Visual Perception Differences and Spatiotemporal Analysis in Commercialized Historic Streets Based on Mobile Eye Tracking: A Case Study in Nanchang Wanshou Palace, China
Abstract
:1. Introduction
2. Related Work
2.1. The Application of Eye-Tracking Technology in the Built Environment
2.2. Perception of Commercialized Historic Streets
3. Method
3.1. Overview
3.2. Experimental Design and Procedure
3.2.1. Selection of Sites and Participants
3.2.2. Experimental Procedure
3.3. Data Collection and Analysis Techniques
3.3.1. Collection of Visual Perception Data
3.3.2. Data Processing
4. Result
4.1. Description of Eye Movement Patterns across Different Participant Groups
4.2. Analysis of Visual Attention Discrepancies towards Commercialized Historic Streets Capes
4.3. Key Areas of Interest and Duration of Fixations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, J.; Yang, L.; Xiong, Y.; Yang, Y. Effects of Soundscape Perception on Visiting Experience in a Renovated Historical Block. Build. Environ. 2019, 165, 106375. [Google Scholar] [CrossRef]
- Chahardowli, M.; Sajadzadeh, H. A Strategic Development Model for Regeneration of Urban Historical Cores: A Case Study of the Historical Fabric of Hamedan City. Land Use Policy 2022, 114, 105993. [Google Scholar] [CrossRef]
- Birer, E.; Çalışır Adem, P. Role of Public Space Design on the Perception of Historical Environment: A Pilot Study in Amasya. Front. Archit. Res. 2022, 11, 13–30. [Google Scholar] [CrossRef]
- Fu, H.; Wang, P.; Zhou, J.; Zhang, S.; Li, Y. Investigating Influence of Visual Elements of Arcade Buildings and Streetscapes on Place Identity Using Eye-Tracking and Semantic Differential Methods. Buildings 2023, 13, 1580. [Google Scholar] [CrossRef]
- Özdemir, İ.M.; Tavşan, C.; Özgen, S.; Sağsöz, A.; Kars, F.B. The Elements of Forming Traditional Turkish Cities: Examination of Houses and Streets in Historical City of Erzurum. Build. Environ. 2008, 43, 963–982. [Google Scholar] [CrossRef]
- Cucchiella, F.; De Berardinis, P.; Lenny Koh, S.C.; Rotilio, M. Planning Restoration of a Historical Landscape: A Case Study for Integrating a Sustainable Street Lighting System with Conservation of Historical Values. J. Clean. Prod. 2017, 165, 579–588. [Google Scholar] [CrossRef]
- Li, Y.; Yabuki, N.; Fukuda, T. Exploring the association between street built environment and street vitality using deep learning methods. Sustain. Cities Soc. 2021, 79, 103656. [Google Scholar] [CrossRef]
- Lisińska-Kuśnierz, M.; Krupa, M. Suitability of Eye Tracking in Assessing the Visual Perception of Architecture—A Case Study Concerning Selected Projects Located in Cologne. Buildings 2020, 10, 20. [Google Scholar] [CrossRef]
- Ma, K.; Wang, B.; Li, Y.; Zhang, J. Image Retrieval for Local Architectural Heritage Recommendation Based on Deep Hashing. Buildings 2022, 12, 809. [Google Scholar] [CrossRef]
- Zhang, L.-M.; Zhang, R.-X.; Jeng, T.-S.; Zeng, Z.-Y. Cityscape Protection Using VR and Eye Tracking Technology. J. Vis. Commun. Image Represent. 2019, 64, 102639. [Google Scholar] [CrossRef]
- Yiyan, C.; Zheng, C.; Ming, D. Designing Attention—Research on Landscape Experience Through Eye Tracking in Nanjing Road Pedestrian Mall (Street) in Shanghai. Landsc. Archit. Front. 2022, 10, 52. [Google Scholar] [CrossRef]
- Wang, Z.; Ito, K.; Biljecki, F. Assessing the Equity and Evolution of Urban Visual Perceptual Quality with Time Series Street View Imagery. Cities 2024, 145, 104704. [Google Scholar] [CrossRef]
- Kamali, M. The Interaction of History and Modern Thought in the Creation of Iran’s Architecture by Investigating the Approaches of Past-Oriented Architecture. Front. Archit. Res. 2024, 13, 459–486. [Google Scholar] [CrossRef]
- Wang, D.; Niu, Y.; Lu, L.; Qian, J. Tourism Spatial Organization of Historical Streets—A Postmodern Perspective: The Examples of Pingjiang Road and Shantang Street, Suzhou, China. Tour. Manag. 2015, 48, 370–385. [Google Scholar] [CrossRef]
- Zhu, X.-X.; Mu, Q.-R.; Liang, W.-Z. An Innovative Strategic Choice for Stakeholders in the Chinese Traditional Commercial Street Renewal Using Evolutionary Game Theory. J. Innov. Knowl. 2022, 7, 100225. [Google Scholar] [CrossRef]
