Utilization of High-Performance Concrete Mixtures for Advanced Manufacturing Technologies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mixture Development
2.2. Determination of Consistency Using Mini-Cone Flow Test
2.3. Determination of the Bulk Density of Hardened Concrete
2.4. Strength Characteristics
2.4.1. Compressive Strength
2.4.2. Tensile Splitting Strength
2.4.3. Flexural Strength
2.5. Resistance of Cement Concrete Surface to Water and Defrosting Chemicals
2.6. Dynamic Modulus of Elasticity
2.7. Frost Resistance
2.8. Load-Bearing Capacity of Reinforced Concrete Beams Made from Selected HPC Mixtures
3. Discussion
4. Conclusions
- Bulk density increased with increasing plasticizer content due to the formation of a more porous structure.
- The highest cube compressive strength after 28 days was achieved for the MEL 03 mixture at 121.6 MPa, and the lowest was achieved for the MEL 05 mixture at 102.8 MPa. The highest tensile splitting strength was achieved for the REF mixture at 6.91 MPa, and the lowest was achieved for the MEL 05 mixture at 5.99 MPa.
- The MEL 05 mixture reached the lowest 7-day compression strength at 24.76 MPa and flexure strength at 3.8 MPa.
- The results of the strength characteristics show that a powdered plasticizer content above 5% significantly slows down the setting and hardening time of the mixtures in the early stages of maturation.
- The REF, MEL 03, and MEL 04 mixtures achieved a relatively low waste amount after 200 cycles of testing for resistance to water and defrosting chemicals, at approx. 80–130 g/m2. The MEL 05 mixture achieved a waste amount of 680 g/m2 after 200 cycles due to its more porous structure. All mixtures were also frost-resistant after 200 cycles of cyclic freezing and thawing.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buswell, R.A.; Leal de Silva, W.R.; Jones, S.Z.; Dirrenberger, J. 3D Printing Using Concrete Extrusion: A Roadmap for Research. Cem. Concr. Res. 2018, 112, 37–49. [Google Scholar] [CrossRef]
- Wolfs, R.J.M.; Bos, F.P.; Salet, T.A.M. Early Age Mechanical Behaviour of 3D Printed Concrete: Numerical Modelling and Experimental Testing. Cem. Concr. Res. 2018, 106, 103–116. [Google Scholar] [CrossRef]
- Lim, J.H.; Weng, Y.; Pham, Q.-C. 3D Printing of Curved Concrete Surfaces Using Adaptable Membrane Formwork. Constr. Build. Mater. 2020, 232, 117075. [Google Scholar] [CrossRef]
- Zhang, C.; Nerella, V.N.; Krishna, A.; Wang, S.; Zhang, Y.; Mechtcherine, V.; Banthia, N. Mix Design Concepts for 3D Printable Concrete: A Review. Cem. Concr. Compos. 2021, 122, 104155. [Google Scholar] [CrossRef]
- Menna, C.; Mata-Falcón, J.; Bos, F.P.; Vantyghem, G.; Ferrara, L.; Asprone, D.; Salet, T.; Kaufmann, W. Opportunities and Challenges for Structural Engineering of Digitally Fabricated Concrete. Cem. Concr. Res. 2020, 133, 106079. [Google Scholar] [CrossRef]
