Comparison of Simulation Methods for Glare Risk Assessment with Roller Shades
Abstract
:1. Introduction
1.1. Glare Risk Assessment
1.2. Imageless Methods
1.3. Matrix-Based Methods
1.4. Modeling Roller Shades as Complex Fenestration Systems
1.5. Scope of Study and Objectives
2. Materials and Methods
2.1. Case Study and Model Inputs
2.2. Daylight Simulation Modeling and Parameters
Radiance Parameters | ||
---|---|---|
rpict [36] | -dp 4096 -dt 0.01 -dt 1 -ds 0.02 -dr 3 -ms 0.025 -ss 16 -st 0.01 -lr 12 -lw 1e-5 -av 0 0 0 -aa 0.2 -ar 600 -ab 6 -ad 1500 -as 750 -ps 3 -pt 0.04 | |
5PM [52,53,54,55] | 3PM | Sky matrix: -m1 (MF = 1) Daylight matrix: -c 1500 -ab 4 -ad 1024 -lw 9.76e-4 View matrix: -c 10 -ab 10 -ad 65536 -lw 1.53e-5 -x 800 -y 800 |
3PM–D | Sky matrix: -m1 -d (MF = 1) Daylight matrix: -c 1500 -ab 4 -ad 1024 -lw 9.76e-4 View matrix: -c 10 -ab 1 -ad 65536 -lw 1.53e-5 -x 800 -y 800 | |
cds | Sky matrix: -m3 (MF = 3) Daylight coefficient matrix: -ab 1 -ad 1024 -dc 1 -dt 0 -dj0 -x 800 -y 800 MF = 3 | |
CS–Annual Glare | (Default) -ab 6 -lw 0.01 with 64 samples per pass and 100 passes | |
HB–iDGP | (Default) Sky matrix: -m1 (MF = 1) Daylight coefficient matrix: -ab 10 -ad 25000 -as 4096 -c 1 -dc 0.75 -dp 512 -dr 3 -ds 0.05 -dt 0.15 -lr 8 -lw 4e-07 -ss 1 -dt 0.15 |
2.3. Light Transmission through Roller Shades
2.4. Variables and Compatibility between Different Glare Simulation Methods
3. Results
3.1. DGP Comparison and Errors in Different Methods
3.2. Vertical Illuminance (Ev) Comparison and Errors in Different Methods
3.3. Visual Discomfort Frequency
4. Discussion
4.1. Effect of MF on Results of 5PM
4.2. Effect of MF on Results of iDGP
4.3. The Impact of Peak Extraction (Radiance aBSDF) on Correct Glare Classification
4.4. Computation Time
4.5. Errors in Analytical Light Transmission Models through Roller Shades
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
SIMULATION METHODS | |
rpict | Ground-truth radiance ray-tracing tool |
5PM | Radiance 5–phase method |
3PM | Radiance 3–phase method |
3PM–D | Radiance 3–phase method for the direct solar calculation only |
2PM | Radiance 2–phase method |
CS–ANNUAL GLARE | Annual Glare tool in ClimateStudio (CS) |
HB–IDGP | Imageless DGP in Honeybee (HB) |
IDGP | Imageless DGP |
sDGP | Enhanced simplified DGP |
GLARE METRICS | |
DGP | Daylight glare probability |
Ev | Vertical illuminance [lux] |
sGA | Spatial glare autonomy |
sDG | Spatial disturbing glare |
RADIANCE-RELATED | |
CFS | Complex fenestration system |
PE | Peak extraction algorithm |
BSDF | Bidirectional scattering distribution function |
WITHOUT PE (RADIANCE BSDF) | Radiance material primitive for modeling complex fenestration systems without PE |
WITH PE (RADIANCE ABSDF) | Radiance material primitive for modeling complex fenestration systems with PE |
(Tv,n-n, Tv,n-h) | (Openness factor, Total hemispherical visible illuminance) |
MF | Number (=) of sky patches or potential solar positions (1 to 6) |
ERROR METRICS | |
RMSE | Root mean squared error |
MAE | Mean absolute error |
MBE | Mean bias error |
Appendix A
References
- Jakubiec, J.; Reinhart, C. The ‘adaptive zone’—A concept for assessing discomfort glare throughout daylit spaces. Light. Res. Technol. 2012, 44, 149–170. [Google Scholar] [CrossRef]
