Systematic Review of Factors Influencing Students’ Performance in Educational Buildings: Focus on LCA, IoT, and BIM
Abstract
:1. Introduction
Reference | Investigated Parameter | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
RT | LI | IAQ | T | CO2 | ST | S-TAP | CP | A | AV | RH | |
Brink et al. (2023) [49] | + | + | + | − | + | + | + | + | − | − | − |
Choi et al. (2014) [50] | − | + | + | + | − | − | + | + | − | − | − |
Brink et al. (2021) [51] | − | + | + | + | + | + | + | + | + | − | − |
Kim et al. (2012) [52] | − | + | + | + | − | − | − | − | + | − | − |
Xiong et al. (2018) [53] | − | + | − | + | − | + | − | + | + | − | − |
Calderón-Garcidueñas et al. (2008) [54] | − | − | − | − | − | − | − | + | − | − | − |
Gardin et al. (2023) [55] | − | − | − | − | − | − | − | + | − | − | − |
Duque et al. (2022) [56] | − | − | − | − | − | − | − | + | − | − | − |
Kabirikopaei et al. (2021) [57] | − | − | + | + | + | − | − | + | − | + | + |
Gaihre et al. (2014) [13] | − | − | − | + | + | − | − | + | − | − | + |
Kielb et al. (2015) [14] | − | − | + | − | − | − | − | − | − | − | − |
Mendell et al. (2005) [15] | − | − | + | + | + | + | − | + | − | − | + |
Shendell et al. (2004) [16] | − | − | + | + | + | − | − | − | − | − | − |
Wargocki et al. (2017) [17] | − | − | + | + | + | + | − | + | − | + | − |
Requia et al. (2022) [58] | − | − | − | − | − | − | − | + | − | − | − |
Guo et al. (2010) [59] | − | − | + | + | − | − | − | − | − | − | + |
Richmond-Bryant et al. (2009) [60] | − | − | - | + | − | − | − | − | − | + | + |
Rivas et al. (2014) [61] | − | − | + | − | − | − | − | − | − | − | − |
Martínez-Lazcano et al. (2013) [62] | − | − | − | − | − | − | − | + | − | − | − |
Forns et al. (2017) [63] | − | − | − | − | − | + | − | + | − | − | − |
Benka-Coker et al. (2021) [64] | + | + | + | + | + | + | − | + | − | − | + |
Choi et al. (2022) [65] | − | - | + | - | + | + | − | + | − | − | + |
Wang et al. (2020) [2] | − | + | − | + | − | + | − | + | + | + | + |
Shan et al. (2018) [38] | − | − | + | + | + | + | + | − | − | + | + |
Ryan et al. (2022) [66] | − | − | − | + | − | − | − | − | − | − | + |
2. Materials and Methods
3. Results
3.1. Life Cycle Assessment (LCA)
3.2. Building Information Modeling (BIM)
3.3. Internet of Things (IoT)
3.4. Digital Twins (DTs)
4. Discussion
4.1. Indoor Environment Factors
4.2. New-Generation vs. Fundamental Articles
4.3. Interdisciplinary Research Findings
4.4. Focus on IAQ and Overlooked Aspects
4.5. Database Comparison and Article Selection
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Klepeis, N.E.; Nelson, W.C.; Ott, W.R.; Robinson, J.P.; Tsang, A.M.; Switzer, P.; Behar, J.V.; Hern, S.C.; Engelmann, W.H. The National Human Activity Pattern Survey (NHAPS): A resource for assessing exposure to environmental pollutants. J. Expo. Sci. Environ. Epidemiol. 2001, 11, 231–252. [Google Scholar] [CrossRef]
- Wang, D.; Song, C.; Wang, Y.; Xu, Y.; Liu, Y.; Liu, J. Experimental investigation of the potential influence of indoor air velocity on students’ learning performance in summer conditions. Energy Build. 2020, 219, 110015. [Google Scholar] [CrossRef]
- Currie, J.; Neidell, M.; Schmieder, J.F. Air pollution and infant health: Lessons from New Jersey. J. Health Econ. 2009, 28, 688–703. [Google Scholar] [CrossRef]
- Currie, J.; Reed, W. Traffic Congestion and Infant Health: Evidence from E-ZPass. Am. Econ. J. Appl. Econ. 2011, 3, 65–90. [Google Scholar] [CrossRef]
- Knittel, C.R.; Miller, D.L.; Sanders, N.J. Caution, drivers! children present: Traffic, pollution, and infant health. Rev. Econ. Stat. 2016, 98, 350–366. [Google Scholar] [CrossRef]
- Schlenker, W.; Walker, W.R. Airports, Air Pollution, and Contemporaneous Health. Rev. Econ. Stud. 2016, 83, 768–809. [Google Scholar] [CrossRef]
- Deryugina, T.; Heutel, G.; Miller, N.H.; Molitor, D.; Reif, J. The Mortality and Medical Costs of Air Pollution: Evidence from Changes in Wind Direction. Am. Econ. Rev. 2019, 109, 4178–4219. [Google Scholar] [CrossRef]
- Heft-Neal, S.; Burney, J.; Bendavid, E.; Voss, K.; Burke, M. Air Pollution and Infant Mortality: Evidence from Saharan Dust. Working Paper 26107, National Bureau of Economic Research. 2019. Available online: https://www.nber.org/papers/w26107 (accessed on 20 February 2024).
