Introducing Methods for Analyzing and Detecting Concrete Cracks at the No. 3 Huaiyin Pumping Station in the South-to-North Water Diversion Project in China
Abstract
:1. Introduction
2. Methodology
2.1. Brief Introduction of the Finite Element Method
2.2. A Brief Review of the YOLOX
3. Field Test and Numerical Simulation Results
3.1. Background of the No. 3 Huaiyin Pumping Station and Field Tests Conducted
3.2. The Numerical Simulation Results and Discussion
- The temperature-increasing scenario simulates the concrete structure’s temperature change from 14.9 °C to 27.4 °C, similar to the transition from spring to summer.
- The temperature-decreasing scenario simulates the temperature change from 14.9 °C to −0.3 °C, resembling the transition from autumn to winter.
4. Classification and Detection of Concrete Cracks in the No. 3 Huaiyin Pumping Station Using Transfer Learning
4.1. Image Data Augmentation and Training Process
4.2. Results and Discussion
4.3. Application in the No. 3 Huaiying Pumping Station
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mehndi, S.M.; Khan, M.; Ahmad, S. Causes and evaluation of cracks in concrete structures. Int. J. Tech. Res. Appl. 2014, 2, 29–33. [Google Scholar]
- Narwaria, R.S.; Tiwari, A. Development of cracks in concrete, preventive measures and treatment methods: A review. Int. Res. J. Eng. Technol. 2016, 3, 671–677. [Google Scholar]
- Safiuddin, M.; Kaish, A.A.; Woon, C.-O.; Raman, S.N. Early-age cracking in concrete: Causes, consequences, remedial measures, and recommendations. Appl. Sci. 2018, 8, 1730. [Google Scholar] [CrossRef]
- Talaat, A.; Emad, A.; Tarek, A.; Masbouba, M.; Essam, A.; Kohail, M. Factors affecting the results of concrete compression testing: A review. Ain Shams Eng. J. 2021, 12, 205–221. [Google Scholar] [CrossRef]
- Golewski, G.L. The phenomenon of cracking in cement concretes and reinforced concrete structures: The mechanism of cracks formation, causes of their initiation, types and places of occurrence, and methods of detection—A review. Buildings 2023, 13, 765. [Google Scholar] [CrossRef]
- Liu, Q.-F.; Hu, Z.; Wang, X.-E.; Zhao, H.; Qian, K.; Li, L.-J.; Meng, Z. Numerical study on cracking and its effect on chloride transport in concrete subjected to external load. Constr. Build. Mater. 2022, 325, 126797. [Google Scholar] [CrossRef]
- Yo’ldashev, B.; Mukhriddin, S. Experimental Assessment of Parameters Influencing Crack Development in Concrete Structures. Sci. Promot. 2023, 1, 1–5. [Google Scholar]
- Hassani, S.; Dackermann, U. A systematic review of advanced sensor technologies for non-destructive testing and structural health monitoring. Sensors 2023, 23, 2204. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y. Investigating bridge vibrational modes under operational conditions using time-frequency analysis. Struct. Infrastruct. Eng. 2023, 1–15. [Google Scholar] [CrossRef]
- Qin, Y.; Fan, Y. Identifying the Bridge Natural Frequency Pattern Under Operational Condition. Int. J. Struct. Stab. Dyn. 2024, 24, 2450031. [Google Scholar] [CrossRef]
- Arbaoui, A.; Ouahabi, A.; Jacques, S.; Hamiane, M. Concrete cracks detection and monitoring using deep learning-based multiresolution analysis. Electronics 2021, 10, 1772. [Google Scholar] [CrossRef]
- Berrocal, C.G.; Fernandez, I.; Rempling, R. Crack monitoring in reinforced concrete beams by distributed optical fiber sensors. Struct. Infrastruct. Eng. 2021, 17, 124–139. [Google Scholar] [CrossRef]
- Aghaee, K.; Khayat, K.H. Effect of shrinkage-mitigating materials on performance of fiber-reinforced concrete—An overview. Constr. Build. Mater. 2021, 305, 124586. [Google Scholar] [CrossRef]
- Wang, C.; Jin, Z.; Li, J.; Dong, W.; Chen, R.; Yang, Y.; Chen, Y.; Wang, D.; Pang, B. Experimental study on early shrinkage and later expansion of concrete under a simulated geothermal environment. J. Build. Eng. 2023, 72, 106493. [Google Scholar] [CrossRef]
- Wang, X.; Wang, W.; Huang, J.; Wang, Z.; Ma, S.; Liu, Y. Relationship between internal humidity and drying shrinkage of recycled aggregate thermal insulation concrete considering recycled aggregate content. Constr. Build. Mater. 2022, 355, 129224. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, C.; Yang, Y.; Wang, Y. Hygro-thermal–mechanical coupling analysis for early shrinkage of cast in situ concrete slabs of composite beams: Theory and experiment. Constr. Build. Mater. 2023, 372, 130774. [Google Scholar] [CrossRef]