- Wienold, J.; Iwata, T.; Sarey Khanie, M.; Erell, E.; Kaftan, E.; Rodriguez, R.; Yamin Garreton, J.; Tzempelikos, T.; Konstantzos, I.; Christoffersen, J.; et al. Cross-validation and robustness of daylight glare metrics. Light. Res. Technol. 2019, 51, 983–1013. [Google Scholar] [CrossRef]
- Wienold, J.; Andersen, M. Evalglare 2.0–new features, faster and more robust HDR-image evaluation. In Proceedings of the 15th International Radiance Workshop, Padova, Italy, 29–31 August 2016. [Google Scholar]
- Pierson, C.; Wienold, J.; Bodart, M. Daylight discomfort glare evaluation with Evalglare: Influence of parameters and methods on the accuracy of discomfort glare prediction. Buildings 2018, 8, 94. [Google Scholar] [CrossRef]
- Geisler-Moroder, D.; Lee, E.S.; Ward, G.J. Validation of the Five-Phase Method for Simulating Complex Fenestration Systems with Radiance against Field Measurements. In Proceedings of the 2017 Building Simulation Conference, San Francisco, CA, USA, 7–9 August 2017. [Google Scholar] [CrossRef]
- Lee, E.S.; Geisler-Moroder, D.; Ward, G. Modeling the direct sun component in buildings using matrix algebraic approaches: Methods and validation. Sol. Energy 2018, 160, 380–395. [Google Scholar] [CrossRef]
- Sepúlveda, A.; Bueno, B.; Wang, T.; Wilson, H.R. Benchmark of methods for annual glare risk assessment. Build. Environ. 2021, 201, 108006. [Google Scholar] [CrossRef]
- Wasilewski, S. Raytraverse: Navigating the Lightfield to Enhance Climate-Based Daylight Modeling. In Proceedings of the Symposium on Simulation for Architecture and Urban Design (simAUD) 2021, Online, 15–17 April 2021. [Google Scholar]
- Wasilewski, S.; Grobe, L.O.; Wienold, J.; Andersen, M. Efficient simulation for visual comfort evaluations. Energy Build. 2022, 267, 112141. [Google Scholar] [CrossRef]
- Jones, N.L.; Reinhart, C.F. Experimental validation of ray tracing as a means of image-based visual discomfort prediction. Build. Environ. 2017, 113, 131–150. [Google Scholar] [CrossRef]
- Accelerad. Daylight Simulation on the GPU. 2019. Available online: https://nljones.github.io/Accelerad/ (accessed on 6 June 2024).
- EN 17037:2018; Daylighting of Buildings. British Standards Institution: London, UK, 2018. Available online: https://www.bsigroup.com/en-GB/industries-and-sectors/construction-and-building/bs-en-17037-daylighting-of-buildings/ (accessed on 6 June 2024).
- Chan, Y.-C.; Tzempelikos, A.; Konstantzos, I. A systematic method for selecting roller shade properties for glare protection. Energy Build. 2015, 92, 81–94. [Google Scholar] [CrossRef]
- Wienold, J.; Kuhn, T.E.; Christoffersen, J.; Andersen, M. Annual glare evaluation for fabrics. In Proceedings of the PLEA 2017 Conference, Edinburgh, Scotland, 2–5 July 2017. [Google Scholar]
- Jones, N.L. Fast Climate-Based Glare Analysis and Spatial Mapping. In Proceedings of the Building Simulation 2019: 16th Conference of IBPSA, Rome, Italy, 2–4 September 2019; pp. 982–989. [Google Scholar] [CrossRef]
- Ladybug. Honeybee. 2023. Available online: https://www.ladybug.tools/honeybee.html (accessed on 6 June 2024).
- Soleman. ClimateStudio. 2023. Available online: https://www.solemma.com/climatestudio (accessed on 6 June 2024).
- Rhino. 2024. Available online: https://www.rhino3d.com/ (accessed on 6 June 2024).
