Seismic Assessment of Existing Masonry Buildings Using Damage Mechanics
Abstract
:1. Introduction
2. Model Validation for a Simple Masonry Building
2.1. Modelling with the EFM
2.1.1. Description of the Building and Seismic Characterisation
2.1.2. Material Properties and Dead Loads
2.1.3. Equivalent Frame Modelling
2.2. Modelling with FEM
2.2.1. Geometry Assembly
2.2.2. Type of Analysis
2.2.3. Constitutive Relations
2.2.4. Loads
2.2.5. Finite Element Modelling
2.3. Comparing the EFM with the FEM
2.3.1. Calibration with Modal Analysis
2.3.2. Capacity Curves
2.3.3. Damage Distribution for Uniform Load in the −X Direction
2.3.4. Damage Distribution for Triangular Load in the +Y Direction
2.3.5. N2 Method Safety Verification
3. Seismic Assessment of Monserrate Palace
3.1. Numerical Modelling of the Tower
3.1.1. Adopted Geometry and Type of Analysis
3.1.2. Material Models and Adopted Mesh
3.1.3. Applied Loads and Boundary Conditions
3.2. Dynamic Characterisation Tests and Material Calibration
3.3. Nonlinear Static Analysis
3.3.1. Capacity Curves
3.3.2. Final Damage Distribution
4. Conclusions
- ▪
- The EFM demonstrated simplicity and efficiency in the modelling process, with tools facilitating the import of plans from other software. 3Muri stands out for its ability to independently perform modal and nonlinear analyses;
- ▪
- Only 3Muri’s model (EFM) underwent the safety verification process, taking only a few minutes to analyse all directions;
- ▪
- ABAQUS (FEM) showcased its ability to model a complex geometry. However, even with imports from BIM models, it was less efficient than the other two software packages and took around a week to complete a nonlinear analysis;
- ▪
- ABAQUS (FEM) faced challenges in defining loads on flexible floors or masses representing nonstructural elements, which 3Muri could easily handle;
- ▪
- ABAQUS (FEM) requires the definition of many variables to describe masonry behaviour when subjected to compression and tension, which are usually unknown. In 3Muri (EFM), this problem does not arise, thanks to its effective handling of material inputs, as defined in the Italian norm [50];
- ▪
- 3Muri (EFM) highlights conditioning damage leading to the collapse of elements. At the same time, ABAQUS (FEM) can display various types of damage to its elements in more detail, but it does not directly indicate which drifts are exceeded.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jaiswal, K.; Wald, D.; Porter, K. A Global Building Inventory for Earthquake Loss Estimation and Risk Management. Earthq. Spectra 2010, 26, 731–748. [Google Scholar] [CrossRef]
- Aşıkoğlu, A.; Vasconcelos, G.; Lourenço, P.B.; Pantò, B. Pushover analysis of unreinforced irregular masonry buildings: Lessons from different modelling approaches. Eng. Struct. 2020, 218, 110830. [Google Scholar] [CrossRef]
- Januário, J.F.; Cruz, C.O. The Impact of the 2008 Financial Crisis on Lisbon’s Housing Prices. J. Risk Financ. Manag. 2023, 16, 46. [Google Scholar] [CrossRef]
- Greco, A.; Lombardo, G.; Pantò, B.; Famà, A. Seismic Vulnerability of Historical Masonry Aggregate Buildings in Oriental Sicily. Int. J. Archit. Herit. 2020, 14, 517–540. [Google Scholar] [CrossRef]
- Marques, R.; Lourenço, P.B. Unreinforced and confined masonry buildings in seismic regions: Validation of macro-element models and cost analysis. Eng. Struct. 2014, 64, 52–67. [Google Scholar] [CrossRef]
- Lourenço, P.B.; Mendes, N.; Ramos, L.F.; Oliveira, D.V. Analysis of Masonry Structures without Box Behavior. Int. J. Archit. Herit. 2011, 5, 369–382. [Google Scholar] [CrossRef]
- Graziotti, F.; Tomassetti, U.; Kallioras, S.; Penna, A.; Magenes, G. Shaking table test on a full scale URM cavity wall building. Bull. Earthq. Eng. 2017, 15, 5329–5364. [Google Scholar] [CrossRef]
- Miglietta, M.; Damiani, N.; Guerrini, G.; Graziotti, F. Full-scale shake-table tests on two unreinforced masonry cavity-wall buildings: Effect of an innovative timber retrofit. Bull. Earthq. Eng. 2021, 19, 2561–2596. [Google Scholar] [CrossRef]
- Pintucchi, B.; Zani, N. Effectiveness of nonlinear static procedures for slender masonry towers. Bull. Earthq. Eng. 2014, 12, 2531–2556. [Google Scholar] [CrossRef]
- EN 1998-1; Eurocode 8—Design of Structures for Earthquake Resistance—Part 1: General Rules, Seismic Actions and Rules for Buildings. European Committee for Standardization (CEN): Brussels, Belgium, 2004.