- Smolana, A.; Klemczak, B.; Azenha, M.; Schlicke, D. Early age cracking risk in a massive concrete foundation slab: Comparison of analytical and numerical prediction models with on-site measurements. Constr. Build. Mater. 2021, 301, 124135. [Google Scholar] [CrossRef]
- Chiniforush, A.A.; Gharehchaei, M.; Nezhad, A.A.; Castel, A.; Moghaddam, F.; Keyte, L.; Hocking, D.; Foster, S. Numerical simulation of risk mitigation strategies for early-age thermal cracking and DEF in concrete. Constr. Build. Mater. 2022, 322, 126478. [Google Scholar] [CrossRef]
- Moccia, F.; Fernández Ruiz, M.; Metelli, G.; Muttoni, A.; Plizzari, G. Casting position effects on bond performance of reinforcement bars. Struct. Concr. 2021, 22, 1612–1632. [Google Scholar] [CrossRef]
- Li, M.; Xu, W.; Wang, Y.; Tian, Q.; Liu, J. Shrinkage crack inhibiting of cast in situ tunnel concrete by double regulation on temperature and deformation of concrete at early age. Constr. Build. Mater. 2020, 240, 117834. [Google Scholar] [CrossRef]
- Dabarera, A.; Li, L.; Dao, V. Experimental evaluation and modelling of early-age basic tensile creep in high-performance concrete. Mater. Struct. 2021, 54, 130. [Google Scholar] [CrossRef]
- Khan, M.U.; Nasir, M.; Al-Amoudi, O.S.B.; Maslehuddin, M. Influence of in-situ casting temperature and curing regime on the properties of blended cement concretes under hot climatic conditions. Constr. Build. Mater. 2021, 272, 121865. [Google Scholar] [CrossRef]
- Liu, J.; Tian, Q.; Wang, Y.; Li, H.; Xu, W. Evaluation Method and Mitigation Strategies for Shrinkage Cracking of Modern Concrete. Engineering 2021, 7, 348–357. [Google Scholar] [CrossRef]
- Shen, L.; Ren, Q.; Cusatis, G.; Cao, M.; Xu, L.; Yang, Y. Numerical study on crack thermal resistance effect on thermo-mechanical coupled behavior of concrete structure at room temperature. Int. J. Solids Struct. 2020, 182, 141–155. [Google Scholar] [CrossRef]
- Aidarov, S.; Nogales, A.; Reynvart, I.; Tošić, N.; de la Fuente, A. Effects of low temperatures on flexural strength of macro-synthetic fiber reinforced concrete: Experimental and numerical investigation. Materials 2022, 15, 1153. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Lin, X.; Zhou, A.; Zhang, Y. A temperature-dependent material model for numerical simulation of steel fibre reinforced concrete. Constr. Build. Mater. 2022, 320, 126329. [Google Scholar] [CrossRef]
- Chourasia, A.; Dalbehera, M.M.; Kapoor, A.; Kulkarni, K.S.; Gaurav, G.; Singh, S.; Kumar, R.P. Damage assessment of buildings due to land subsidence in Joshimath town of Northwestern Himalaya, India. Nat. Hazards 2024, 1–18. [Google Scholar] [CrossRef]
- Kadiyan, N.; Chatterjee, R.; Pranjal, P.; Agrawal, P.; Jain, S.; Angurala, M.; Biyani, A.; Sati, M.; Kumar, D.; Bhardwaj, A. Assessment of groundwater depletion–induced land subsidence and characterisation of damaging cracks on houses: A case study in Mohali-Chandigarh area, India. Bull. Eng. Geol. Environ. 2021, 80, 3217–3231. [Google Scholar] [CrossRef]
- Qiu, Q.; Lau, D. Real-time detection of cracks in tiled sidewalks using YOLO-based method applied to unmanned aerial vehicle (UAV) images. Autom. Constr. 2023, 147, 104745. [Google Scholar] [CrossRef]
- Khan, M.A.-M.; Kee, S.-H.; Pathan, A.-S.K.; Nahid, A.-A. Image Processing Techniques for Concrete Crack Detection: A Scientometrics Literature Review. Remote Sens. 2023, 15, 2400. [Google Scholar] [CrossRef]
- Zhou, J.; Cao, Q. Report of the On-Site Test of the Concrete Structures in the No. 3 Huaiyin Pumping Station; Testing Center of Yangzhou University: Yangzhou, China, 2017; pp. 1–30. [Google Scholar]
- Nikishkov, G. Introduction to the Finite Element Method; University of Aizu: Aizuwakamatsu, Japan, 2004; pp. 1–70. [Google Scholar]
- Roylance, D. Finite Element Analysis; Department of Materials Science and Engineering, Massachusetts Institute of Technology: Cambridge, MA, USA, 2001. [Google Scholar]