- Kahramanoğlu, B.; Çakıcı Alp, N. Enhancing visual comfort with Miura-ori-based responsive facade model. J. Build. Eng. 2023, 69, 106241. [Google Scholar] [CrossRef]
- Li, Y.; Li, L.; Shen, P. Probability-based visual comfort assessment and optimization in national fitness halls under sports behavior uncertainty. Build. Environ. 2023, 242, 110596. [Google Scholar] [CrossRef]
- Sui, G.; Liu, J.; Leng, J.; Yu, F. Daylighting performance assessment of traditional skywell dwellings: A case study in Fujian, China. J. Build. Eng. 2023, 68, 106028. [Google Scholar] [CrossRef]
- De Luca, F.; Sepúlveda, A.; Varjas, T. Multi-performance optimization of static shading devices for glare, daylight, view and energy consideration. Build. Environ. 2022, 217, 109110. [Google Scholar] [CrossRef]
- Li, Y.; Li, L.; Shen, P.; Yuan, C. An occupant-centric approach for spatio-temporal visual comfort assessment and optimization in daylit sports spaces. Indoor Built Environ. 2023, 33, 145–166. [Google Scholar] [CrossRef]
- Marchini, F.; Chiatti, C.; Fabiani, C.; Pisello, A.L. Development of an innovative translucent–photoluminescent coating for smart windows applications: An experimental and numerical investigation. Renew. Sustain. Energy Rev. 2023, 184, 113530. [Google Scholar] [CrossRef]
- Mesloub, A.; Alnaim, M.M.; Albaqawy, G.; Alsolami, B.M.; Mayhoub, M.S.; Tsangrassoulis, A.; Doulos, L.T. The visual comfort, economic feasibility, and overall energy consumption of tubular daylighting device system configurations in deep plan office buildings in Saudi Arabia. J. Build. Eng. 2023, 68, 106100. [Google Scholar] [CrossRef]
- Sorooshnia, E.; Rashidi, M.; Rahnamayiezekavat, P.; Mahmoudkelayeh, S.; Pourvaziri, M.; Kamranfar, S.; Gheibi, M.; Samali, B.; Moezzi, R. A novel approach for optimized design of low-E windows and visual comfort for residential spaces. Energy Built Environ. 2023; in press. [Google Scholar] [CrossRef]
- Shirzadnia, Z.; Goharian, A.; Mahdavinejad, M. Designerly approach to skylight configuration based on daylight performance; toward a novel optimization process. Energy Build. 2023, 286, 112970. [Google Scholar] [CrossRef]
- Wen, S.; Hu, X.; Hua, G.; Xue, P.; Lai, D. Comparing the performance of four shading strategies based on a multi-objective genetic algorithm: A case study in a university library. J. Build. Eng. 2023, 63, 105532. [Google Scholar] [CrossRef]
- Kangazian, A.; Emadian Razavi, S.Z. Multi-criteria evaluation of daylight control systems of office buildings considering daylighting, glare and energy consumption. Sol. Energy 2023, 263, 111928. [Google Scholar] [CrossRef]
- Lu, W. Dynamic Shading and Glazing Technologies: Improve Energy, Visual, and Thermal Performance. Energy Built Environ. 2024, 5, 211–229. [Google Scholar] [CrossRef]
- Abubakr Ali, L.; Ali Mustafa, F. Evaluating the impact of mosque morphology on worshipers’ visual comfort: Simulation analysis for daylighting performance. Ain Shams Eng. J. 2023, 15, 102412. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, H.; Liu, X.; Ji, G. Exploring the synergy of building massing and façade design through evolutionary optimization. Front. Archit. Res. 2022, 11, 761–780. [Google Scholar] [CrossRef]
- Wienold, J.; Christoffersen, J. Evaluation methods and development of a new glare prediction model for daylight environments with the use of CCD cameras. Energy Build. 2006, 38, 743–757. [Google Scholar] [CrossRef]
- Kong, Z.; Jakubiec, J.A. Instantaneous lighting quality within higher educational classrooms in Singapore. Front. Archit. Res. 2021, 10, 787–802. [Google Scholar] [CrossRef]
- Takhmasib, M.; Lee, H.J.; Yi, H. Machine-learned kinetic Façade: Construction and artificial intelligence enabled predictive control for visual comfort. Autom. Constr. 2023, 156, 105093. [Google Scholar] [CrossRef]
- Wasilewski, S.; Wienold, J.; Andersen, M. A Critical Comparison of Annual Glare Simulation Methods. E3S Web Conf. 2022, 362, 01002. [Google Scholar] [CrossRef]
- Kızılörenli, E.; Maden, F. Modular responsive facade proposals based on semi-regular and demi-regular tessellation: Daylighting and visual comfort. Front. Archit. Res. 2023, 12, 601–612. [Google Scholar] [CrossRef]
- Naik, N.S.; Elzeyadi, I.; Minson, C.T.; Lee, J.-H. Significance of dynamic over static solar screens on thermal perception in perimeter offices under different sky conditions. Build. Environ. 2023, 234, 110153. [Google Scholar] [CrossRef]
- Subramaniam, S. Daylighting Simulations with Radiance Using Matrix-Based Methods. 2017. Available online: https://www.radiance-online.org/learning/tutorials/matrix-based-methods (accessed on 6 June 2024).
