Study on Seismic Behavior of Different Forms of Eccentrically Braced Steel Frames
Abstract
:1. Introduction
2. Structural Design Modeling
2.1. Results of Structural Design
2.2. Establishment of SAP2000 Finite Element Model
3. Pushover Analyses
3.1. Pushover Capacity Curve
3.2. Structural Deformation Results
3.3. Development of Plastic Hinge under Pushover Analysis
4. Response Analysis of Structural Ground Motion
4.1. Quantification of Structural Performance Index
4.2. Selection and Amplitude Modulation of Seismic Waves
4.3. Results of Structural Analysis
4.3.1. Structural Failure Form
4.3.2. Structural IDA Curve
4.3.3. Structural Vulnerability Curve
5. Seismic Loss Assessment of Structures
5.1. FEMA P-58 Performance-Based Seismic Evaluation Theory of Buildings
5.2. Analysis Results of Collapse Vulnerability and Structural Response
5.2.1. Analysis Results of Inter-Story Drift Angles
5.2.2. Analysis Results of Floor Peak Acceleration
5.3. Results of Earthquake Loss Assessment
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fujimoto, M.; Aoyagi, T.; Ukai, K.; Wada, A.; Saito, K. Structural characteristics of eccentric k-braced frames. Trans. Archit. Inst. Jpn. 1972, 195, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Roeder, C.; Popov, E.P. Eccentrically Braced Steel Frames for Earthquakes. J. Struct. Div. 1978, 104, 391–412. [Google Scholar] [CrossRef]
- Hjelmstad, K.; Popov, E.P. Characteristics of Eccentrically Braced Frames. J. Struct. Eng. 1984, 110, 340–353. [Google Scholar] [CrossRef]
- Tavakoli, H.R.; Afrapoli, M.M. Robustness analysis of steel structures with various lateral load resisting systems under the seismic progressive collapse. Eng. Fail. Anal. 2018, 83, 88–101. [Google Scholar] [CrossRef]
- Yu, A. Experimental study on seismic behavior of EK and Y-shaped braces. J. Xi’an Univ. Archit. Sci. Technol. (Nat. Sci. Ed.) 1990, 22, 253–260. [Google Scholar]
- Qian, J.; Chen, M.; Zhang, T. Experimental study and limit analysis of eccentrically braced steel frame under horizontal force. Build. Struct. 1993, 4, 3–9. [Google Scholar]
- Bosco, M.; Rossi, P.P. Seismic behaviour of eccentrically braced frames. Eng. Struct. 2009, 31, 664–674. [Google Scholar] [CrossRef]
- Wang, F.; Su, M.; Li, S.; Lian, M.; Zheng, X.; Tian, X.; Hong, M. Experimental study on seismic behavior of multi-story high-strength steel composite Y-shaped eccentrically braced steel frames. J. Civ. Eng. 2016, 49, 64–71. [Google Scholar]
- Tian, X.; Su, M.; Li, S.; Yang, S. Parameter analysis of seismic performance of high-strength steel composite K-shaped eccentrically braced frames (Ⅰ). J. Guangxi Univ. (Nat. Sci. Ed.) 2019, 44, 1542–1551. [Google Scholar]
- Tian, X.; Su, M.; Li, S.; Yang, S. Parameter analysis of seismic performance of high-strength steel composite K-shaped eccentrically braced frames (Ⅱ). J. Guangxi Univ. (Nat. Sci. Ed.) 2020, 45, 129–137. [Google Scholar]
- Li, S.; Wang, Z.; Tian, J.; Li, X. Study on structural influence coefficient and displacement magnification factor of high-strength steel composite K-shaped eccentrically braced structure. Prog. Build. Steel Struct. 2022, 24, 31–40. [Google Scholar]
- Özkılıç, Y.O.; Ün, E.M.; Topkaya, C. Frictional mid-spliced shear links for eccentrically braced frames. Earthq. Eng. Struct. Dyn. 2023, 52, 15. [Google Scholar] [CrossRef]
- Özkılıç, Y.O. Optimized stiffener detailing for shear links in eccentrically braced frames. Steel Compos. Struct. 2021, 39, 35–50. [Google Scholar]
- Özkılıç, Y.O.; Topkaya, C. Extended end-plate connections for replaceable shear links. Eng. Struct. 2021, 240, 112385. [Google Scholar] [CrossRef]
- Özkılıç, Y.O.; Bozkurt, M.B.; Topkaya, C. Mid-spliced end-plated replaceable links for eccentrically braced frames. Eng. Struct. 2021, 237, 112225. [Google Scholar] [CrossRef]
- Özkılıç, Y.O.; Zeybek, Ö.; Topkaya, C. Stability of laterally unsupported shear links in eccentrically braced frames. Earthq. Eng. Struct. Dyn. 2021, 51, 832–852. [Google Scholar] [CrossRef]
- GB 50011-2010; Code for Seismic Design of Buildings. China Construction Industry Press: Beijing, China, 2016.
