Ventilation Strategies to Mitigate Air Pollution Impact on Hospital Professionals in Intensive Care Units in the Democratic Republic of Congo
Abstract
:1. Introduction
2. Materials and Methods
2.1. Case Study Building
2.2. Data Acquisition
2.2.1. Survey Questionnaires
2.2.2. Air Change Rate
- Q is the ventilation rate required;
- N is the number of occupants;
- G is the CO2 generation rate per occupant;
- Ci is the indoor CO2 concentration (in ppm);
- Co is the outdoor CO2 concentration (in ppm).
- Q = Airflow rate per occupant (in m3/h);
- V = room volume (in m3).
2.3. CFD Analysis
3. Results
3.1. Participation, Characteristics
3.2. Survey Responses
3.3. Physical Measurement Results
Air Change Rate
3.4. CFD Simulations for JSH and GCMH ICU
3.4.1. Characteristics of the Used Model
3.4.2. CFD Validation
3.5. Air Movement within the ICUs
4. Discussion
4.1. Alternative Ventilation Strategies
4.2. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Azuma, K.; Yanagi, U.; Kagi, N.; Kim, H.; Ogata, M.; Hayashi, M. Environmental factors involved in SARS-CoV-2 transmission: Effect and role of indoor environmental quality in the strategy for COVID-19 infection control. Environ. Health Prev. Med. 2020, 25, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Fadaei, A. Ventilation Systems and COVID-19 Spread: Evidence from a Systematic Review Study. Eur. J. Sustain. Dev. Res. 2021, 5, em0157. [Google Scholar] [CrossRef] [PubMed]
- Morawska, L.; Tang, J.W.; Bahnfleth, W.; Bluyssen, P.M.; Boerstra, A.; Buonanno, G.; Cao, J.; Dancer, S.; Floto, A.; Franchimon, F.; et al. How can airborne transmission of COVID-19 indoors be minimised? Environ. Int. 2020, 142, 105832. [Google Scholar] [CrossRef] [PubMed]
- Derks, M.; Mishra, A.; Loomans, M.; Kort, H. Understanding thermal comfort perception of nurses in a hospital ward work environment. Build. Environ. 2018, 140, 119–127. [Google Scholar] [CrossRef]
- Yuan, F.; Yao, R.; Sadrizadeh, S.; Li, B.; Cao, G.; Zhang, S.; Zhou, S.; Liu, H.; Bogdan, A.; Croitoru, C.; et al. Thermal comfort in hospital buildings—A literature review. J. Build. Eng. 2022, 45, 103463. [Google Scholar] [CrossRef]
- Pereira, P.F.d.C.; Broday, E.E.; Xavier, A.A.d.P. Thermal comfort applied in hospital environments: A literature review. Appl. Sci. 2020, 10, 7030. [Google Scholar] [CrossRef]
- Wargocki, P.; Wyon, D.P.; Fanger, O. Productivity Is Affected by the Air Quality in Offices. In Proceedings of the Healthy Buildings 2000, Espoo, Finland, 6–10 August 2000. [Google Scholar]
- Zhang, S.; Song, K.; Ban, Q.; Gong, P.; Li, R.; Peng, Z. Indoor Air Quality and Smoking Control in Healthcare Environments in Northern China. Sustainability 2023, 15, 4041. [Google Scholar] [CrossRef]
- Settimo, G.; Gola, M.; Capolongo, S. the relevance of indoor air quality in hospital settings: From an exclusively biological issue to a global approach in the Italian context. Atmosphere 2020, 11, 361. [Google Scholar] [CrossRef]
- Fonseca, A.; Abreu, I.; Guerreiro, M.J.; Barros, N. Indoor Air Quality in Healthcare Units—A Systematic Literature Review Focusing Recent Research. Sustainability 2022, 14, 967. [Google Scholar] [CrossRef]
- Nyembwe, J.-P.K.B.; Ogundiran, J.O.; Chenari, B.; Simões, N.A.V.; da Silva, M.G. The Indoor Climate of Hospitals in Tropical Countries: A Systematic Review. Energies 2023, 16, 3513. [Google Scholar] [CrossRef]
- Cabovská, B.; Bekö, G.; Teli, D.; Ekberg, L.; Dalenbäck, J.-O.; Wargocki, P.; Psomas, T.; Langer, S. Ventilation strategies and indoor air quality in Swedish primary school classrooms. Build. Environ. 2022, 226, 109744. [Google Scholar] [CrossRef]
- Seppanen, O.; William, F.; Mark, M. Association of ventilation rates and CO2 concentrations with health and other responses in commercial and institutional buildings. Indoor Air 1999, 9, 226–252. [Google Scholar] [CrossRef] [PubMed]