- McNeil, A.; Lee, E.S. A validation of the Radiance three-phase simulation method for modelling annual daylight performance of optically complex fenestration systems. J. Build. Perform. Simul. 2013, 6, 24–37. [Google Scholar] [CrossRef]
- Zhao, Y.; Tian, Z. Modified climate-based daylight modeling methods for buildings. Build. Environ. 2023, 242, 110598. [Google Scholar] [CrossRef]
- Ward, G.J.; Wang, T.; Geisler-Moroder, D.; Lee, E.S.; Grobe, L.O.; Wienold, J.; Jonsson, J.C. Modeling specular transmission of complex fenestration systems with data-driven BSDFs. Build. Environ. 2021, 196, 107774. [Google Scholar] [CrossRef]
- Geisler-Moroder, D.; Ward, G.J.; Wang, T.; Lee, E.S. Peak extraction in daylight simulations using BSDF data. In Proceedings of the 2021 Building Simulation Conference, Bruges, Belgium, 1 September 2021. [Google Scholar] [CrossRef]
- Wang, T.; Lee, E.S.; Ward, G.J.; Yu, T. Field validation of isotropic analytical models for simulating fabric shades. Build. Environ. 2023, 236, 110223. [Google Scholar] [CrossRef]
- Wang, T.; Lee, E.S.; Ward, G.J.; Yu, T. Field validation of data-driven BSDF and peak extraction models for light-scattering fabric shades. Energy Build. 2022, 262, 112002. [Google Scholar] [CrossRef]
- McNeil, A. genBSDF Tutorial. 2015. Available online: https://www.radiance-online.org/learning/tutorials/Tutorial-genBSDF_v1.0.1.pdf (accessed on 10 October 2023).
- Kotey, N.A.; Wright, J.L.; Collins, M.R. Determining Off-Normal Solar Optical Properties of Roller Blinds; ASHRAE Transactions; University of Waterloo Library: Waterloo, ON, Canada, 2009. [Google Scholar]
- AERC. Procedures for Determining the Optical and Thermal Properties of Window Attachment Materials. 2019. Available online: https://arpa-e.energy.gov/sites/default/files/AERC.pdf (accessed on 6 June 2024).
- Radsite. Setting Rendering Options. 2024. Available online: https://radsite.lbl.gov/radiance/refer/Notes/rpict_options.html (accessed on 6 June 2024).
- DesignBuilder. Annual Daylighting Calcualtion Options. 2024. Available online: https://designbuilder.co.uk/helpv7.0/Content/AnnualDaylightingCalculationOptions.htm (accessed on 6 June 2024).
- McNeil, A. BSDFs, Matrices and Phases. 2014. Available online: https://www.radiance-online.org/community/workshops/2014-london/presentations/day1/McNeil_BSDFsandPhases.pdf (accessed on 10 October 2023).
- McNeil, A. BSDFs, The 5-Phase Method. 2013. Available online: https://www.radiance-online.org/community/workshops/2013-golden-co/McNeil-5phase.pdf (accessed on 10 October 2023).