- Simeonova, E.; Currie, J.; Nilsson, P.; Walker, R. Congestion Pricing, Air Pollution, and Childrens Health. J. Hum. Resour. 2019, 56, 971–996. [Google Scholar] [CrossRef]
- Ebenstein, A.; Lavy, V.; Roth, S. The Long-Run Economic Consequences of High-Stakes Examinations: Evidence from Transitory Variation in Pollution. Am. Econ. J. Appl. Econ. 2016, 8, 36–65. [Google Scholar] [CrossRef]
- Persico, C.L.; Venator, J. The effects of local industrial pollution on students and schools. J. Hum. Resour. 2021, 56, 406–445. [Google Scholar] [CrossRef]
- Heissel, J.A.; Persico, C.; Simon, D. Does Pollution Drive Achievement? The Effect of Traffic Pollution on Academic Performance. J. Hum. Resour. 2022, 57, 747–776. [Google Scholar] [CrossRef]
- Gaihre, S.; Semple, S.; Miller, J.; Fielding, S.; Turner, S. Classroom Carbon Dioxide Concentration, School Attendance, and Educational Attainment. J. Sch. Health 2014, 84, 569–574. [Google Scholar] [CrossRef]
- Kielb, C.; Lin, S.; Muscatiello, N.; Hord, W.; Rogers-Harrington, J.; Healy, J. Building-related health symptoms and classroom indoor air quality: A survey of school teachers in New York State. Indoor Air 2015, 25, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Mendell, M.J.; Heath, G.A. Do indoor pollutants and thermal conditions in schools influence student performance? A critical review of the literature. Indoor Air 2005, 15, 27–52. [Google Scholar] [CrossRef] [PubMed]
- Shendell, D.; Prill, R.J.; Fisk, W.; Apte, M.; Blake, D.; Faulkner, D. Association between class room CO2 concentrations and student attendance in Washington and Idaho. Indoor Air 2004, 14, 333–341. [Google Scholar] [CrossRef]
- Wargocki, P.; Wyon, D.P. Ten questions concerning thermal and indoor air quality effects on the performance of office work and schoolwork. Build. Environ. 2017, 112, 359–366. [Google Scholar] [CrossRef]
- Fisk, W. The ventilation problem in schools: Literature review. Indoor Air 2017, 27, 1039–1051. [Google Scholar] [CrossRef]
- Madureira, J.; Paciência, I.; Pereira, C.; Teixeira, J.P.; de Oliveira Fernandes, E. Indoor air quality in Portuguese schools: Levels and sources of pollutants. Indoor Air 2015, 26, 526–537. [Google Scholar] [CrossRef] [PubMed]
- Deng, S.; Lau, J. Seasonal variations of indoor air quality and thermal conditions and their correlations in 220 classrooms in the Midwestern United States. Build. Environ. 2019, 157, 79–88. [Google Scholar] [CrossRef]
- Twardella, D.; Matzen, W.; Lahrz, T.; Burghardt, R.; Spegel, H.; Hendrowarsito, L.; Frenzel, A.; Fromme, H. Effect of classroom air quality on students’ concentration: Results of a cluster-randomized cross-over experimental study. Indoor Air 2012, 22, 378–387. [Google Scholar] [CrossRef]
- Durán-Narucki, V. School building condition, school attendance, and academic achievement in New York City public schools: A mediation model. J. Environ. Psychol. 2008, 28, 278–286. [Google Scholar] [CrossRef]
- Berman, J.D.; McCormack, M.C.; Koehler, K.A.; Connolly, F.; Clemons-Erby, D.; Davis, M.F.; Gummerson, C.; Leaf, P.J.; Jones, T.D.; Curriero, F.C. School environmental conditions and links to academic performance and absenteeism in urban, mid-Atlantic public schools. Int. J. Hyg. Environ. Health 2018, 221, 800–808. [Google Scholar] [CrossRef] [PubMed]
- Evans, G.W.; Yoo, M.J.; Sipple, J. The ecological context of student achievement: School building quality effects are exacerbated by high levels of student mobility. J. Environ. Psychol. 2010, 30, 239–244. [Google Scholar] [CrossRef]
- Crampton, F.E. Spending on school infrastructure: Does money matter? J. Educ. Adm. 2009, 47, 305–322. [Google Scholar] [CrossRef]
- Haverinen-Shaughnessy, U.; Shaughnessy, R.J.; Cole, E.C.; Toyinbo, O.; Moschandreas, D.J. An assessment of indoor environmental quality in schools and its association with health and performance. Build. Environ. 2015, 93, 35–40. [Google Scholar] [CrossRef]