- Fajfar, P. A nonlinear analysis method for performance-based seismic design. Earthq. Spectra 2000, 16, 573–592. [Google Scholar] [CrossRef]
- Guerrini, G.; Graziotti, F.; Penna, A.; Magenes, G. Improved Evaluation of Inelastic Displacement Demands for Short-Period Masonry Structures. Earthq. Eng. Struct. Dyn. 2017, 46, 1411–1430. [Google Scholar] [CrossRef]
- Asteris, P.G.; Moropoulou, A.; Skentou, A.D.; Apostolopoulou, M.; Mohebkhah, A.; Cavaleri, L.; Rodrigues, H.; Varum, H. Stochastic Vulnerability Assessment of Masonry Structures: Concepts, Modeling and Restoration Aspects. Appl. Sci. 2019, 9, 243. [Google Scholar] [CrossRef]
- Ciocci, M.P.; Sharma, S.; Lourenço, P.B. Engineering simulations of a super-complex cultural heritage building: Ica Cathedral in Peru. Meccanica 2018, 53, 1931–1958. [Google Scholar] [CrossRef]
- Clementi, F.; Gazzani, V.; Poiani, M.; Lenci, S. Assessment of seismic behaviour of heritage masonry buildings using numerical modelling. J. Build. Eng. 2016, 8, 29–47. [Google Scholar] [CrossRef]
- Peña, F.; Lourenço, P.B.; Mendes, N.; Oliveira, D.V. Numerical Models for the Seismic Assessment of an Old Masonry Tower. Eng. Struct. 2010, 32, 1466–1478. [Google Scholar] [CrossRef]
- Zanotti, F.L.; Boscato, G.; Ceravolo, R.; Russo, S.; Gentile, S.; Pecorelli, M.L.; Quattrone, A. Dynamic Investigation on the Mirandola Bell Tower in Post-Earthquake Scenarios. Bull. Earthq. Eng. 2017, 15, 313–337. [Google Scholar] [CrossRef]
- Bartoli, G.; Betti, M.; Monchetti, S. Seismic Risk Assessment of Historic Masonry Towers: Comparison of Four Case Studies. J. Perform. Constr. Facil. 2017, 31, 04017039. [Google Scholar] [CrossRef]
- Lemos, J.V. Discrete Element Modeling of Masonry Structures. Int. J. Archit. Herit. 2007, 1, 190–213. [Google Scholar] [CrossRef]
- Marra, A.M.; Salvatori, L.; Spinelli, P.; Bartoli, G. Incremental Dynamic and Nonlinear Static Analyses for Seismic Assessment of Medieval Masonry Towers. J. Perform. Constr. Facil. 2017, 31, 04017032. [Google Scholar] [CrossRef]
- Sarhosis, V.; Milani, G.; Formisano, A.; Fabbrocino, F. Evaluation of Different Approaches for the Estimation of the Seismic Vulnerability of Masonry Towers. Bull. Earthq. Eng. 2018, 16, 1511–1545. [Google Scholar] [CrossRef]
- Dassault Systèmes, 3DS-SIMULIA. ABAQUS Unified FEA-3DEXPERIENCE R2022, Version 2022; Dassault Systèmes, 3DS-SIMULIA: Johnston, RI, USA, 2018. Available online: http://www.3ds.com (accessed on 29 July 2024).