- Khan, M.S.; Sanchez, F.; Zhou, H. 3-D Printing of Concrete: Beyond Horizons. Cem. Concr. Res. 2020, 133, 106070. [Google Scholar] [CrossRef]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.Q.; Hui, D. Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges. Compos. Part B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Quah, T.K.N.; Tay, Y.W.D.; Lim, J.H.; Tan, M.J.; Wong, T.N.; Li, K.H.H. Concrete 3D Printing: Process Parameters for Process Control, Monitoring and Diagnosis in Automation and Construction. Mathematics 2023, 11, 1499. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; Dong, S.; Yu, X.; Han, B. A Review of the Current Progress and Application of 3D Printed Concrete. Compos. Part A Appl. Sci. Manuf. 2019, 125, 105533. [Google Scholar] [CrossRef]
- Wu, P.; Wang, J.; Wang, X. A Critical Review of the Use of 3-D Printing in the Construction Industry. Autom. Constr. 2016, 68, 21–31. [Google Scholar] [CrossRef]
- Bhooshan, S.; Bhooshan, V.; Dell’Endice, A.; Chu, J.; Singer, P.; Megens, J.; Van Mele, T.; Block, P. The Striatus Bridge: Computational design and robotic fabrication of an unreinforced, 3D-concrete-printed, masonry arch bridge. Archit. Struct. Constr. 2022, 2, 521–543. [Google Scholar] [CrossRef]
- Weger, D.; Gehlen, C.; Korte, W.; Meyer-Brötz, F.; Scheydt, J.; Stengel, T. Building Rethought–3D Concrete Printing in Building Practice. Constr. Robot. 2021, 5, 203–210. [Google Scholar] [CrossRef]
- Salandin, A.; Quintana-Gallardo, A.; Gómez-Lozano, V.; Guillén-Guillamón, I. The First 3D-Printed Building in Spain: A Study on Its Acoustic, Thermal and Environmental Performance. Sustainability 2022, 14, 13204. [Google Scholar] [CrossRef]
- Nováková, K.; Vele, J.; Litoš, J.; Šána, V. Prvok-Issue on 3D Printing Concrete Building. Acta Polytech. CTU Proc. 2022, 38, 247–254. [Google Scholar] [CrossRef]
- Elantary, A.; Aldubaisi, F.; Abahussain, S.; Alasif, Z. Creating A 3D Printed Residential Building in Qatif. Umm Al-Qura Univ. J. Eng. Archit. 2021, 1, 8–13. [Google Scholar]
- Shen, W.; Cao, L.; Li, Q.; Zhang, W.; Wang, G.; Li, C. Quantifying CO2 Emissions from China’s Cement Industry. Renew. Sustain. Energy Rev. 2015, 50, 1004–1012. [Google Scholar] [CrossRef]
- Hanifa, M.; Agarwal, R.; Sharma, U.; Thapliyal, P.C.; Singh, L.P. A Review on CO2 Capture and Sequestration in the Construction Industry: Emerging Approaches and Commercialised Technologies. J. CO2 Util. 2023, 67, 102292. [Google Scholar] [CrossRef]
- Tay, Y.W.D.; Panda, B.N.; Ting, G.H.A.; Ahamed, N.M.N.; Tan, M.J.; Chua, C.K. 3D Printing for Sustainable Construction. In Industry 4.0–Shaping the Future of the Digital World; CRC Press: Boca Raton, FL, USA, 2020; pp. 119–123. [Google Scholar] [CrossRef]
- Lediga, R.; Kruger, D. Optimizing Concrete Mix Design for Application in 3D Printing Technology for the Construction Industry. Solid State Phenom. 2017, 263, 24–29. [Google Scholar] [CrossRef]
- Tabassum, T.; Ahmad Mir, A. A Review of 3d Printing Technology-the Future of Sustainable Construction. Mater. Today Proc. 2023, 93, 408–414. [Google Scholar] [CrossRef]
- Xiao, C.; Zheng, K.; Chen, S.; Li, N.; Shang, X.; Wang, F.; Liang, J.; Khan, S.B.; Shen, Y.; Lu, B.; et al. Additive manufacturing of high solid content lunar regolith simulant paste based on vat photopolymerization and the effect of water addition on paste retention properties, Addit. Manuf. 2023, 71, 103607. [Google Scholar] [CrossRef]