- Shaughnessy, R.; Haverinen-Shaughnessy, U.; Nevalainen, A.; Moschandreas, D. A preliminary study on the association between ventilation rates in classrooms and student performance. Indoor Air 2007, 16, 465–468. [Google Scholar] [CrossRef] [PubMed]
- Godwin, C.; Batterman, S. Indoor air quality in Michigan schools. Indoor Air 2007, 17, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Mendell, M.; Ekaterina, E.; Davies, M.; Spears, M.; Lobscheid, A.; Fisk, W.; Apte, M. Association of Classroom Ventilation with Reduced Illness Absence: A Prospective Study in California Elementary Schools. Indoor Air 2013, 23, 515–528. [Google Scholar] [CrossRef] [PubMed]
- Daisey, J.M.; Angell, W.J.; Apte, M.G. Indoor air quality, ventilation and health symptoms in schools: An analysis of existing information. Indoor Air 2003, 13, 53–64. [Google Scholar] [CrossRef]
- Haverinen-Shaughnessy, U.; Shaughnessy, R. Effects of Classroom Ventilation Rate and Temperature on Students’ Test Scores. PLoS ONE 2015, 10, e0136165. [Google Scholar] [CrossRef]
- O’Neill, D.; Oates, A. The Impact of School Facilities on Student Achievement, Behavior, Attendance, and Teacher Turnover Rate in Central Texas Middle Schools. Educ. Facil. Plan. 2001, 36, 14–22. [Google Scholar]
- Simons, E.; Hwang, S.-A.; Fitzgerald, E.F.; Kielb, C.; Lin, S. The Impact of School Building Conditions on Student Absenteeism in Upstate New York. Am. J. Public Health 2010, 100, 1679–1686. [Google Scholar] [CrossRef] [PubMed]
- Toyinbo, O.; Shaughnessy, R.; Turunen, M.; Putus, T.; Metsämuuronen, J.; Kurnitski, J.; Haverinen-Shaughnessy, U. Building characteristics, indoor environmental quality, and mathematics achievement in Finnish elementary schools. Build. Environ. 2016, 104, 114–121. [Google Scholar] [CrossRef]
- Wargocki, P.; Wyon, D.P. Providing better thermal and air quality conditions in school classrooms would be cost-effective. Build. Environ. 2013, 59, 581–589. [Google Scholar] [CrossRef]
- Crosby, K.; Metzger, A.B. Powering Down: A Toolkit for Behavior-Based Energy Conservation in K-12 Schools; Technical Report; U.S. Green Building Council (USGBC): Washington, DC, USA, 2012. [Google Scholar]
- Economidou, M.; Atanasiu, B.; Despret, C.; Maio, J.; Nolte, I.; Rapf, O.; Laustsen, J.; Ruyssevelt, P.; Staniaszek, D.; Strong, D.; et al. Europe’s Buildings under the Microscope: A Country-by-Country Review of the Energy Performance of Buildings; Technical Report; Buildings Performance Institute Europe (BPIE): Brussels, Belgium, 2011; ISBN 9789491143014. [Google Scholar]
- Shan, X.; Melina, A.N.; Yang, E.-H. Impact of indoor environmental quality on students’ wellbeing and performance in educational building through life cycle costing perspective. J. Clean. Prod. 2018, 204, 298–309. [Google Scholar] [CrossRef]
- Reed, R.H. The heating and ventilation of the mansfield schools and churches: A Lecture delivered before the Mansfield Lyceum, February 13, 1889. J. Am. Med. Assoc. 1889, XII, 469–478. [Google Scholar] [CrossRef]
- Reed, R.H. Original articles. original investigations on the heating and ventilation of school buildings: Read in the Section of State Medicine, at the Forty-second Annual Meeting of the American Medical Association, at Washington, D.C.; May, 1891. J. Am. Med. Assoc. 1891, XVII, 389–396. [Google Scholar] [CrossRef]
- Wheatley, J. The ventilation of schools. Public Health 1894, 7, 373–374. [Google Scholar] [CrossRef]
- Rovira, C.; Codina, L.; Guerrero-Solé, F.; Lopezosa, C. Ranking by Relevance and Citation Counts, a Comparative Study: Google Scholar, Microsoft Academic, WoS and Scopus. Futur. Internet 2019, 11, 202. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Sustainability and the ROE. 2023. Available online: https://www.epa.gov/report-environment/sustainability-and-roe (accessed on 20 February 2024).