- Adina R&D Inc. ADINA—Automatic Dynamic Incremental Nonlinear Analysis; Adina R&D Inc.: Watertown, MA, USA, 2017; Available online: http://www.adina.com/index.shtml (accessed on 29 July 2024).
- ANSYS Inc. ANSYS Structural Mechanics; ANSYS Inc.: Canonsburg, PA, USA, 2015; Available online: http://www.ansys.com/ (accessed on 29 July 2024).
- Cervenka Consulting. ATENA—Nonlinear Analysis Software; Cervenka Consulting: Prague, Czech Republic, 1990; Available online: https://www.cervenka.cz/products/atena/ (accessed on 29 July 2024).
- DIANA. Advanced Finite Element Analysis Solutions; DIANA FEA BV: Hague, The Netherlands, 2020. [Google Scholar]
- Itasca Consulting Group Inc. Three Dimensional Distinct Element Code, Version 7.00; Itasca Consulting Group Inc.: Minneapolis, MN, USA, 2019. Available online: https://docs.itascacg.com/3dec700/3dec/docproject/source/3dechome.html (accessed on 29 July 2024).
- STA DATA. 3Muri Project, Version 14.0; STA DATA: Torino, Italy, 2023. Available online: https://stadata.com/en/3-muri-project/ (accessed on 29 July 2024).
- HiSTrA. HiSTrA Arches & Vaults; Gruppo Sismica, Smart Structural Solutions: Catania, Italy, 2024; Available online: https://www.grupposismica.it/en/software-category/histravaults-en/ (accessed on 29 July 2024).
- Arruda, M.R.T.; Deividas, M.; Vadimas, K. State of the art on structural reinforced concrete design guidelines with nonlinear analyses. Mech. Adv. Mater. Struct. 2023, 31, 4154–4168. [Google Scholar] [CrossRef]
- FIB. FIB Bulletin No. 45—Practitioners’ Guide to Finite Element Modelling of Reinforced Concrete Structures; CEB-FIP: Lausanne, Switzerland, 2008; p. 347. [Google Scholar]
- Brencich, A.; Morbiducci, R. Masonry Arches: Historical Rules and Modern Mechanics. Int. J. Archit. Herit. 2007, 1, 165–189. [Google Scholar] [CrossRef]
- Lourenço, P.B. Computational Strategies Do Masonry: Parameter Estimation and Validation. Ph.D. Dissertation, Delft University of Technology, Delft, The Netherlands, 1997. [Google Scholar]
- Roca, P.; Cervera, M.; Gariup, G.; Pelà, L. Structural Analysis of Masonry Historical Constructions. Classical and Advanced Approaches. Arch. Comput. Methods Eng. 2010, 17, 299–325. [Google Scholar] [CrossRef]
- Cattari, S.; Calderoni, B.; Caliò, I.; Camata, G.; de Miranda, S.; Magenes, G.; Milani, G.; Saetta, A. Nonlinear modeling of the seismic response of masonry structures: Critical review and open issues towards engineering practice. Bull. Earthq. Eng. 2022, 20, 1939–1997. [Google Scholar] [CrossRef]
- Malcata, M.; Ponte, M.; Tiberti, S.; Bento, R.; Milani, G. Failure analysis of a Portuguese cultural heritage masterpiece: Bonet building in Sintra. Eng. Fail. Anal. 2020, 115, 104636. [Google Scholar] [CrossRef]
- Angiolilli, M.; Lagomarsino, S.; Cattari, S.; Degli Abbati, S. Seismic fragility assessment of existing masonry buildings in aggregate. Eng. Struct. 2021, 247, 113218. [Google Scholar] [CrossRef]
- Cattari, S.; Magenes, G. Benchmarking the software packages to model and assess the seismic response of unreinforced masonry existing buildings through nonlinear static analyses. Bull. Earthq. Eng. 2022, 20, 1901–1936. [Google Scholar] [CrossRef]
- Caliò, I.; Marletta, M.; Pantò, B. A new discrete element model for the evaluation of the seismic behaviour of unreinforced masonry buildings. Eng. Struct. 2012, 40, 327–338. [Google Scholar] [CrossRef]