- Mateckova, P.; Bilek, V.; Sucharda, O. Comparative Study of High-Performance Concrete Characteristics and Loading Test of Pretensioned Experimental Beams. Crystals 2021, 11, 427. [Google Scholar] [CrossRef]
- Huang, H.; Yuan, Y.; Zhang, W.; Zhu, L. Property Assessment of High-Performance Concrete Containing Three Types of Fibers. Int. J. Concr. Struct. Mater. 2021, 15, 1–17. [Google Scholar] [CrossRef]
- Sucharda, O.; Marcalikova, Z.; Gandel, R. Microstructure, Shrinkage, and Mechanical Properties of Concrete with Fibers and Experiments of Reinforced Concrete Beams without Shear Reinforcement. Materials 2022, 15, 5707. [Google Scholar] [CrossRef]
- Marcalikova, Z.; Jerabek, J.; Gandel, R.; Gabor, R.; Bilek, V.; Sucharda, O. Mechanical Properties, Workability, and Experiments of Reinforced Composite Beams with Alternative Binder and Aggregate. Buildings 2024, 14, 2142. [Google Scholar] [CrossRef]
- Fernández-Jiménez, A.; Palomo, A. Composition and Microstructure of Alkali Activated Fly Ash Binder: Effect of the Activator. Cem. Concr. Res. 2005, 35, 1984–1992. [Google Scholar] [CrossRef]
- Šimonová, H.; Kucharczyková, B.; Bílek, V.; Malíková, L.; Miarka, P.; Lipowczan, M. Mechanical Fracture and Fatigue Characteristics of Fine-Grained Composite Based on Sodium Hydroxide-Activated Slag Cured under High Relative Humidity. Appl. Sci. 2020, 11, 259. [Google Scholar] [CrossRef]
- Gandel, R.; Jerabek, J.; Marcalikova, Z. Reinforced Concrete Beams Without Shear Reinforcement Using Fiber Reinforced Concrete and Alkali-Activated Material. Civ. Environ. Eng. 2023, 19, 348–356. [Google Scholar] [CrossRef]
- Yao, X.; Lyu, X.; Sun, J.; Wang, B.; Wang, Y.; Yang, M.; Wei, Y.; Elchalakani, M.; Li, D.; Wang, X. AI-based performance prediction for 3D-printed concrete considering anisotropy and steam curing condition, Constr. Build. Mater. 2023, 375, 130898. [Google Scholar] [CrossRef]
- Gökçe, H.S.; Tuyan, M.; Nehdi, M.L. Alkali-Activated and Geopolymer Materials Developed Using Innovative Manufacturing Techniques: A Critical Review. Constr. Build. Mater. 2021, 303, 124483. [Google Scholar] [CrossRef]
- Qaidi, S.; Yahia, A.; Tayeh, B.A.; Unis, H.; Faraj, R.; Mohammed, A. 3D Printed Geopolymer Composites: A Review. Mater. Today Sustain. 2022, 20, 100240. [Google Scholar] [CrossRef]
- Mengistu, G.M.; Nemes, R. Recycling 3D Printed Concrete Waste for Normal Strength Concrete Production. Appl. Sci. 2024, 14, 1142. [Google Scholar] [CrossRef]
- Ungureanu, D.; Onuțu, C.; Isopescu, D.N.; Țăranu, N.; Zghibarcea, Ș.V.; Spiridon, I.A.; Polcovnicu, R.A. A Novel Approach for 3D Printing Fiber-Reinforced Mortars. Materials 2023, 16, 4609. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-F.; Tsai, P.-J.; Syu, J.-Y.; Lok, M.-H.; Chen, H.-S. Mechanical Properties of 3D-Printed Carbon Fiber-Reinforced Cement Mortar. Fibers 2023, 11, 109. [Google Scholar] [CrossRef]
- Arunothayan, A.R.; Nematollahi, B.; Ranade, R.; Bong, S.H.; Sanjayan, J. Development of 3D-Printable Ultra-High Performance Fiber-Reinforced Concrete for Digital Construction. Constr. Build. Mater. 2020, 257, 119546. [Google Scholar] [CrossRef]
