y.; Ma, S.; Tian, M.; Zhang, Q.; Huang, J.; Cao, M.; Li, Y.; Sun, L.; Pan, J.; Wang, Y.; et al. Superhydrophobic silane-based surface coatings on metal surface with nanoparticles hybridization to enhance anticorrosion efficiency, wearing resistance and antimicrobial ability. Surf. Coat. Technol. 2021, 410, 126966. [Google Scholar] [CrossRef]
- Franquet, A.; Terryn, H.; Vereecken, J. Composition and thickness of non-functional organosilane films coated on aluminium studied by means of infra-red spectroscopic ellipsometry. Thin Solid Film. 2003, 441, 76–84. [Google Scholar] [CrossRef]
- Xu, H.; Liu, C.; Silberschmidt, V.V.; Pramana, S.S.; White, T.J.; Chen, Z.; Acoff, V.L. Behavior of aluminum oxide, intermetallics and voids in Cu-Al wire bonds. Acta Mater. 2011, 59, 5661–5673. [Google Scholar] [CrossRef]
- Rider, A.N.; Arnott, D.R. Boiling water and silane pre-treatment of aluminium alloys for durable adhesive bonding. Int. J. Adhes. Adhes. 2000, 20, 209–220. [Google Scholar] [CrossRef]
- Metroke, T.L.; Henley, M.V. Modification of poly(vinyl butaryl) coatings using bis-silanes. Prog. Org. Coat. 2010, 69, 470–474. [Google Scholar] [CrossRef]
- Palomino, L.E.M.; Suegama, P.H.; Aoki, I.V.; Pászti, Z.; De Melo, H.G. Investigation of the corrosion behaviour of a bilayer cerium-silane pre-treatment on Al 2024-T3 in 0.1 M NaCl. Electrochim. Acta 2007, 52, 7496–7505. [Google Scholar] [CrossRef]
- Zhu, D.; van Ooij, W.J. Enhanced corrosion resistance of AA 2024-T3 and hot-dip galvanized steel using a mixture of bis-[triethoxysilylpropyl]tetrasulfid and bis- [trimethoxysilylpropyl]amine. Electrochim. Acta 2004, 49, 1113–1125. [Google Scholar] [CrossRef]
- Zhu, D.; van Ooij, W.J. Structural characterization of bis-[triethoxysilylpropyl]tetrasulfid and bis-[trimethoxysilylpropyl]amine silanes by Fourier-transform infrared spectroscopy and electrochemical impedance spectroscopy. J. Adhes. Sci. Technol. 2002, 16, 1235–1260. [Google Scholar] [CrossRef]
- Zhu, D.; van Ooij, W.J. Corrosion protection of AA 2024-T3 by bis-[3-(triethoxysilyl)propyl]tetrasulfide in sodium chloride solution: Part 1: Corrosion of AA 2024-T3. Corros. Sci. 2003, 45, 2163–2175. [Google Scholar] [CrossRef]
- Zhu, D.; van Ooij, W.J. Corrosion protection of AA 2024-T3 by bis-[3-(triethoxysilyl)propyl]tetrasulfide in sodium chloride solution: Part 2: Mechanism for corrosion protection. Corros. Sci. 2003, 45, 2177–2197. [Google Scholar] [CrossRef]
- van Ooij, W.J.; Zhu, D. Electrochemical impedance spectroscopy of bis-[triethoxysilylpropyl]tetrasulfide on Al 2024-T3 substrates. Corrosion 2001, 57, 413–427. [Google Scholar] [CrossRef]
- Palomino, L.M.; Aoki, P.H.S.I.V.; Montemor, M.F.; De Melo, H.G. Electrochemical study of modified non-functional bis-silane layers on Al alloy 2024-T3. Corros. Sci. 2008, 50, 1258–1266. [Google Scholar] [CrossRef]
- Liang, Y.; Jiang, L.; Ju, W.; Xu, S.; Tao, Z.; Wang, K.; Yang, Y.; Zhu, B.; We, G. Modification of bis-silane film with cerium salt for improved corrosion protection of sintered NdFeB. Mater. Today Commun. 2024, 38, 108319. [Google Scholar] [CrossRef]
- Jaramillo, A.F.; Baez-Cruz, R.; Montoya, L.F.; Medinam, C.; Pérez-Tijerina, E.; Salazar, F.; Rojas, D.; Melendrez, M.F. Estimation of the surface interaction mechanism of ZnO nanoparticles modified with organosilane groups by Raman Spectroscopy. Ceram. Int. 2017, 43, 11838–11847. [Google Scholar] [CrossRef]
- Longhi, M.; Kunsta, S.R.; Beltrami, L.V.R.; Kerstner, E.K.; Filho, C.I.S.; Sarmento, V.H.V.; Malfatti, C. Effect of tetraethoxy-silane (TEOS) amounts on the corrosion prevention properties of siloxane-PMMA hybrid coatings on galvanized steel substrates. Mater. Res. 2015, 18, 1140–1155. [Google Scholar] [CrossRef]
- Yuan, W.; van Ooij, W.J. Characterization of organofunctional silane films on zinc substrates. J. Colloid Interface Sci. 1997, 185, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Purcar, V.; Somoghi, R.; Nitu, S.G.; Nicolae, C.-A.; Alexandrescu, E.; Gifu, I.C.; Gabor, A.R.; Stroescu, H.; Ianchi, R.; Caprarescu, S.; et al. The effect of different coupling agents on nano-ZnO materials obtained via sol-gel process. Nanomaterials 2017, 7, 439. [Google Scholar] [CrossRef] [PubMed]