- Cannizzaro, F.; Pantò, B.; Lepidi, M.; Caddemi, S.; Caliò, I. Multi-Directional Seismic Assessment of Historical Masonry Buildings by Means of Macro-Element Modelling: Application to a Building Damaged during the L’Aquila Earthquake (Italy). Buildings 2017, 7, 106. [Google Scholar] [CrossRef]
- Degli Abbati, S.; D’Altri, A.M.; Ottonelli, D.; Castellazzi, G.; Cattari, S.; de Miranda, S.; Lagomarsino, S. Seismic assessment of interacting structural units in complex historic masonry constructions by nonlinear static analyses. Comput. Struct. 2019, 213, 51–71. [Google Scholar] [CrossRef]
- Morandini, C.; Malomo, D.; Pinho, R.; Penna, A. Development and validation of a numerical strategy for the seismic assessment of a timber retrofitting solution for URM cavity-wall buildings. J. Earthq. Eng. 2022, 27, 2224–2243. [Google Scholar] [CrossRef]
- Damiani, N.; DeJong, M.; Albanesi, L.; Magenes, G.; Penna, A.; Morandi, P. In-plane response of a modular retrofit system for URM walls using DEM. In Proceedings of the COMPDYN 2023 9th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Athens, Greece, 12–14 June 2023. [Google Scholar] [CrossRef]
- Malomo, D.; Pulatsu, B. Discontinuum Models for the Structural and Seismic Assessment of Unreinforced Masonry Structures: A Critical Appraisal. Structures 2024, 62, 106108. [Google Scholar] [CrossRef]
- Bartoli, G.; Betti, M.; Biagini, P.; Borghini, A.; Ciavattone, A.; Girardi, M.; Lancioni, G.; Marra, A.M.; Ortolani, B.; Pintucchi, B.; et al. Epistemic Uncertainties in Structural Modeling: A Blind Benchmark for Seismic Assessment of Slender Masonry Towers. J. Perform. Constr. Facil. 2017, 31, 04017067. [Google Scholar] [CrossRef]
- D’Altri, A.M.; Sarhosis, V.; Milani, G.; Rots, J.; Cattari, S.; Lagomarsino, S.; Sacco, E.; Tralli, A.; Castellazzi, G.; de Miranda, S. Modeling Strategies for the Computational Analysis of Unreinforced Masonry Structures: Review and Classification. Arch. Comput. Methods Eng. 2020, 27, 1153–1185. [Google Scholar] [CrossRef]
- Shehu, R. Implementation of Pushover Analysis for Seismic Assessment of Masonry Towers: Issues and Practical Recommendations. Buildings 2021, 11, 71. [Google Scholar] [CrossRef]
- EN 1998-3; Eurocode 8—Design of Structures for Earthquake Resistance. Part 3: Assessment and Retrofitting of Buildings. European Committee for Standardization (CEN): Brussels, Belgium, 2005.
- NP EN 1998-1; Eurocódigo 8—Projeto de Estruturas para Resistência aos Sismos. Parte 1: Regras Gerais, Acções Sísmicas e Regras para Edifícios. Instituto Português da Qualidade: Caparica, Portugal, 2010. (In Portuguese)
- DM 17/01/2018; Norme Tecniche per le Costruzioni. MIT, Gazzetta Ufficiale della Repubblica Italiana: Rome, Italy, 2018. (In Italian)
- LNEC. Pinho Bravo para Estruturas. Madeira para Construção—Ficha M2; Laboratório Nacional de Engenharia Civil: Lisbon, Portugal, 1997. [Google Scholar]
- Giongo, I.; Wilson, A.; Dizhur, D.Y.; Derakhshan, H.; Tomasi, R.; Griffith, M.C.; Quenneville, P.; Ingham, J.M. Detailed seismic assessment and improvement procedure for vintage flexible timber diaphragms. Bull. N. Z. Soc. Earthq. Eng. 2014, 47, 97–118. [Google Scholar] [CrossRef]