- Bai, G.; Chen, G.; Li, R.; Wang, L.; Ma, G. 3D Printed Ultra-High Performance Concrete: Preparation, Application, and Challenges. In Lecture Notes in Civil Engineering; Springer: Singapore, 2023; pp. 53–65. [Google Scholar] [CrossRef]
- Arunothayan, A.R.; Nematollahi, B.; Khayat, K.H.; Ramesh, A.; Sanjayan, J.G. Rheological Characterization of Ultra-High Performance Concrete for 3D Printing. Cem. Concr. Compos. 2023, 136, 104854. [Google Scholar] [CrossRef]
- Kaszyńska, M.; Hoffmann, M.; Skibicki, S.; Zieliński, A.; Techman, M.; Olczyk, N.; Wróblewski, T. Evaluation of Suitability for 3D Printing of High Performance Concretes. MATEC Web Conf. 2018, 163, 01002. [Google Scholar] [CrossRef]
- Le, T.T.; Austin, S.A.; Lim, S.; Buswell, R.A.; Gibb, A.G.F.; Thorpe, T. Mix design and fresh properties for high-performance printing concrete, Mater. Struct. 2012, 45, 1221–1232. [Google Scholar] [CrossRef]
- Wolfs, R.J.M.; Bos, F.P.; Salet, T.A.M. Hardened properties of 3D printed concrete: The influence of process parameters on interlayer adhesion, Cem. Concr. Res. 2019, 119, 132–140. [Google Scholar] [CrossRef]
- Sanjayan, J.G.; Nematollahi, B.; Xia, M.; Marchment, T. Effect of surface moisture on inter-layer strength of 3D printed concrete, Constr. Build. Mater. 2018, 172, 468–475. [Google Scholar] [CrossRef]
- Sucharda, O.; Gandel, R.; Ćmiel, P.; Jeřábek, J.; Bílek, V. Utilization of High-Performance Concrete Mixtures for Advanced Manufacturing Technologies—Experimental Dataset. 2024. Available online: https://zenodo.org/records/10940667 (accessed on 5 April 2024).
- Ćmiel, P. Properties of Concrete and Development of Concrete Formulas for Advanced and Additive Technologies. Master’s thesis, VSB–Technical University of Ostrava, Ostrava, Czechia, 2023. [Google Scholar]
- ČSN EN 1015-3; Methods of Test for Mortar for Masonry—Part 3: Determination of Consistence of Fresh Mortar (by Flow Table). Czech Institute for Standardization: Prague, Czech Republic, 2000.
- Robert, C.; Kalný, M.; Kolísko, J.; Vítek, J.L. Ultra-high-performance concrete (TP ČBS 07 Vysokohodnotný Beton-UHPC); ČBS—Czech Concrete Society: Praha, Czech Republic, 2022. [Google Scholar]
- ČSN EN 12390-3; Testing Hardened Concrete—Part 3: Compressive Strength of Test Specimens. Czech Standardization Agency: Prague, Czech Republic, 2020.
- ČSN EN 196-1; Methods of Testing Cement—Part 1: Determination of Strength. Czech Office for Standards, Metrology and Testing: Prague, Czech Republic, 2016.
- ČSN EN 12390-6; Testing Hardened Concrete—Part 6: Tensile Splitting Strength of Test Specimens. Czech Office for Standards, Metrology and Testing: Prague, Czech Republic, 2024.
- ČSN EN 12390-5; Testing Hardened Concrete—Part 5: Flexural Strength of Test Specimens. Czech Office for Standards, Metrology and Testing: Prague, Czech Republic, 2020.
- ČSN 73 1326; Resistance of Cement Concrete Surface to Water and Defrosting Chemicals. Czech Standardization Agency: Prague, Czech Republic, 1984.
- ČSN 73 1371; Non-Destructive Testing of Concrete—Method of Ultrasonic Pulse Testing of Concrete. Czech Office for Standards, Metrology and Testing: Prague, Czech Republic, 2011.