- Center for Green Schools. Leed certification for schools. 2023. Available online: https://centerforgreenschools.org/about/leed-certification-schools (accessed on 20 February 2024).
- The Collaborative for High Performance Schools (CHPS). 2021. Available online: https://chps.net/ (accessed on 20 February 2024).
- Bre Group. BREEAM—Education. 2022. Available online: https://bregroup.com/asset_type/breeam-education/ (accessed on 20 February 2024).
- Green building council Australia. Green Star—Education v1. 2008. Available online: https://www.gbca.org.au/uploads/226/1762/Factsheet_Educationv1.pdf (accessed on 20 February 2024).
- Kosasih, A. WELL v2 and Educational Spaces: Promoting Healthy Schools. 2018. Available online: https://resources.wellcertified.com/articles/well-v2-and-educational-spaces-promoting-healthy-schools/ (accessed on 20 February 2024).
- Brink, H.W.; Krijnen, W.P.; Loomans, M.G.L.C.; Mobach, M.P.; Kort, H.S.M. Positive effects of indoor environmental conditions on students and their performance in higher education classrooms: A between-groups experiment. Sci. Total Environ. 2023, 869, 161813. [Google Scholar] [CrossRef]
- Choi, H.-H.; van Merriënboer, J.J.G.; Paas, F. Effects of the Physical Environment on Cognitive Load and Learning: Towards a New Model of Cognitive Load. Educ. Psychol. Rev. 2014, 26, 225–244. [Google Scholar] [CrossRef]
- Brink, H.W.; Loomans, M.G.L.C.; Mobach, M.P.; Kort, H.S.M. Classrooms’ indoor environmental conditions affecting the academic achievement of students and teachers in higher education: A systematic literature review. Indoor Air 2021, 31, 405–425. [Google Scholar] [CrossRef]
- Kim, J.; de Dear, R. Nonlinear relationships between individual IEQ factors and overall workspace satisfaction. Build. Environ. 2012, 49, 33–40. [Google Scholar] [CrossRef]
- Xiong, L.; Huang, X.; Li, J.; Mao, P.; Wang, X.; Wang, R.; Tang, M. Impact of Indoor Physical Environment on Learning Efficiency in Different Types of Tasks: A 3 × 4 × 3 Full Factorial Design Analysis. Int. J. Environ. Res. Public Health 2018, 15, 1256. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Garcidueñas, L.; Mora-Tiscareño, A.; Ontiveros, E.; Gómez-Garza, G.; Barragán-Mejía, G.; Broadway, J.; Chapman, S.; Valencia-Salazar, G.; Jewells, V.; Maronpot, R.R.; et al. Air polldogs. Brain Cogn. 2008, 68, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Gardin, T.N.; Requia, W.J. Air quality and individual-level academic performance in Brazil: A nationwide study of more than 15 million students between 2000 and 2020. Environ. Res. 2023, 226, 115689. [Google Scholar] [CrossRef] [PubMed]
- Duque, V.; Gilraine, M. Coal use, air pollution, and student performance. J. Public Econ. 2022, 213, 104712. [Google Scholar] [CrossRef]
- Kabirikopaei, A.; Lau, J.; Nord, J.; Bovaird, J. Identifying the K-12 classrooms’ indoor air quality factors that affect student academic performance. Sci. Total Environ. 2021, 786, 147498. [Google Scholar] [CrossRef]
- Requia, W.J.; Saenger, C.C.; Cicerelli, R.E.; Monteiro de Abreu, L.; Cruvinel, V.R.N. Air quality around schools and school-level academic performance in Brazil. Atmos. Environ. 2022, 279, 119125. [Google Scholar] [CrossRef]
- Guo, H.; Morawska, L.; He, C.; Zhang, Y.L.; Ayoko, G.; Cao, M. Characterization of particle number concentrations and PM2.5 in a school: Influence of outdoor air pollution on indoor air. Environ. Sci. Pollut. Res. 2010, 17, 1268–1278. [Google Scholar] [CrossRef]
- Richmond-Bryant, J.; Saganich, C.; Bukiewicz, L.; Kalin, R. Associations of PM2.5 and black carbon concentrations with traffic, idling, background pollution, and meteorology during school dismissals. Sci. Total Environ. 2009, 407, 3357–3364. [Google Scholar] [CrossRef] [PubMed]