- Riks, E. An incremental approach to the solution of snapping and buckling problems. Int. J. Solids Struct. 1979, 15, 529–551. [Google Scholar] [CrossRef]
- Turnsek, V.; Cacovic, F. Some Experimental Result on the Strength of Brick Masonry Walls. In Proceedings of the 2nd International Brick Masonry Conference, Stoke-on-Trent, UK, 12–15 April 1970; pp. 149–156. [Google Scholar]
- Parisse, F. Harmonized Guidelines for the Seismic Safety Assessment of Unreinforced Masonry Buildings with Box-Like Behavior. Ph.D. Thesis, University of Minho, Minho, Portugal, 2024. [Google Scholar]
- Brandonisio, G.; Lucibello, G.; Mele, E.; De Luca, A. Damage and performance evaluation of masonry churches in the 2009 L’Aquila earthquake. Eng. Fail. Anal. 2013, 34, 693–714. [Google Scholar] [CrossRef]
- NP EN 1998-3; Eurocódigo 8—Projeto de Estruturas para Resistência aos Sismos. Parte 3: Avaliação e Reabilitação de Edifícios. Instituto Português da Qualidade: Caparica, Portugal, 2017. (In Portuguese)
- Bondarabadi, H.A. Analytical and Empirical Seismic Fragility Analysis of Irregular URM Buildings with Box Behavior. Ph.D. Thesis, Department of Civil Engineering, University of Minho, Minho, Portugal, 2018. [Google Scholar]
- Machete, R.; Neves, M.; Ponte, M.; Falcão, A.P.; Bento, R. A BIM-Based Model for Structural Health Monitoring of the Central Body of the Monserrate Palace: A First Approach. Buildings 2023, 13, 1532. [Google Scholar] [CrossRef]
- Structural Vibration Solutions. ARTeMIS, Modal 7.2; Structural Vibration Solutions: Aalborg, Denmark, 2023.
E [GPa] | G [MPa] | w [kN/m3] | fm [MPa] | τ [MPa] | γm [Safety Factor] | |
---|---|---|---|---|---|---|
Stone masonry | 1 | 0.33 | 19 | 2.0 | 0.017 | 1.5 |
Brick masonry | 1.2 | 0.40 | 18 | 2.6 | 0.138 | 1.5 |
Material | ε’eloc | ε’cm | fc [MPa] | ft [Mpa] |
---|---|---|---|---|
Stone masonry | 0.00125 | 0.003 | 1.67 | 0.025 |
Brick masonry | 0.00135 | 0.0037 | 2.17 | 0.173 |
1° Mode | 3Muri (Hz) | ABAQUS (Hz) | Error (%) |
---|---|---|---|
X | 3.616 | 4.254 | 17.7% |
Y | 3.731 | 3.624 | −3% |
Material | ε′eloc | ε′cm | fc [MPa] | ft [MPa] | E [GPa] | G [GPa] | ρ [Ton/m3] |
---|---|---|---|---|---|---|---|
Stone masonry | 0.00125 | 0.003 | 2.0 | 5.0 | 1.23 | 0.41 | 2.4 |
Masonry | 0.00135 | 0.0037 | 7.0 | 10 | 2.85 | 0.95 | 2.2 |
Wood in floor | - | - | - | - | 1.0 | - | 1.0 × 10−5 |
Wood in wood | - | - | - | - | 1.3 | - | 1.0 × 10−5 |
Mode | ARTeMIS (Hz) | ABAQUS (Hz) | Error (%) |
---|---|---|---|
1st X | 4.941 | 6.067 | 22.6 |
1st Y | 4.740 | 4.972 | 4.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonçalves, M.; Ponte, M.; Bento, R. Seismic Assessment of Existing Masonry Buildings Using Damage Mechanics. Buildings 2024, 14, 2395. https://doi.org/10.3390/buildings14082395
Gonçalves M, Ponte M, Bento R. Seismic Assessment of Existing Masonry Buildings Using Damage Mechanics. Buildings. 2024; 14(8):2395. https://doi.org/10.3390/buildings14082395
Chicago/Turabian StyleGonçalves, Miguel, Madalena Ponte, and Rita Bento. 2024. "Seismic Assessment of Existing Masonry Buildings Using Damage Mechanics" Buildings 14, no. 8: 2395. https://doi.org/10.3390/buildings14082395
APA StyleGonçalves, M., Ponte, M., & Bento, R. (2024). Seismic Assessment of Existing Masonry Buildings Using Damage Mechanics. Buildings, 14(8), 2395. https://doi.org/10.3390/buildings14082395