- Shan, F.J.; Liu, C.S.; Wang, S.H.; Qi, G.C. Corrosion resistance of hot dip galvanized steel pretreated with bis-functional silanes modified with nanoalumina. Acta Metall. Sin. 2008, 21, 245–252. [Google Scholar] [CrossRef]
- Zhu, H.Y.; Chen, Y.; Liu, Y.P.; Sun, W.W.; Chen, S.G. Analytical characterization and corrosion behavior of non-functional bis-silane pre-treated carbon steel substrates. Adv. Mater. Res. 2009, 79, 1091–1094. [Google Scholar] [CrossRef]
- Jing, S.; Sumio, A.; Katsuya, M.; Hidetoshi, H.; Oravec, J.; Preto, J.; Melus, P. Adhesion of carbon steel and natural rubber by functionalized silane coupling agents. Int. J. Adhes. Adhes. 2017, 72, 70–74. [Google Scholar]
- Foroozan, A.; Naderi, R. Effect of coating composition on the anticorrosion performance of a silane sol-gel layer on mild steel. RSC Adv. 2015, 5, 106485–106491. [Google Scholar] [CrossRef]
- Zhao, Y.; Cao, Y.-Q.; Wang, X.-X.; Chen, Y.-Q.; Liu, Y.-C.; Hu, J.-M. Beneficial effect of pre-oxidization proces on the formation of silane films on iron. Surf. Coat. Technol. 2021, 412, 127057. [Google Scholar] [CrossRef]
- Franquet, A.; Terryn, H.; Vereecken, J. Study of the effect of different aluminium surface pretreatments on the deposition of the thin non-functional silane coatings. Surf. Interface Anal. 2004, 36, 681–684. [Google Scholar] [CrossRef]
- Balan, P.; Chan, E.S.; Harun, M.K.; Swamy, V.; Raman, R.K.S. Effect of lanthanide activated nano-SiO2 on the corrosion behavior of silane-based hybrid coatings on low carbon steel. Mater. Corros. 2015, 66, 1223–1231. [Google Scholar]
- Wang, Y.; Puomi, P.; van Ooij, W.J. Effect of substrate cleaning solution pH on the corrosion performance of silane-coated cold-rolled steel. J. Adhes. Sci. Technol. 2007, 21, 935–960. [Google Scholar] [CrossRef]
- Jussila, P.; Ali-Löytty, H.; Lahtonen, K.; Hirsimäki, M.; Valden, M. Effect of surface hydroxyl concentration on the bonding and morphology of aminopropylsilane thin films on austenitic stainless steel. Surf. Interface Anal. 2010, 42, 157–164. [Google Scholar] [CrossRef]
- Kosmulski, M. A literature survey of the differences between the reported isoelectric points and their discussion. Colloids Surf. A Physicochem. Eng. Asp. 2003, 222, 113–118. [Google Scholar] [CrossRef]
- McCafferty, E.; Wightman, J.P. Determination of the surface isoelectric point of oxide films on metals by contact angle titration. J. Colloid Interface Sci. 1997, 194, 344–355. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, P.C.H.; Raman, R.K.S. Electrochemical impedance investigation of the role of alkaline pre-treatment in corrosion resistance of a silane coating on magnesium alloy, ZE41. Electrochim. Acta 2011, 56, 3790–3798. [Google Scholar] [CrossRef]
- Supplit, R.; Koch, T.; Schubert, U. Evaluation of the anti-corrosive effect of acid pickling and sol-gel coating on magnesium AZ31 alloy. Corros. Sci. 2007, 49, 3015–3023. [Google Scholar] [CrossRef]
- Rouzmeh, S.S.; Naderi, R.; Mahdavian, M. A sulfuric acid surface treatment of mild steel for enhancing the protective properties of an organosilane coating. Prog. Org. Coat. 2017, 103, 156–164. [Google Scholar] [CrossRef]
- Rouzmeh, S.S.; Naderi, R.; Mahdavian, M. Steel surface treatment with three different acid solutions and its effect on the protective properties of the subsequent silane coating. Prog. Org. Coat. 2017, 112, 133–140. [Google Scholar] [CrossRef]
- Orouji, S.; Naderi, R.; Mahdavian, M. Fabrication of protective silane coating on mild steel: The role of hydrogen peroxide in acid treatment solution. J. Ind. Eng. Chem. 2018, 64, 245–255. [Google Scholar] [CrossRef]
- Tavangar, R.; Naderi, R.; Mahdavian, M. Acidic surface treatment of mild steel with enhanced corrosion protection for silane coatings application: The effect of zinc cations. Prog. Org. Coat. 2021, 158, 106384. [Google Scholar] [CrossRef]