- Rivas, I.; Viana, M.; Moreno, T.; Pandolfi, M.; Amato, F.; Reche, C.; Bouso, L.; Àlvarez-Pedrerol, M.; Alastuey, A.; Sunyer, J.; et al. Child exposure to indoor and outdoor air pollutants in schools in Barcelona, Spain. Environ. Int. 2014, 69, 200–212. [Google Scholar] [CrossRef]
- Martínez-Lazcano, J.; González Guevara, E.; Rubio, C.; Franco-Pérez, J.; Custodio, V.; Hernández-Cerón, M.; CARLOS, L.; Paz, C. The effects of ozone exposure and associated injury mechanisms on the central nervous system. Rev. Neurosci. 2013, 24, 337–352. [Google Scholar] [CrossRef] [PubMed]
- Forns, J.; Dadvand, P.; Esnaola, M.; Alvarez-Pedrerol, M.; López-Vicente, M.; Garcia-Esteban, R.; Cirach, M.; Basagaña, X.; Guxens, M.; Sunyer, J. Longitudinal association between air pollution exposure at school and cognitive development in school children over a period of 3.5 years. Environ. Res. 2017, 159, 416–421. [Google Scholar] [CrossRef]
- Benka-Coker, W.; Young, B.; Oliver, S.; Schaeffer, J.W.; Manning, D.; Suter, J.; Cross, J.; Magzamen, S. Sociodemographic variations in the association between indoor environmental quality in school buildings and student performance. Build. Environ. 2021, 206, 108390. [Google Scholar] [CrossRef]
- Choi, N.; Yamanaka, T.; Takemura, A.; Kobayashi, T.; Eto, A.; Hirano, M. Impact of indoor aroma on students’ mood and learning performance. Build. Environ. 2022, 223, 109490. [Google Scholar] [CrossRef]
- Ryan, I.; Deng, X.; Thurston, G.; Khwaja, H.; Romeiko, X.; Zhang, W.; Marks, T.; Yu, F.; Lin, S. Measuring students’ exposure to temperature and relative humidity in various indoor environments and across seasons using personal air monitors. Hyg. Environ. Health Adv. 2022, 4, 100029. [Google Scholar] [CrossRef]
- Evidence for Policy and Practice Information and Co-ordinating Centre (EPPI-Centre). EPPI-Centre Methods for Conducting Systematic Reviews; EPPI-Centre, Social Science Research Unit, Institute of Education, University of London: London, UK, 2007. [Google Scholar]
- Harden, A.; Thomas, J. Methodological Issues in Combining Diverse Study Types in Systematic Reviews. Int. J. Soc. Res. Methodol. 2005, 8, 257–271. [Google Scholar] [CrossRef]
- Lamé, G. Systematic Literature Reviews: An Introduction. In Proceedings of the Design Society: International Conference on Engineering Design, Delft, The Netherlands, 5–8 August 2019; Volume 1. [Google Scholar] [CrossRef]
- MacLure, M. ‘Clarity bordering on stupidity’: Where’s the quality in systematic review? J. Educ. Policy 2005, 20, 393–416. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Green, S. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions; The Cochrane Collaboration: London, UK, 2009. [Google Scholar]
- Chadegani, A.A.; Salehi, H.; Yunus, M.M.; Farhadi, H.; Fooladi, M.; Farhadi, M.; Ebrahim, N.A. A Comparison between Two Main Academic Literature Collections: Web of Science and Scopus Databases. Asian Soc. Sci. 2013, 9, 18–26. [Google Scholar] [CrossRef]
- Chen, C.; Hu, Z.; Liu, S.; Tseng, H. Emerging trends in regenerative medicine: A scientometric analysis in CiteSpace. Expert Opin. Biol. Ther. 2012, 12, 593–608. [Google Scholar] [CrossRef] [PubMed]
- Chen, C. Searching for intellectual turning points: Progressive knowledge domain visualization. Proc. Natl. Acad. Sci. USA 2004, 101 (Suppl. S1), 5303–5310. [Google Scholar] [CrossRef] [PubMed]
- Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef]
- Chen, C.; Song, M. Visualizing a Field of Research: A Methodology of Systematic Scientometric Reviews. PLoS ONE 2019, 14, e0223994. [Google Scholar] [CrossRef]
- Chen, C. A Glimpse of the First Eight Months of the COVID-19 Literature on Microsoft Academic Graph: Themes, Citation Contexts, and Uncertainties. Front. Res. Metr. Anal. 2020, 5, 607286. [Google Scholar] [CrossRef]