- Sundell, J.; Levin, H.; Nazaroff, W.W.; Cain, W.S.; Fisk, W.J.; Grimsrud, D.T.; Gyntelberg, F.; Li, Y.; Persily, A.K.; Pickering, A.C.; et al. Ventilation rates and health: Multidisciplinary review of the scientific literature. Indoor Air 2011, 21, 191–204. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.K.; Li, M.; Chan, V.; Lai, A.C. Influence of mechanical ventilation system on indoor carbon dioxide and particulate matter concentration. Build. Environ. 2014, 76, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Ramalho, O.; Wyart, G.; Mandin, C.; Blondeau, P.; Cabanes, P.-A.; Leclerc, N.; Mullot, J.-U.; Boulanger, G.; Redaelli, M. Association of carbon dioxide with indoor air pollutants and exceedance of health guideline values. Build. Environ. 2015, 93, 115–124. [Google Scholar] [CrossRef]
- Sadrizadeh, S.; Yao, R.; Yuan, F.; Awbi, H.; Bahnfleth, W.; Bi, Y.; Cao, G.; Croitoru, C.; de Dear, R.; Haghighat, F.; et al. Indoor air quality and health in schools: A critical review for developing the roadmap for the future school environment. J. Build. Eng. 2022, 57, 104908. [Google Scholar] [CrossRef]
- ASHRAE Standard 170-2017; Ventilation of Health Care Facilities. ASHRAE: Peachtree Corners, Georgia, 2020. Available online: https://www.ashrae.org/technical-resources/standards-and-guidelines/standards-addenda/ansi-ashrae-ashe-standard-170-2017-ventilation-of-health-care-facilities (accessed on 2 April 2024).
- Atkinson, J. World Health Organization. Natural Ventilation for Infection Control in Health-Care Settings; World Health Organization: Geneva, Switzerland, 2009.
- Mendes, A.; Pereira, C.; Mendes, D.; Aguiar, L.; Neves, P.; Silva, S.; Batterman, S.; Teixeira, J.P. Indoor air quality and thermal comfort—Results of a pilot study in elderly care centers in Portugal. J. Toxicol. Environ. Health Part A 2013, 76, 333–344. [Google Scholar] [CrossRef] [PubMed]
- Shajahan, A.; Culp, C.H.; Williamson, B. Effects of indoor environmental parameters related to building heating, ventilation, and air conditioning systems on patients’ medical outcomes: A review of scientific research on hospital buildings. Indoor Air 2019, 29, 161–176. [Google Scholar] [CrossRef] [PubMed]
- Nimlyat, P.S. Indoor environmental quality performance and occupants’ satisfaction [IEQPOS] as assessment criteria for green healthcare building rating. Build. Environ. 2018, 144, 598–610. [Google Scholar] [CrossRef]
- Nimlyat, P.S.; Salihu, B.; Wang, G.P. The impact of indoor environmental quality (IEQ) on patients’ health and comfort in Nigeria. Int. J. Build. Pathol. Adapt. 2022; ahead of print. [Google Scholar] [CrossRef]
- Yau, Y.; Chandrasegaran, D.; Badarudin, A. The ventilation of multiple-bed hospital wards in the tropics: A review. Build. Environ. 2010, 46, 1125–1132. [Google Scholar] [CrossRef] [PubMed]
- Taushiba, A.; Dwivedi, S.; Zehra, F.; Shukla, P.N.; Lawrence, A.J. Assessment of indoor air quality and their inter-association in hospitals of northern India—A cross-sectional study. Air Qual. Atmos. Health 2023, 16, 1023–1036. [Google Scholar] [CrossRef] [PubMed]
- El-Sharkawy, M.; Noweir, M.H. Indoor air quality levels in a University Hospital in the Eastern Province of Saudi Arabia. J. Fam. Community Med. 2014, 21, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Ramaswamy, M.; Al-Jahwari, F.; Al-Rajhi, S.M.M. IAQ in Hospitals-Better Health through Indoor Air Quality Awareness. In Proceedings of the Tenth International Conference Enhanced Building Operations, Kuwait, Kuwait, 26–28 October 2010. [Google Scholar]