- Ramezanzadeh, B.; Akbarian, M.; Ramezanzadeh, M.; Mahdavian, M.; Alibakhshi, E.; Kardar, P. Corrosion protection of steel with zinc phosphate conversion coating and post- treatment by hybrid organic-inorganic sol-gel based silane film. J. Electrochem. Soc. 2017, 164, C224–C230. [Google Scholar] [CrossRef]
- Shahini, M.H.; Mohammadloo, H.E.; Ramezanzadeh, B. Recent advances in steel surface treatment via novel/green conversion coatings for anti-corrosion applications: A review study. J. Coat. Technol. Res. 2022, 19, 159–199. [Google Scholar] [CrossRef]
- Nabizadeh, M.; Marcoen, K.; Cherigui, E.A.M.; Kolberg, T.; Schatz, D.; Terryn, H.; Hauffman, T. Unraveling the formation mechanism of hybrid Zr conversion coating on advanced high strength stainless steels. Surf. Coat. Technol. 2022, 441, 128567. [Google Scholar] [CrossRef]
- Tan, Y.T.; Wijesinghe, S.L.; Blackwood, D.J. Inhibition of bicarbonate-chloride corrosion and passivation of carbon steel under open-circuit conditions by molybdate. J. Electrochem. Soc. 2017, 164, C505–C515. [Google Scholar] [CrossRef]
- Vukasovich, M.S.; Farr, J.P.G. Molybdate in corrosion inhibition—A review. Polyhedron 1986, 5, 551–559. [Google Scholar] [CrossRef]
- Leoni, G.B.; de Freitas, D.S.; Gomes, J.A.C.P.; Brasil, S.L.D.C. Multivariable analysis of electrodeposited silane based superhydrophobic coatings for corrosion protection of carbon steel. J. Sol-Gel Sci. Technol. 2020, 94, 695–707. [Google Scholar] [CrossRef]
- Xian, X.; Chen, M.; Li, L.; Lin, Z.; Xiang, J.; Zhao, S. Key factors influencing the stability of silane solution during long-term surface treatment on carbon steel. Corros. Sci. 2013, 74, 283–289. [Google Scholar] [CrossRef]
- Alcantara-Garcia, A.; Garcia-Cases, A.; Jimenez-Morales, A. The effect of the organosilane content on the barrier features of sol-gel anticorrosive coatings applied on carbon steel. Progress. Org. Coat. 2020, 139, 105418. [Google Scholar] [CrossRef]
Symbol | Property | Unit |
---|---|---|
Tc,i | bond force | N |
i | contribution of force | N |
fad | completed adhesion force | N |
ff | friction force | N |
fσ | force of mechanical resistance of specific concrete cover layer | N |
Ab | total area of bar body | m2 |
Ar | total area of bar ribs | m2 |
Type of Coating on Steel Surface | Advantages | Disadvantages | Estimation of Financial Requirements | Notes |
---|---|---|---|---|
epoxy coatings | large coating thickness, do not react with fresh concrete | low bond strength in concrete, more complex manufacturing proces, the coating can be abrasively damaged | probably the most financially demanding technique | the necessity to control the coating thickness and its porosity |
hot-dip galvanized coatings | hard coating, high resistance to carbonation damage | lower coating thickness, reactions with fresh concrete with hydrogen evolution | financial costs are lower than in the case of epoxy coatings | the need to control the composition of the outer coating layer |
organofunctional silane coatings | probable large bond strength with concrete, the possibility to implement a higher coating thickness | poorer applicability to the surface, reactions with fresh concrete | cannot be said in this time | none |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pokorný, P.; Kouřil, M. Predicted Corrosion Performance of Organofunctional Silane Coated Steel Reinforcement for Concrete Structures: An Overview. Buildings 2024, 14, 1756. https://doi.org/10.3390/buildings14061756
Pokorný P, Kouřil M. Predicted Corrosion Performance of Organofunctional Silane Coated Steel Reinforcement for Concrete Structures: An Overview. Buildings. 2024; 14(6):1756. https://doi.org/10.3390/buildings14061756
Chicago/Turabian StylePokorný, Petr, and Milan Kouřil. 2024. "Predicted Corrosion Performance of Organofunctional Silane Coated Steel Reinforcement for Concrete Structures: An Overview" Buildings 14, no. 6: 1756. https://doi.org/10.3390/buildings14061756
APA StylePokorný, P., & Kouřil, M. (2024). Predicted Corrosion Performance of Organofunctional Silane Coated Steel Reinforcement for Concrete Structures: An Overview. Buildings, 14(6), 1756. https://doi.org/10.3390/buildings14061756