- Alshamrani, O.S.; Galal, K.; Alkass, S. Integrated LCA–LEED sustainability assessment model for structure and envelope systems of school buildings. Build. Environ. 2014, 80, 61–70. [Google Scholar] [CrossRef]
- Ji, C.; Hong, T.; Jeong, J.; Kim, J.; Lee, M.; Jeong, K. Establishing environmental benchmarks to determine the environmental performance of elementary school buildings using LCA. Energy Build. 2016, 127, 818–829. [Google Scholar] [CrossRef]
- Brás, A.; Gomes, V. LCA implementation in the selection of thermal enhanced mortars for energetic rehabilitation of school buil ings. Energy Build. 2015, 92, 1–9. [Google Scholar] [CrossRef]
- Pachta, V.; Giourou, V. Comparative Life Cycle Assessment of a Historic and a Modern School Building, Located in the City of Naoussa, Greece. Sustainability 2022, 14, 4216. [Google Scholar] [CrossRef]
- Gamarra, A.R.; Herrera, I.; Lechón, Y. Assessing sustainability performance in the educational sector. A High Sch. Case Study. Sci. Total Environ. 2019, 692, 465–478. [Google Scholar] [CrossRef]
- Gamarra, A.R.; Istrate, I.R.; Herrera, I.; Lago, C.; Lizana, J.; Lechon, Y. Energy and water consumption and carbon footprint of school buildings in hot climate conditions. Results Life Cycle Assess. J. Clean. Prod. 2018, 195, 1326–1337. [Google Scholar] [CrossRef]
- Munoz, P.; Morales, P.; Letelier, V.; Munoz, L.; Morad, D. Implications of Life Cycle Energy Assessment of a new school building, regarding the nearly Zero Energy Buildings targets in EU: A case OF study. Sustain. Cities Soc. 2017, 32, 142–152. [Google Scholar] [CrossRef]
- Su, S.; Zhu, C.; Li, X. A dynamic weighting system considering temporal variations using the DTT approach in LCA of buildings. J. Clean. Prod. 2019, 220, 398–407. [Google Scholar] [CrossRef]
- Li, X.; Su, S.; Zhang, Z.; Kong, X. An integrated environmental and health performance quantification model for pre-occupancy phase of buildings in China. Environ. Impact Assess. Rev. 2017, 63, 1–11. [Google Scholar] [CrossRef]
- Su, S.; Wang, Q.; Han, L.; Hong, J.; Liu, Z. BIM-DLCA: An integrated dynamic environmental impact assessment model for buildings. Build. Environ. 2020, 183, 107218. [Google Scholar] [CrossRef]
- Su, S.; Zhang, H.; Zuo, J. Assessment models and dynamic variables for dynamic life cycle assessment of buildings: A review. Environ. Sci. Pollut. Res. 2021, 28, 26199–26214. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Yu, J.; Jeong, D. BIM acceptance model in construction organizations. J. Manag. Eng. 2015, 31, 04014048. [Google Scholar] [CrossRef]
- Gheisari, M.; Irizarry, J. Investigating human and technological requirements for successful implementation of a BIM-based mobile augmented reality environment in facility management practices. Facilities 2016, 34, 69–84. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Wang, J.; Yung, P.; Jun, G. Engagement of facilities management in design stage through BIM: Framework and a case study. Adv. Civ. Eng. 2013, 2013, 189105. [Google Scholar] [CrossRef]
- Liu, Y.; van Nederveen, S.; Wu, C.; Hertogh, M. Sustainable infrastructure design framework through integration of rating systems and building information modeling. Adv. Civ. Eng. 2018, 2018, 8183536. [Google Scholar] [CrossRef]
- Zhang, J.; Issa, R. Collecting fire evacuation performance data using BIM-based immersive serious games for performance-based fire safety design. In Proceedings of the 2015 International Workshop on Computing in Civil Engineering, Austin, TX, USA, 21–23 June 2015; pp. 612–619. [Google Scholar]
- Vaughan, E. “Elementary School”, Whole Building Design Guide; National Institute of Building Sciences: Washington, DC, USA, 2017; Available online: https://www.wbdg.org/buildingtypes/education-facilities/elementary-school (accessed on 20 February 2024).