- Muimba-Kankolongo, A.; Nkulu, C.B.L.; Mwitwa, J.; Kampemba, F.M.; Nabuyanda, M.M. Impacts of Trace Metals Pollution of Water, Food Crops, and Ambient Air on Population Health in Zambia and the DR Congo. J. Environ. Public Health 2022, 2022, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Mwaanga, P.; Silondwa, M.; Kasali, G.; Banda, P.M. Preliminary review of mine air pollution in Zambia. Heliyon 2019, 5, e02485. [Google Scholar] [CrossRef] [PubMed]
- Banza, C.L.N.; Nawrot, T.S.; Haufroid, V.; Decrée, S.; De Putter, T.; Smolders, E.; Kabyla, B.I.; Luboya, O.N.; Ilunga, A.N.; Mutombo, A.M.; et al. High human exposure to cobalt and other metals in Katanga, a mining area of the Democratic Republic of Congo. Environ. Res. 2009, 109, 745–752. [Google Scholar] [CrossRef] [PubMed]
- Smolders, E.; Roels, L.; Kuhangana, T.C.; Coorevits, K.; Vassilieva, E.; Nemery, B.; Nkulu, C.B.L. Unprecedentedly High Dust Ingestion Estimates for the General Population in a Mining District of DR Congo. Environ. Sci. Technol. 2019, 53, 7851–7858. [Google Scholar] [CrossRef] [PubMed]
- Bosch Sensortec. BME680 Low Power Gas, Pressure, Temperature & Humidity Sensor [Datasheet]; Bosch Sensortec: Reutlingen, Germany, 2017. [Google Scholar]
- Manuel, G.d.S. Assessing and Communicating Indoor Environmental Quality; REHVA: Ixelles, Belgium, 2019. [Google Scholar]
- EN 16798-1; Energy Performance of Buildings-Part 1: Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Building Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics-Module M1-6. European Standards Organizations: Brussels, Belgium, 2019. Available online: http://drafts.bsigroup.com/ (accessed on 14 April 2023).
- ISO 7730; Ergonomics of the Thermal Environment: Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria. ISO: Geneva, Switzerland, 2005.
- ASTM D6245-18; Standard Guide for Using Indoor Carbon Dioxide Concentrations to Evaluate Indoor Air Quality and Ventilation. American Society for Testing and Materials ASTM: Filadelfia, PA, USA, 2018.
- Carlos, M. Spreadsheets for the Calculation of Thermal Comfort Indices PMV and PPD. 2015. Available online: https://www.researchgate.net/publication/255971260_SPREADSHEETS_FOR_THE_CALCULATION_OF_THERMAL_COMFORT_INDICES_PMV_AND_PPD (accessed on 25 October 2023).
- WHO. Particulate Matter (PM 2.5 and PM 10 Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; WHO: Geneva, Switzerland, 2021.
- Bessonneau, V.; Mosqueron, L.; Berrubé, A.; Mukensturm, G.; Buffet-Bataillon, S.; Gangneux, J.-P.; Thomas, O. VOC Contamination in Hospital, from Stationary Sampling of a Large Panel of Compounds, in View of Healthcare Workers and Patients Exposure Assessment. PLoS ONE 2013, 8, e55535. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zhao, B.; Li, X.; Yang, X.; Zhang, Z.; Zhang, Y. Investigating a safe ventilation rate for the prevention of indoor SARS transmission: An attempt based on a simulation approach. Build. Simul. 2009, 2, 281–289. [Google Scholar] [CrossRef]
- Baurès, E.; Blanchard, O.; Mercier, F.; Surget, E.; le Cann, P.; Rivier, A.; Gangneux, J.-P.; Florentin, A. Indoor air quality in two French hospitals: Measurement of chemical and microbiological contaminants. Sci. Total Environ. 2018, 642, 168–179. [Google Scholar] [CrossRef]
- EN 13779; Ventilation for Non-Residential Buildings-Performance Requirements for Ventilation and Room-Conditioning Systems. European Standards Organizations: Brussels, Belgium, 2007.
- Lu, Y.; Li, Y.; Zhou, H.; Lin, J.; Zheng, Z.; Xu, H.; Lin, B.; Lin, M.; Liu, L. Affordable measures to monitor and alarm nosocomial SARS-CoV-2 infection due to poor ventilation. Indoor Air 2021, 31, 1833–1842. [Google Scholar] [CrossRef]
- Montazami, A.; Korsavi, S.; Howell, G. Occupants’ Satisfaction in BREEAM Excellent Certified Buildings. 2020. Available online: https://hdl.handle.net/10026.1/18020 (accessed on 13 April 2024).