- Reinhart, C.F.; Herkel, S. The simulation of annual daylight illuminance distributions—A state-of-the-art comparison of six RADIANCE-based methods. Energy Build. 2000, 32, 167–187. [Google Scholar] [CrossRef]
- Brembilla, E.; Chi, D.A.; Hopfe, C.J.; Mardaljevic, J. Evaluation of climate-based daylighting techniques for complex fenestration and shading systems. Energy Build. 2019, 203, 109454. [Google Scholar] [CrossRef]
- RadianceDiscourse. gaussKoteyBSDF. 2022. Available online: https://discourse.radiance-online.org/t/brtdfunc-to-model-angular-dependent-transmission/ (accessed on 6 June 2024).
- Lu, S.; Tzempelikos, A.; Wang, T.; Lee, E.S. Glare-based selection of roller shade properties. Build. Environ. 2024. under review. [Google Scholar]
- Apian-Bennewitz, P.; de Boer, J.; Bueno, B.; Deroisy, B.; Fang, Y.; Geisler-Moroder, D.; Geisler-Moroder, D.; Grobe, L.O.; Jonsson, J.C.; Lee, E.S.; et al. Analysis and Evaluation of BSDF Characterization of Daylighting Systems; IEA SHC Task 61; IEA: Paris, France, 2021. [Google Scholar] [CrossRef]
- EN 14501:2021; Blinds and Shutters—Thermal and Visual Comfort—Performance Characteristics and Classification. AENOR, Agencia Española de Normalización y Certificación: Madrid, Spain, 2021. Available online: https://standards.iteh.ai/catalog/standards/cen/8b0257b8-f10b-4994-ae49-2493d6cd12ab/en-14501-2021 (accessed on 6 June 2024).
- Subramaniam, S.; Mistrick, R.G. Feasibility of employing a daylight-coefficient based approach for faster glare prediction from simulations. In Proceedings of the IES Annual Conference, Louisville, KY, USA, 8–10 August 2019. [Google Scholar]
- LadybugDiscourse. Change MF in Honeybee Imageless DGP. 2023. Available online: https://discourse.ladybug.tools/t/sky-subdivisions-mf-used-in-honeybee-imageless-annual-glare/21455 (accessed on 6 June 2024).
- Karmann, C.; Chinazzo, G.; Schüler, A.; Manwani, K.; Wienold, J.; Andersen, M. User assessment of fabric shading devices with a low openness factor. Build. Environ. 2023, 228, 109707. [Google Scholar] [CrossRef]
- Konstantzos, I.; Tzempelikos, A. Daylight glare evaluation with the sun in the field of view through window shades. Build. Environ. 2017, 113, 65–77. [Google Scholar] [CrossRef]
- Garretón, J.Y.; Villalba, A.M.; Rodriguez, R.G.; Pattini, A. Roller blinds characterization assessing discomfort glare, view outside and useful daylight illuminance with the sun in the field of view. Sol. Energy 2021, 213, 91–101. [Google Scholar] [CrossRef]
References | Investigated Systems | Imageless Method |
---|---|---|
[26] | Glazing | CS Annual Glare |
[19] | Responsive façade modules | CS Annual Glare |
[24] | Translucent–photoluminescent coating for glazing | CS Annual Glare |
[31] | Building massing | CS Annual Glare |
[32] | Building massing and façades (including exterior shades) | CS Annual Glare |
[20] | Building massing, skylights, and exterior shades | CS Annual Glare |
[21] | Top openings | CS Annual Glare |
[25] | Tabular daylight devices | CS Annual Glare |
[23] | Skylights | CS Annual Glare |
[28] | Exterior shades | iDGP |
[27] | Skylights | HB–iDGP |
[29] | Exterior shades and glazing | HB–iDGP |