- ICC-IBC-2006; International Building Code 2006. International Code Council INC: Country Club Hills, IL, USA, 2006.
- Aslani, H.; Miranda, E. Probabilistic Earthquake Loss Estimation and Loss Disaggregation in Buildings; Report No., 157; John A. Blume Earthquake Engineering Center, Stanford University: Stanford, CA, USA, 2005. [Google Scholar]
- Mitrani-Reiser, J. An Ounce of Prevention: Probabilistic Loss Estimation for Performance-Based Earthquake Engineering. Ph.D. Thesis, California Institute of Technology, Pasadena, CA, USA, 2007. [Google Scholar]
- Ye, S.; Zhai, G. A summary of research on earthquake economic loss assessment. Adv. Geogr. 2010, 29, 684–692. [Google Scholar]
- Zareian, F. Simplified Performance-Based Earthquake Engineering; Stanford University: Stanford, CA, USA, 2006. [Google Scholar]
- Ramirez, C.M.; Miranda, E. Building-Specific Loss Estimation Methods & Tools for Simplified Performance-Based Earthquake Engineering; Report No. 157; John A. Blume Earthquake Engineering Center, Stanford University: Stanford, CA, USA, 2009. [Google Scholar]
- Gobbo, G.D.; Williams, M.S.; Blakeborough, A. Seismic performance assessment of Eurocode 8-compliant concentric braced frame buildings using FEMA P-58. Eng. Struct. 2018, 155, 192–208. [Google Scholar] [CrossRef]
- Zeng, X.; Liu, S.; Xu, Z.; Lu, X. Case study of earthquake economic loss prediction of campus buildings based on FEMA-P58 method. Eng. Mech. 2016, 33 (Suppl. 1), 113–118. [Google Scholar]
- Zhu, H.; Liang, X.; Dang, Y. Study on a new generation of seismic performance evaluation method of frame-shear wall structure based on seismic strength. Vib. Shock 2017, 36, 140148. [Google Scholar]
- Yan, D. Seismic and Isolation Performance Evaluation of Reinforced Concrete Frame Structures Based on FEMA P58. Bachelor’s Thesis, Institute of Engineering Mechanics, China Seismological Bureau, Beijing, China, 2019. [Google Scholar]
- GB 50017-2017; Steel Structure Design Standard. China Construction Industry Press: Beijing, China, 2017.
- JGJ 99-2015; Technical Specification for Steel Structure of Tall Buildings. China Construction Industry Press: Beijing, China, 2015.
- GB 50009-2012; Code for Load of Building Structures. China Construction Industry Press: Beijing, China, 2012.
- Beijing Zhuxinda Engineering Consulting Co., Ltd. Chinese Version of SAP2000 Technical Guide and Engineering Application; Renjiaotong Publishing House Co., Ltd.: Beijing, China, 2018. [Google Scholar]
- American Society of Civil Engineers: Prestandard and Commentary for Seismic Rehabilitation of Buildings; Report No. FEMA 356; Federal Emergency Management Agency: Washington, DC, USA, 2002.