- Wu, J.; Lu, Y.; Gao, H.; Wang, M. Cultivating Historical Heritage Area Vitality Using Urban Morphology Approach Based on Big Data and Machine Learning. Comput. Environ. Urban Syst. 2022, 91, 101716. [Google Scholar] [CrossRef]
- Zhang, R.-X.; Zhang, L.-M. Panoramic Visual Perception and Identification of Architectural Cityscape Elements in a Virtual-Reality Environment. Future Gener. Comput. Syst. 2021, 118, 107–117. [Google Scholar] [CrossRef]
- Zhang, J.; Fukuda, T.; Yabuki, N. Automatic generation of synthetic datasets from a city digital twin for use in the instance segmentation of building facades. J. Comput. Des. Eng. 2022, 9, 1737–1755. [Google Scholar] [CrossRef]
- Simpson, J.; Freeth, M.; Simpson, K.J.; Thwaites, K. Visual Engagement with Urban Street Edges: Insights Using Mobile Eye-Tracking. J. Urban. Int. Res. Placemaking Urban Sustain. 2019, 12, 259–278. [Google Scholar] [CrossRef]
- Mehanna, W.A.E.-H.; Mehanna, W.A.E.-H. Urban Renewal for Traditional Commercial Streets at the Historical Centers of Cities. Alex. Eng. J. 2019, 58, 1127–1143. [Google Scholar] [CrossRef]
- Li, N.; Zhang, S.; Xia, L.; Wu, Y. Investigating the Visual Behavior Characteristics of Architectural Heritage Using Eye-Tracking. Buildings 2022, 12, 1058. [Google Scholar] [CrossRef]
- Wei, Q.; Dong, W.; Yu, D.; Wang, K.; Yang, T.; Xiao, Y.; Long, D.; Xiong, H.; Chen, J.; Xu, X.; et al. Early Identification of Autism Spectrum Disorder Based on Machine Learning with Eye-Tracking Data. J. Affect. Disord. 2024, 358, 326–334. [Google Scholar] [CrossRef]
- Ilhan, A.E.; Togay, A. Pursuit of Methodology for Data Input Related to Taste in Design: Using Eye Tracking Technology. Displays 2023, 76, 102335. [Google Scholar] [CrossRef]
- Shadiev, R.; Li, D. A Review Study on Eye-Tracking Technology Usage in Immersive Virtual Reality Learning Environments. Comput. Educ. 2023, 196, 104681. [Google Scholar] [CrossRef]
- Chen, W.; Sawaragi, T.; Hiraoka, T. Comparing Driver Reaction and Mental Workload of Visual and Auditory Take-over Request from Perspective of Driver Characteristics and Eye-Tracking Metrics. Transp. Res. Part F Traffic Psychol. Behav. 2023, 97, 396–410. [Google Scholar] [CrossRef]
- Stapel, J.; El Hassnaoui, M.; Happee, R. Measuring Driver Perception: Combining Eye-Tracking and Automated Road Scene Perception. Hum. Factors J. Hum. Factors Ergon. Soc. 2022, 64, 714–731. [Google Scholar] [CrossRef]
- Vos, J.; De Winter, J.; Farah, H.; Hagenzieker, M. Which Visual Cues Do Drivers Use to Anticipate and Slow down in Freeway Curve Approach? An Eye-Tracking, Think-Aloud on-Road Study. Transp. Res. Part F Traffic Psychol. Behav. 2023, 94, 190–211. [Google Scholar] [CrossRef]
- Babić, D.; Dijanić, H.; Jakob, L.; Babić, D.; Garcia-Garzon, E. Driver Eye Movements in Relation to Unfamiliar Traffic Signs: An Eye Tracking Study. Appl. Ergon. 2020, 89, 103191. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Z.; Jing, F.; Gao, J.; Ma, J.; Shao, G.; Noel, S. An Evaluation of Urban Green Space in Shanghai, China, Using Eye Tracking. Urban For. Urban Green. 2020, 56, 126903. [Google Scholar] [CrossRef]
- Liu, Q.; Zhu, Z.; Zeng, X.; Zhuo, Z.; Ye, B.; Fang, L.; Huang, Q.; Lai, P. The Impact of Landscape Complexity on Preference Ratings and Eye Fixation of Various Urban Green Space Settings. Urban For. Urban Green. 2021, 66, 127411. [Google Scholar] [CrossRef]
- Latini, A.; Marcelli, L.; Di Giuseppe, E.; D’Orazio, M. Investigating the Impact of Greenery Elements in Office Environments on Cognitive Performance, Visual Attention and Distraction: An Eye-Tracking Pilot-Study in Virtual Reality. Appl. Ergon. 2024, 118, 104286. [Google Scholar] [CrossRef]
- Rusnak, M. Applicability of Eye Trackers in Marketing Activities Related to Historical Monuments. Comparison of Experts’ Predictions and Visual Reactions of Non-Professionals. J. Cult. Herit. 2021, 49, 152–163. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, R.; Yin, B. The Impact of the Built-up Environment of Streets on Pedestrian Activities in the Historical Area. Alex. Eng. J. 2021, 60, 285–300. [Google Scholar] [CrossRef]