[30] | Static overhangs or kinetic blinds shades and electro-chromic glazing | HB–iDGP |
Modeling Method | rpict | 5PM | 3PM | CS–Annual Glare | HB–iDGP | |
---|---|---|---|---|---|---|
Output | DGP | ✓ | ✓ | ✓ | ✓ | ✓ |
Ev | ✓ | ✓ | ✓ | ✓ | ||
Material type for roller shades | With PE (Radiance–aBSDF) | ✓ | ✓ | ✓ | ||
Without PE (Radiance–BSDF) | ✓ | ✓ | ✓ | ✓ | ✓ |
View | With PE Radiance–aBSDF | Without PE Radiance–BSDF/Matrix–Only | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Shade Property (Tv,n-n, Tv,n-h) | DGP Threshold | rpict | 5PM | CS | rpict | 5PM | 3PM | CS | HB–iDGP | |
Window- Facing | (5%, 10%) | 0.38 | 15.7% | 15.8% | 9.1% | 7.2% | 6.9% | 3.1% | 1.9% | 6.7% |
0.4 | 13.9% | 13.9% | 7.5% | 5.7% | 5.4% | 2.0% | 0.6% | 5.3% | ||
0.45 | 9.7% | 9.4% | 4.2% | 3.3% | 3.1% | 0.3% | 0.0% | 2.6% | ||
(3%, 4%) | 0.38 | 13.5% | 13.2% | 1.2% | 1.0% | 0.9% | 0.0% | 0.0% | 0.0% | |
0.4 | 10.6% | 10.3% | 0.2% | 0.2% | 0.4% | 0.0% | 0.0% | 0.0% | ||
0.45 | 4.8% | 5.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | ||
Window- Side | (5%, 10%) | 0.38 | 3.9% | 4.4% | 2.8% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |
0.4 | 2.7% | 2.9% | 1.7% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | ||
0.45 | 0.1% | 0.1% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | ||
(3%, 4%) | 0.38 | 2.4% | 2.7% | 1.7% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | |
0.4 | 1.6% | 1.8% | 0.9% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | ||
0.45 | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% | 0.0% |
Radiance Parameters | |
---|---|
iDGP | Sky matrix: -m1, 3, 6 (MF = 1, 3, 6) Daylight coefficient matrix: -lw 1e 8 -ab 7 -lr -12 -ad 80000 |
View | Shade Property (Tv,n-n, Tv,n-h) | DGP Threshold | aBSDF (with PE) | BSDF (without PE) |
---|---|---|---|---|
Window-Facing | (5%, 10%) | 0.38 | 15.8% | 6.9% |
0.4 | 13.9% | 5.4% | ||
0.45 | 9.4% | 3.1% | ||
(3%, 4%) | 0.38 | 13.2% | 0.9% | |
0.4 | 10.3% | 0.4% | ||
0.45 | 5.0% | 0.0% | ||
Window-Side | (5%, 10%) | 0.38 | 4.4% | 0.0% |
0.4 | 2.9% | 0.0% | ||
0.45 | 0.1% | 0.0% | ||
(3%, 4%) | 0.38 | 2.7% | 0.0% | |
0.4 | 1.8% | 0.0% | ||
0.45 | 0.0% | 0.0% |
DGP Threshold | Annual Visual Discomfort Frequency | Change (%) | |
---|---|---|---|
Cut-Off Angle: 65° | Cut-Off Angle: 55° | ||
0.38 | 13.2% | 10.1% | −23.5% |
0.4 | 10.3% | 7.9% | −23.3% |
0.45 | 5.0% | 3.7% | −26.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, S.; Tzempelikos, A. Comparison of Simulation Methods for Glare Risk Assessment with Roller Shades. Buildings 2024, 14, 1773. https://doi.org/10.3390/buildings14061773
Lu S, Tzempelikos A. Comparison of Simulation Methods for Glare Risk Assessment with Roller Shades. Buildings. 2024; 14(6):1773. https://doi.org/10.3390/buildings14061773
Chicago/Turabian StyleLu, Sichen, and Athanasios Tzempelikos. 2024. "Comparison of Simulation Methods for Glare Risk Assessment with Roller Shades" Buildings 14, no. 6: 1773. https://doi.org/10.3390/buildings14061773
APA StyleLu, S., & Tzempelikos, A. (2024). Comparison of Simulation Methods for Glare Risk Assessment with Roller Shades. Buildings, 14(6), 1773. https://doi.org/10.3390/buildings14061773