- Eastman, C.; Teicholz, P.; Sacks, R.; Liston, K. BIM Handbook: A Guide to Building Information Modeling for Owners, Managers, Designers, Engineers, and Contractors, 2nd ed.; John Wiley and Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Bynum, P.; Issa, R.R.A.; Olbina, S. Building information modeling in support of sustainable design and construction. J. Constr. Eng. Manag. 2013, 139, 24–34. [Google Scholar] [CrossRef]
- Lee, K.; Choo, S. A hierarchy of architectural design elements for energy saving of tower buildings in Korea using green BIM simulation. Adv. Civ. Eng. 2018, 2018, 7139196. [Google Scholar] [CrossRef]
- Zhuang, D.; Zhang, X.; Lu, Y.; Wang, C.; Jin, X.; Zhou, X.; Shi, X. A performance data integrated BIM framework for building life-cycle energy efficiency and environmental optimization design. Autom. Constr. 2021, 127, 103712. [Google Scholar] [CrossRef]
- Neasden Primary School. Application of BIM in Energy Management of Individual Departments Occupying University Facilities; Neasden Primary School: Hull, UK, 2019; Available online: https://neasdenprimary.org.uk/school-new-build/ (accessed on 20 February 2024).
- Konings, K.D.; Bovill, C.; Woolner, P. Towards an interdisciplinary model of practice for participatory building design in education. Eur. J. Educ. 2017, 52, 306–317. [Google Scholar] [CrossRef]
- Van Merrienboer, J.J.G.; McKenney, S.; Cullinan, D.; Heuer, J. Aligning pedagogy with physical learning spaces. Eur. J. Educ. 2017, 52, 253–267. [Google Scholar] [CrossRef]
- Succar, B. Building information modelling framework: A research and delivery foundation for industry stakeholders. Autom. Constr. 2009, 18, 357–375. [Google Scholar] [CrossRef]
- Volk, R.; Stengel, J.; Schultmann, F. Building Information Modeling (BIM) for existing buildings—Literature review and future needs. Autom. Constr. 2014, 38, 109–127. [Google Scholar] [CrossRef]
- Azhar, S. Building Information Modeling (BIM): Trends, Benefits, Risks, and Challenges for the AEC Industry. Leadersh. Manag. Eng. 2011, 11, 241–252. [Google Scholar] [CrossRef]
- Gaur, A.; Scotney, B.; Parr, G.; McClean, S. Smart City Architecture and its Applications Based on IoT. Procedia Comput. Sci. 2015, 52, 1089–1094. [Google Scholar] [CrossRef]
- Sethi, P.; Sarangi, S.R. Internet of Things: Architectures, Protocols, and Applications. J. Electr. Comput. Eng. 2017, 2017, 1–25. [Google Scholar] [CrossRef]
- Li, S.; Xu, L.D.; Zhao, S. The internet of things: A survey. Inf. Syst. Front. 2015, 17, 243–259. [Google Scholar] [CrossRef]
- Amaxilatis, D.; Akrivopoulos, O.; Mylonas, G.; Chatzigiannakis, I. An IoT-Based Solution for Monitoring a Fleet of Educational Buildings Focusing on Energy Efficiency. Sensors 2017, 17, 2296. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.; Weng, Z.; Schiano-Phan, R.; Scott, D.; Lau, B. Application of IoT and BEMS to Visualise the Environmental Performance of an Educational Building. Energies 2020, 13, 4009. [Google Scholar] [CrossRef]
- Martínez, I.; Zalba, B.; Trillo-Lado, R.; Blanco, T.; Cambra, D.; Casas, R. Internet of Things (IoT) as Sustainable Development Goals (SDG) Enabling Technology towards Smart Readiness Indicators (SRI) for University Buildings. Sustainability 2021, 13, 7647. [Google Scholar] [CrossRef]
- Kamel, S.; Jamal, A.; Omri, K.; Khyyat, M. An IoT-based Fire Safety Management System for Educational Buildings: A Case Study. Int. J. Adv. Comput. Sci. Appl. 2022, 13, 765–771. [Google Scholar] [CrossRef]
- Paganelli, F.; Mylonas, G.; Cuffaro, G.; Nesi, I. Experiences from Using Gamification and IoT-Based Educational Tools in High Schools Towards Energy Savings. In Ambient Intelligence. AmI 2019; Lecture Notes in Computer Science; Chatzigiannakis, I., De Ruyter, B., Mavrommati, I., Eds.; Springer: Cham, Switzerland, 2019; Volume 11912. [Google Scholar] [CrossRef]