- Rui, Q.; Cheng, H. Quantifying the Spatial Quality of Urban Streets with Open Street View Images: A Case Study of the Main Urban Area of Fuzhou. Ecol. Indic. 2023, 156, 111204. [Google Scholar] [CrossRef]
- Oppong, R.A.; Marful, A.B.; Sarbeng, Y.K. Conservation and Character Defining Elements of Historical Towns: A Comparative Study of Cape Coast and Elmina Streets and Castles. Front. Archit. Res. 2018, 7, 37–55. [Google Scholar] [CrossRef]
- Harun, N.Z.; Mansor, M.; Said, I. Place Rootedness Suggesting the Loss and Survival of Historical Public Spaces. Procedia Environ. Sci. 2015, 28, 528–537. [Google Scholar] [CrossRef]
- Duchowski, A.T. Eye Tracking Techniques. In Eye Tracking Methodology: Theory and Practice; Springer: Berlin/Heidelberg, Germany, 2003; pp. 55–65. [Google Scholar]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image is Worth 16 × 16 Words: Transformers for Image Recognition at Scale. arXiv 2020, arXiv:2010.11929. [Google Scholar]
- Zhou, B.; Zhao, H.; Puig, X.; Fidler, S.; Barriuso, A.; Torralba, A. Scene Parsing through ADE20K Dataset. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5122–5130. [Google Scholar]
- Wang, B.; Zhang, J.; Zhang, R.; Li, Y.; Li, L.; Nakashima, Y. Improving facade parsing with vision transformers and line integration. Adv. Eng. Inform. 2024, 60, 102463. [Google Scholar] [CrossRef]
- Amati, M.; Moat, H.S.; Batty, M. How eye-catching are natural features when walking through a park? Eye-tracking responses to videos of walks. Urban For. Urban Green. 2018, 31, 67–78. [Google Scholar] [CrossRef]
Eye tracking technology specifications | |
Eye tracking | Corneal reflex, binocular stereo dark pupil tracking |
Binocular tracking | Yes |
Sampling frequency | 50 Hz or 100 Hz |
Calibration method | System-guided, one-point calibration |
Parallel inspection calibration tool | Automatic |
Slip compensation | Automatic, 3D eyeball model |
Pupillary measurement | Support, absolute measurement |
Head mounted module | |
Number of eye-tracking cameras | 4 eye-tracking cameras 16 infrared light sources |
Sensors | Gyroscope accelerometer Magnetometer |
Scene camera video format and resolution | H.264 1920 × 1080 @25 fps |
Scene camera perspective | Ultra-wide angle 106° (16:9) |
Scene camera recording angle/perspective | 95° horizontal, 63 vertical |
Frame size | 153 × 168 × 51 mm |
Environmental Elements | Attention Percentage | Exposure Percentage | Information Density | |
---|---|---|---|---|
Low information density (0, 1] | Crowds | 1.5% | 7.2% | 0.2 |
Sky | 0.9% | 5.1% | 0.2 | |
Tree | 0.6% | 4.6% | 0.2 | |
Door | 0.9% | 4.8% | 0.2 | |
Architectural detailing | 5.5% | 15.4% | 0.4 | |
Road | 4.3% | 9.8% | 0.4 | |
High information density (1, ∞) | Store | 11.3% | 11.5% | 1.2 |
Signboards | 6.7% | 4.1% | 1.6 | |
Architecture | 63.1% | 37.4% | 1.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, S.; Zhang, J.; Zu, R.; Li, Y. Visual Perception Differences and Spatiotemporal Analysis in Commercialized Historic Streets Based on Mobile Eye Tracking: A Case Study in Nanchang Wanshou Palace, China. Buildings 2024, 14, 1899. https://doi.org/10.3390/buildings14071899
Zheng S, Zhang J, Zu R, Li Y. Visual Perception Differences and Spatiotemporal Analysis in Commercialized Historic Streets Based on Mobile Eye Tracking: A Case Study in Nanchang Wanshou Palace, China. Buildings. 2024; 14(7):1899. https://doi.org/10.3390/buildings14071899
Chicago/Turabian StyleZheng, Siyu, Jiaxin Zhang, Rui Zu, and Yunqin Li. 2024. "Visual Perception Differences and Spatiotemporal Analysis in Commercialized Historic Streets Based on Mobile Eye Tracking: A Case Study in Nanchang Wanshou Palace, China" Buildings 14, no. 7: 1899. https://doi.org/10.3390/buildings14071899
APA StyleZheng, S., Zhang, J., Zu, R., & Li, Y. (2024). Visual Perception Differences and Spatiotemporal Analysis in Commercialized Historic Streets Based on Mobile Eye Tracking: A Case Study in Nanchang Wanshou Palace, China. Buildings, 14(7), 1899. https://doi.org/10.3390/buildings14071899