- FEMA P-58-1; Seismic Performance Assessment of Buildings: Volume 1—Methodology. Federal Emergency Management Agency: Washington, DC, USA, 2012.
- FEMA P-58-2; Seismic Performance Assessment of Buildings: Volume 2—Implementation Guide. Federal Emergency Management Agency: Washington, DC, USA, 2012.
- FEMA P-58-3; Seismic Performance Assessment of Buildings: Volume 3—Provided Fragility Data. Federal Emergency Management Agency: Washington, DC, USA, 2012.
- ATC-63; Quantification of Building Seismic Performance Factors, ATC-63 Project Report (90% Draft). FEMA P695/April 2008. Federal Emergency Management Agency: Washington, DC, USA, 2008.
- Demir, A.; Kayhan, A.H.; Palanci, M. Response- and probability-based evaluation of spectrally matched ground motion selection strategies for bi-directional dynamic analysis of low- to mid-rise RC buildings. Structures 2023, 58, 105533. [Google Scholar] [CrossRef]
- Demir, A.; Palanci, M.; Kayhan, A.H. Evaluation the effect of amplitude scaling of real ground motions on seismic demands accounting different structural characteristics and soil classes. Bull. Earthq. Eng. 2024, 22, 365–393. [Google Scholar] [CrossRef]
- Lu, D.; Liu, T.; Li, S.; Yu, X. Analysis of the influence of target spectrum and amplitude modulation method on ground motion selection. Earthq. Eng. Eng. Vib. 2018, 38, 21–28. [Google Scholar]
- Baker, J.W. Efficient analytical fragility function fitting using dynamic structural analysis. Earthq. Spectra 2015, 31, 579–599. [Google Scholar] [CrossRef]
Floor | Frame Column | Frame Beam | Energy Dissipation Beam Section | Braced | ρ = e/k |
---|---|---|---|---|---|
3 | 300 × 300 × 18 | H380 × 180 × 10 × 16 | H380 × 180 × 10 × 16 | H220 × 220 × 10 × 16 | 1.20 |
2 | 320 × 320 × 20 | H400 × 200 × 10 × 16 | H400 × 180 × 10 × 16 | H220 × 220 × 10 × 16 | 1.18 |
1 | 320 × 320 × 20 | H400 × 200 × 10 × 16 | H400 × 180 × 10 × 16 | H220 × 220 × 10 × 16 | 1.18 |
Floor | Frame Column | Frame Beam | Energy Dissipation Beam Section | Braced | ρ = e/k |
---|---|---|---|---|---|
5 | 300 × 300 × 18 | H400 × 180 × 10 × 16 | H400 × 180 × 10 × 16 | H220 × 220 × 8 × 12 | 1.18 |
4 | 300 × 300 × 18 | H400 × 180 × 10 × 16 | H400 × 180 × 10 × 16 | H220 × 220 × 8 × 12 | 1.18 |
3 | 400 × 400 × 20 | H470 × 200 × 10 × 16 | H420 × 180 × 10 × 16 | H250 × 250 × 10 × 16 | 1.17 |
2 | 400 × 400 × 20 | H470 × 200 × 10 × 16 | H470 × 180 × 10 × 16 | H250 × 250 × 10 × 16 | 1.06 |
1 | 400 × 400 × 20 | H470 × 200 × 10 × 16 | H470 × 180 × 10 × 16 | H250 × 250 × 10 × 16 | 1.06 |
Floor | Frame Column | Frame Beam | Energy Dissipation Beam Section | Braced | ρ = e/k |
---|---|---|---|---|---|
8 | 450 × 450 × 20 | H400 × 200 × 10 × 16 | H400 × 180 × 10 × 16 | H220 × 220 × 8 × 12 | 1.18 |