- Mylonas, G.; Amaxilatis, D.; Chatzigiannakis, I.; Paganelli, A.A.F. Enabling Sustainability and Energy Awareness in Schools Based on IoT and Real-World Data. IEEE Pervasive Comput. 2018, 17, 53–63. [Google Scholar] [CrossRef]
- Jia, M.; Komeily, A.; Wang, Y.; Srinivasan, R.S. Adopting Internet of Things for the development of smart buildings: A review of enabling technologies and applications. Autom. Constr. 2019, 101, 111–126. [Google Scholar] [CrossRef]
- Atzori, L.; Iera, A.; Morabito, G. The Internet of Things: A survey. Comput. Netw. 2010, 54, 2787–2805. [Google Scholar] [CrossRef]
- Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements, and future directions. Future Gener. Comput. Syst. 2013, 29, 1645–1660. [Google Scholar] [CrossRef]
- Hoda, I.; Elsayed, M.S.; Wael, S.M.; Abdou, H.M. Functional analysis as a method on sustainable building design: A case study in educational buildings implementing the triple bottom line. Alex. Eng. J. 2023, 62, 63–73. [Google Scholar] [CrossRef]
- Peng, C. Calculation of a building’s life cycle carbon emissions based on Ecotect and building information modeling. J. Clean. Prod. 2016, 112, 453–465. [Google Scholar] [CrossRef]
- Schwab, K. The Fourth Industrial Revolution; Penguin Books Limited: London, UK, 2017; Available online: https://books.google.lt/books?id=ST_FDAAAQBAJ (accessed on 20 June 2024).
P | Population; problem; source of information | What population? What is the database? What is the source of the information? | Population: School buildings Database: Scopus and WOS Sources: Review papers, field studies, research papers, and technical reports |
I | Intervention; factors | What interventions or factors are you interested in? | Differences between fundamental and new-generation topics in school buildings |
C | Comparison; circumstances; situation | What circumstances are you interested in? What will you compare it to? | Comparison of fundamental and new-generation topics in school buildings. |
O | Outcome; main point of interest | What do you expect to learn about? Dependent variable? Main focus? | To find out the differences and similarities between fundamental research topics and new-generation research topics. The main focus is parameters tested in schools and performance of students. |
Criterion Type | Inclusion Criteria | Exclusion Criteria |
---|---|---|
Research area | Related to the civil engineering | Not Related to the civil engineering (e.g., the arts or humanities). |
Topic | LCA, BIM, IoT, educational buildings | Not educational buildings (e.g., industrial, commercial, and residential buildings) |
Year of publication | 1800–2023 | Outside the set range |
Publication source | Peer-reviewed academic journals, technical reports | Other type of sources |
Language | English | Other languages |
Type of publication | Review papers, field studies, and research papers | Other types of publication |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vestfal, P.; Seduikyte, L. Systematic Review of Factors Influencing Students’ Performance in Educational Buildings: Focus on LCA, IoT, and BIM. Buildings 2024, 14, 2007. https://doi.org/10.3390/buildings14072007
Vestfal P, Seduikyte L. Systematic Review of Factors Influencing Students’ Performance in Educational Buildings: Focus on LCA, IoT, and BIM. Buildings. 2024; 14(7):2007. https://doi.org/10.3390/buildings14072007
Chicago/Turabian StyleVestfal, Paulius, and Lina Seduikyte. 2024. "Systematic Review of Factors Influencing Students’ Performance in Educational Buildings: Focus on LCA, IoT, and BIM" Buildings 14, no. 7: 2007. https://doi.org/10.3390/buildings14072007
APA StyleVestfal, P., & Seduikyte, L. (2024). Systematic Review of Factors Influencing Students’ Performance in Educational Buildings: Focus on LCA, IoT, and BIM. Buildings, 14(7), 2007. https://doi.org/10.3390/buildings14072007