- Nyembwe, J.-P.K.B.; M’zimbes, S.C.; Simões, N.A.V.; Da Silva, M.G. Evaluation of Indoor Air and Natural Ventilation Complexity in Hospital Wards in the Democratic Republic of Congo (DRC). In Proceedings of the 17th RoomVent International Conference, Stockholm, Sweden, 22–25 April 2024. [Google Scholar]
- Campagnolo, D.; Saraga, D.E.; Cattaneo, A.; Spinazzè, A.; Mandin, C.; Mabilia, R.; Perreca, E.; Sakellaris, I.; Canha, N.; Mihucz, V.G.; et al. VOCs and aldehydes source identification in European office buildings—The OFFICAIR study. Build. Environ. 2017, 115, 18–24. [Google Scholar] [CrossRef]
- Dallongeville, A.; Costet, N.; Zmirou-Navier, D.; Le Bot, B.; Chevrier, C.; Deguen, S.; Annesi-Maesano, I.; Blanchard, O. Volatile and semi-volatile organic compounds of respiratory health relevance in French dwellings. Indoor Air 2015, 26, 426–438. [Google Scholar] [CrossRef] [PubMed]
- Benabed, A.; Limam, K. Resuspension of Indoor Particles Due to Human Foot Motion. Energy Procedia 2017, 139, 242–247. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, S.; Feng, G.; Su, H.; Zhu, F.; Ren, M.; Cai, Z. Indoor airborne particle sources and outdoor haze days effect in urban office areas in Guangzhou. Environ. Res. 2017, 154, 60–65. [Google Scholar] [CrossRef]
- ASHRAE 62.1-2006; Ventilation for Acceptable Indoor Air Quality. ASHRAE: Peachtree Corners, Georgia, 2010.
- Qian, H.; Li, Y.; Seto, W.; Ching, P.; Ching, W.; Sun, H. Natural ventilation for reducing airborne infection in hospitals. Build. Environ. 2009, 45, 559–565. [Google Scholar] [CrossRef]
- Brundage, J.F.; Scott, R.M.; Lednar, W.M.; Smith, D.W.; Miller, R.N. Building-Associated Risk of Febrile Acute Respiratory Diseases in Army Trainees. JAMA 1988, 259, 2108–2112. [Google Scholar] [CrossRef]
- MacIntyre, C.R.; Chughtai, A.A.; Seale, H.; Richards, G.A.; Davidson, P.M. Respiratory protection for healthcare workers treating Ebola virus disease (EVD): Are facemasks sufficient to meet occupational health and safety obligations? Int. J. Nurs. Stud. 2014, 51, 1421–1426. [Google Scholar] [CrossRef]
- WHO. WHO Guidelines on Hand Hygiene in Health Care; WHO Press: Geneva, Switzerland, 2009. Available online: https://www.who.int/publications/i/item/9789241597906 (accessed on 17 January 2023).
IAQ Index Range | Air Quality Level | EN 16798-1 Approximate IEQ Category |
---|---|---|
0–50 | Good | IEQ I (High Quality) |
51–100 | Average | IEQ II (Moderate Quality) |
101–150 | Little Bad | IEQ III (Moderate to Low Quality) |
151–200 | Bad | IEQ III (Moderate to Low Quality) |
201–300 | Worse | IEQ IV (Low Quality) |
301–500 | Very Bad | Below IEQ IV (Poor Quality) |
Equipment | Calibration | Resolution and Settings | Device Range |
---|---|---|---|
IEQ multiprobe | Coverage factor (2), Probability (95%), T (±0.2 °C), CO2 (±35 ppm), RH (±1%) | Probe, Sampling interval (5 s), Data logging via USB connection to a computer | CO2 (ppm), Operative temperature (°C), RH, Pa, VOCs, Illuminance |
Trotec PC220 | 1 μg/m3 | PM2.5/PM10, 0 to 2000 μg/m3 |
GCM | JSH | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
T (°C) | RH (%) | CO2 (ppm) | VOC Index | PM2.5 µg/m3 | T (°C) | RH (%) | CO2 (ppm) | VOC Index | PM2.5 µg/m3 | Season |
28.3 | 53.2 | 1821 | 219 | 183 | 27.4 | 59.6 | 1993 | 215 | 143 | Rainy |
28.0 | 47.6 | 1733 | 208 | 183 | 26.8 | 58.8 | 1655 | 219 | 142 | Rainy |