7 | 450 × 450 × 20 | H400 × 200 × 10 × 16 | H400 × 180 × 10 × 16 | H220 × 220 × 8 × 12 | 1.18 |
6 | 500 × 500 × 20 | H450 × 200 × 10 × 16 | H450 × 180 × 10 × 16 | H250 × 250 × 10 × 16 | 1.07 |
5 | 500 × 500 × 20 | H450 × 200 × 10 × 16 | H450 × 180 × 10 × 16 | H250 × 250 × 10 × 16 | 1.07 |
4 | 500 × 500 × 20 | H450 × 200 × 10 × 16 | H450 × 180 × 10 × 16 | H250 × 250 × 10 × 16 | 1.07 |
3 | 550 × 550 × 20 | H550 × 240 × 10 × 16 | H500 × 200 × 10 × 16 | H280 × 280 × 12 × 18 | 1.03 |
2 | 550 × 550 × 20 | H550 × 240 × 10 × 16 | H500 × 200 × 10 × 16 | H280 × 280 × 12 × 18 | 1.03 |
1 | 550 × 550 × 20 | H550 × 240 × 10 × 16 | H500 × 200 × 10 × 16 | H280 × 280 × 12 × 18 | 1.03 |
Mode No. | Period (s) | Angle | Translational Coefficient | Torsion Coefficient |
---|---|---|---|---|
1 | 0.4474 | 90.00 | 1.00 | 0.00 |
2 | 0.3491 | 0.00 | 1.00 | 0.00 |
3 | 0.2813 | 0.00 | 0.00 | 1.00 |
Mode No. | Period (s) | Angle | Translational Coefficient | Torsion Coefficient |
---|---|---|---|---|
1 | 0.6534 | 90.00 | 1.00 | 0.00 |
2 | 0.5122 | 0.00 | 1.00 | 0.00 |
3 | 0.4135 | 0.00 | 0.00 | 1.00 |
Mode No. | Period (s) | Angle | Translational Coefficient | Torsion Coefficient |
---|---|---|---|---|
1 | 0.7169 | 90.00 | 1.00 | 0.00 |
2 | 0.5751 | 0.00 | 1.00 | 0.00 |
3 | 0.4678 | 0.00 | 0.00 | 1.00 |
Mode No. | Period (s) | Angle | Translational Coefficient | Torsion Coefficient |
---|---|---|---|---|
1 | 0.6967 | 90.00 | 1.00 | 0.00 |
2 | 0.5546 | 0.00 | 1.00 | 0.00 |
3 | 0.4510 | 0.00 | 0.00 | 1.00 |
Mode No. | Period (s) | Angle | Translational Coefficient | Torsion Coefficient |
---|---|---|---|---|
1 | 1.0137 | 90.00 | 1.00 | 0.00 |
2 | 0.8086 | 0.00 | 1.00 | 0.00 |
3 | 0.6564 | 0.00 | 0.00 | 1.00 |
Earthquake Fortification Level | Frequent Earthquake (Minor Earthquake) | Basic Earthquake (Moderate Earthquake) | Rare Earthquake (Major Earthquake) | Extremely Rare Earthquake (Extreme Earthquake) |
---|---|---|---|---|
50-year exceedance probability | 63% | 10% | 2% | 0.1% |
return period | 50 | 475 | 2475 | 10,000 |
Performance Level | Intact | Slight Damage | Moderate Damage | Serious Damage |
---|---|---|---|---|
Limit regulation | 1/300 | 1/200 | 1/100 | 1/55 |
Performance Level | Normal Use | Immediate Use | Life Safety | Collapse Prevention |
---|---|---|---|---|
Demand | The structure and function of the building are perfect, and the deformation is far less than the elastic drift limit, so it can be used normally. | The structure and function of the building are basically intact, and the members may be slightly damaged, which can be used normally after repair, and the deformation is slightly larger than the limit of elastic drift. | There is slight plastic deformation, and the damage to non-structural components is in the range of ensuring personal safety. | If the building structure does not collapse, then it will be destroyed in an acceptable range. |