- ČSN 73 1322; Determination of Frost Resistance of Concrete. Czech Standardization Agency: Prague, Czech Republic, 1968.
Attribute | Description |
---|---|
Rheology | Flow properties important for pumpability and extrudability |
Printability | Ability to be extruded and maintain shape |
Buildability | Capacity to support subsequent layers |
Strength characteristics | Ability to withstand loads |
Bond strength | Adhesion between layers |
Durability | Long-term performance under environmental conditions |
REF Mixture | MEL 03 Mixture | MEL 04 Mixture | MEL 05 Mixture | ||||
---|---|---|---|---|---|---|---|
Input materials | Weight per 1 m3 | Input materials | Weight per 1 m3 | Input materials | Weight per 1 m3 | Input materials | Weight per 1 m3 |
Cement 42.5 R | 650 | Cement 42.5 R | 650 | Cement 42.5 R | 650 | Cement 42.5 R | 650 |
Water | 150 | Water | 150 | Water | 150 | Water | 150 |
Tovacov aggregate: 0–4 mm | 890 | Tovacov aggregate: 0–4 mm | 890 | Tovacov aggregate: 0–4 mm | 890 | Tovacov aggregate: 0–4 mm | 890 |
Litice aggregate: 4–8 mm | 570 | Litice aggregate: 4–8 mm | 570 | Litice aggregate: 4–8 mm | 570 | Litice aggregate: 4–8 mm | 570 |
Limestone: finely ground | 80 | Limestone: finely ground, roughness of 8 | 80 | Limestone: finely ground, roughness of 8 | 80 | Limestone: finely ground, roughness of 8 | 80 |
Silica fume | 70 | Silica fume | 70 | Silica fume | 70 | Silica fume | 70 |
(Polyether carboxylate) plasticizer | 20 | (Glycol) plasticizer | 19.5 | (Glycol) plasticizer | 26 | (Glycol) plasticizer | 32.5 |
(Polycarboxylate and polyphosphonate) plasticizer | 10 |
Mixture | Average Spread [mm] | Classification According to TP 07 |
---|---|---|
REF | 260 | K2 Viscous |
Mel 03 | 180 | K3 Thixotropic |
Mel 04 | 200 | K3 Thixotropic |
Mel 05 | 210 | K3 Thixotropic |
Mixture | Average Flexural Strength before Frost Resistance Test [MPa] | Average Flexural Strength after 200 Cycles of Frost Resistance Test [MPa] | Frost Resistance Coefficient [%] |
---|---|---|---|
REF | 14.3 | 14.6 | 102.3 |
MEL 03 | 14.1 | 14.5 | 102.5 |
MEL 04 | 15.4 | 15.5 | 100.1 |
MEL 05 | 11.4 | 11.2 | 97.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sucharda, O.; Gandel, R.; Cmiel, P.; Jerabek, J.; Bilek, V. Utilization of High-Performance Concrete Mixtures for Advanced Manufacturing Technologies. Buildings 2024, 14, 2269. https://doi.org/10.3390/buildings14082269
Sucharda O, Gandel R, Cmiel P, Jerabek J, Bilek V. Utilization of High-Performance Concrete Mixtures for Advanced Manufacturing Technologies. Buildings. 2024; 14(8):2269. https://doi.org/10.3390/buildings14082269
Chicago/Turabian StyleSucharda, Oldrich, Radoslav Gandel, Petr Cmiel, Jan Jerabek, and Vlastimil Bilek. 2024. "Utilization of High-Performance Concrete Mixtures for Advanced Manufacturing Technologies" Buildings 14, no. 8: 2269. https://doi.org/10.3390/buildings14082269
APA StyleSucharda, O., Gandel, R., Cmiel, P., Jerabek, J., & Bilek, V. (2024). Utilization of High-Performance Concrete Mixtures for Advanced Manufacturing Technologies. Buildings, 14(8), 2269. https://doi.org/10.3390/buildings14082269