28.4 | 50.8 | 1732 | 214 | 186 | 27.2 | 65.7 | 1767 | 202 | 149 | Rainy |
28.7 | 59.2 | 1880 | 232 | 186 | 27.3 | 61.0 | 1440 | 213 | 148 | Rainy |
27.7 | 46.1 | 1738 | 205 | 223 | 24.9 | 55.9 | 1437 | 228 | 141 | Rainy |
18.9 | 60.5 | 3173 | 162 | 243 | 20.9 | 53.5 | 2569 | 147 | 192 | Dry |
18.7 | 63.6 | 3105 | 168 | 241 | 20.5 | 52.9 | 2543 | 146 | 228 | Dry |
18.8 | 62.4 | 2920 | 166 | 213 | 20.7 | 54.3 | 2733 | 149 | 201 | Dry |
19.0 | 59.9 | 2614 | 161 | 240 | 21.3 | 52.5 | 2687 | 145 | 191 | Dry |
19.0 | 60.4 | 2456 | 162 | 284 | 19.8 | 51.2 | 2629 | 143 | 164 | Dry |
JSH | GCMH | |||
---|---|---|---|---|
Parameter | F-Statistic | p-Value | F-Statistic | p-Value |
T | 37.856 | 0.000271 | 2637.95 | <0.00001 |
RH | 8.466 | 0.014127 | 17.05 | 0.0033 |
CO2 | 50.088 | 0.000122 | 57.08 | 0.000066 |
VOC | 63.410 | 0.000062 | 110.55 | 0.000006 |
PM2.5 | 5.946 | 0.031402 | 14.09 | 0.0056 |
Hospital | No. of Beds | Volume (m3) | Ventilation Rate (m3/h) | Air Change (ACH.) |
---|---|---|---|---|
JSH | 47 | 750 | 239.14 | 0.32 |
GCMH | 31 | 500 | 201.23 | 0.40 |
Component | Strategy Description | Implementation Details | Expected Outcome |
---|---|---|---|
Air Filtration and Purification | Integrate technologies to reduce PM2.5 VOCs. | Use HEPA, activated carbon filters, and standalone purifiers. | Improved IAQ and reduced respiratory symptoms. |
Natural Ventilation Enhancement | Improve the efficiency of natural airflow. | Optimize window designs for cross-ventilation. | Increased natural air exchange and improved air quality. |
Mechanical Ventilation | Implement balanced supply and exhaust systems. | Install ductwork for air supply/exhaust; use energy recovery ventilators. | Lowered CO2; enhanced IAQ control. |
Occupancy Reduction | Limit ICU occupancy to reduce air pollutant generation. | Implement space management and scheduling protocols. | Decreased infection spread, CO2, and PM. |
IAQ Monitoring | Install systems for real-time air quality tracking. | Deploy IoT-enabled sensors for continuous data. | Early detection and mitigation of IAQ issues. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nyembwe, J.-P.K.B.; Munanga, J.K.; Simões, N.; da Silva, M.G. Ventilation Strategies to Mitigate Air Pollution Impact on Hospital Professionals in Intensive Care Units in the Democratic Republic of Congo. Buildings 2024, 14, 1996. https://doi.org/10.3390/buildings14071996
Nyembwe J-PKB, Munanga JK, Simões N, da Silva MG. Ventilation Strategies to Mitigate Air Pollution Impact on Hospital Professionals in Intensive Care Units in the Democratic Republic of Congo. Buildings. 2024; 14(7):1996. https://doi.org/10.3390/buildings14071996
Chicago/Turabian StyleNyembwe, Jean-Paul Kapuya Bulaba, Joel Kwaleso Munanga, Nuno Simões, and Manuel Gameiro da Silva. 2024. "Ventilation Strategies to Mitigate Air Pollution Impact on Hospital Professionals in Intensive Care Units in the Democratic Republic of Congo" Buildings 14, no. 7: 1996. https://doi.org/10.3390/buildings14071996
APA StyleNyembwe, J. -P. K. B., Munanga, J. K., Simões, N., & da Silva, M. G. (2024). Ventilation Strategies to Mitigate Air Pollution Impact on Hospital Professionals in Intensive Care Units in the Democratic Republic of Congo. Buildings, 14(7), 1996. https://doi.org/10.3390/buildings14071996