Limit value of quantitative index | 1/300 | 1/200 | 1/100 | 1/55 |
Serial Number | Earthquake Magnitude | Name | Year | PGA/g | dt/s |
---|---|---|---|---|---|
EQ1 | 6.6 | San_Fernando | 1971 | 0.17 | 0.01 |
EQ2 | 6.5 | Friuli-Italy-01 | 1976 | 0.35 | 0.005 |
EQ3 | 6.5 | Imperial_Valley-06 | 1979 | 0.36 | 0.005 |
EQ4 | 6.5 | Superstition_Hills-02 | 1987 | 0.45 | 0.01 |
EQ5 | 6.5 | Superstition_Hills-02 | 1987 | 0.30 | 0.01 |
EQ6 | 6.9 | Loma_Prieta | 1989 | 0.44 | 0.005 |
EQ7 | 6.9 | Loma_Prieta | 1989 | 0.37 | 0.005 |
EQ8 | 7.3 | Landers | 1992 | 0.24 | 0.02 |
EQ9 | 6.9 | Kobe-Japan | 1995 | 0.24 | 0.01 |
EQ10 | 7.1 | Hector_Mine | 1999 | 0.27 | 0.01 |
EQ11 | 7.1 | Hector_Mine | 1999 | 0.15 | 0.01 |
Serial Number | Sa (g) | Minor Earthquake | Moderate Earthquake | Moderate Earthquake | Extreme Earthquake |
---|---|---|---|---|---|
EQ1 | 0.172 | 0.63 | 1.88 | 3.97 | 6.05 |
EQ2 | 0.346 | 0.31 | 0.93 | 1.97 | 3.01 |
EQ3 | 0.335 | 0.32 | 0.96 | 2.04 | 3.11 |
EQ4 | 0.420 | 0.26 | 0.77 | 1.62 | 2.48 |
EQ5 | 0.398 | 0.27 | 0.81 | 1.71 | 2.62 |
EQ6 | 0.075 | 1.44 | 4.30 | 9.09 | 13.89 |
EQ7 | 0.467 | 0.23 | 0.69 | 1.46 | 2.23 |
EQ8 | 0.525 | 0.21 | 0.62 | 1.29 | 1.98 |
EQ9 | 0.626 | 0.17 | 0.52 | 1.09 | 1.66 |
EQ10 | 0.303 | 0.36 | 1.07 | 2.25 | 3.43 |
EQ11 | 0.192 | 0.56 | 1.68 | 3.55 | 5.42 |
Structure Type | K-Shaped | V-Shaped | D-Shaped |
---|---|---|---|
Median collapse (g) | 1.69 | 1.54 | 1.44 |
Standard deviation | 0.15 | 0.13 | 0.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Lu, Y.; Li, W.; Li, J.; Zhao, J.; Wang, S.; Ni, G.; Meng, Q. Study on Seismic Behavior of Different Forms of Eccentrically Braced Steel Frames. Buildings 2024, 14, 2064. https://doi.org/10.3390/buildings14072064
Liu B, Lu Y, Li W, Li J, Zhao J, Wang S, Ni G, Meng Q. Study on Seismic Behavior of Different Forms of Eccentrically Braced Steel Frames. Buildings. 2024; 14(7):2064. https://doi.org/10.3390/buildings14072064
Chicago/Turabian StyleLiu, Bo, Yankai Lu, Weitao Li, Jiayue Li, Jingchen Zhao, Shuhe Wang, Guowei Ni, and Qingjuan Meng. 2024. "Study on Seismic Behavior of Different Forms of Eccentrically Braced Steel Frames" Buildings 14, no. 7: 2064. https://doi.org/10.3390/buildings14072064
APA StyleLiu, B., Lu, Y., Li, W., Li, J., Zhao, J., Wang, S., Ni, G., & Meng, Q. (2024). Study on Seismic Behavior of Different Forms of Eccentrically Braced Steel Frames. Buildings, 14(7), 2064. https://doi.org/10.3390/buildings14072064