- Zienkiewicz, O.C.; Taylor, R.L.; Zhu, J.Z. The Finite Element Method: Its Basis and Fundamentals; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Do, T.A.; Tia, M.; Nguyen, T.H.; Hoang, T.T.; Tran, T.D. Assessment of temperature evolution and early-age thermal cracking risk in segmental high-strength concrete box girder diaphragms. KSCE J. Civ. Eng. 2022, 26, 166–182. [Google Scholar] [CrossRef]
- Han, S.; Liu, Y.; Lyu, Y.; Liu, J.; Zhang, N. Numerical simulation investigation on hydration heat temperature and early cracking risk of concrete box girder in cold regions. J. Traffic Transp. Eng. (Engl. Ed.) 2023, 10, 697–720. [Google Scholar] [CrossRef]
- Xie, Y.; Du, W.; Xu, Y.; Peng, B.; Qian, C. Temperature field evolution of mass concrete: From hydration dynamics, finite element models to real concrete structure. J. Build. Eng. 2023, 65, 105699. [Google Scholar] [CrossRef]
- Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. Yolox: Exceeding yolo series in 2021. arXiv 2021, arXiv:2107.08430. [Google Scholar]
- Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in context. In Proceedings of the Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, 6–12 September 2014; Proceedings, Part V 13. Springer: Berlin/Heidelberg, Germany, 2014; pp. 740–755. [Google Scholar]
- Qin, Y.; Cui, Y. A practical and efficient approach to evaluating the irrigation water supply from electricity consumption: A case study in Siyang County, China. Irrig. Drain. 2024. Early View. [Google Scholar] [CrossRef]
- Dorafshan, S.; Thomas, R.J.; Maguire, M. SDNET2018: An annotated image dataset for non-contact concrete crack detection using deep convolutional neural networks. Data Brief 2018, 21, 1664–1668. [Google Scholar] [CrossRef]
- Özgenel, Ç.F.; Sorguç, A.G. Performance comparison of pretrained convolutional neural networks on crack detection in buildings. In Proceedings of the ISARC, International Symposium on Automation and Robotics in Construction, Berlin, Germany, 22–25 July 2018; pp. 1–8. [Google Scholar]
- Huang, W.; Wei, P. A PCB dataset for defects detection and classification. arXiv 2019, arXiv:1901.08204. [Google Scholar]
- Zhou, Z.; Yan, L.; Zhang, J.; Yang, H. Real-time tunnel lining crack detection based on an improved You Only Look Once version X algorithm. Georisk Assess. Manag. Risk Eng. Syst. Geohazards 2023, 17, 181–195. [Google Scholar] [CrossRef]
- Ashraf, I.; Hur, S.; Kim, G.; Park, Y. Analyzing performance of YOLOx for detecting vehicles in bad weather conditions. Sensors 2024, 24, 522. [Google Scholar] [CrossRef]
- He, H.; Chen, C.; Zhang, W.; Wang, Z.; Zhang, X. Body condition scoring network based on improved YOLOX. Pattern Anal. Appl. 2023, 26, 1071–1087. [Google Scholar] [CrossRef]
Parameter | Value | Parameter | Value |
---|---|---|---|
Density (kg/m3) | 2400 | Tensile strength (MPa) | 1.78 |
Young’s modulus (MPa) | 2.8 × 104 | Thermal conductivity (W/m·K) | 1.65 |
Poisson’s ratio | 0.167 | Convection coefficient (W/m2·K) | 7.12 |
No. | Label | Label Count | Image Count |
---|---|---|---|
1 | Crossing | 70 | 58 |
2 | Lateral | 56 | 52 |
3 | Vertical | 53 | 51 |
Parameters | Value |
---|---|
Input size | 227 × 227 × 3 |
Initial learning rate | 0.001 |
Learning rate drop factor | 0.99 |
Batch size | 50 |
Epoch | 120 |
No. | Area Range | Number of Objects | mAP | |
---|---|---|---|---|
Minimum | Maximum | |||
1 | 0 | 7.107 × 103 | 10 | 0.523 |
2 | 7.107 × 103 | 1.204 × 104 | 9 | 0.806 |
3 | 1.204 × 104 | Inf | 10 | 0.667 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, P.; Qin, Y. Introducing Methods for Analyzing and Detecting Concrete Cracks at the No. 3 Huaiyin Pumping Station in the South-to-North Water Diversion Project in China. Buildings 2024, 14, 2431. https://doi.org/10.3390/buildings14082431
Cui P, Qin Y. Introducing Methods for Analyzing and Detecting Concrete Cracks at the No. 3 Huaiyin Pumping Station in the South-to-North Water Diversion Project in China. Buildings. 2024; 14(8):2431. https://doi.org/10.3390/buildings14082431
Chicago/Turabian StyleCui, Peng, and Yazhou Qin. 2024. "Introducing Methods for Analyzing and Detecting Concrete Cracks at the No. 3 Huaiyin Pumping Station in the South-to-North Water Diversion Project in China" Buildings 14, no. 8: 2431. https://doi.org/10.3390/buildings14082431
APA StyleCui, P., & Qin, Y. (2024). Introducing Methods for Analyzing and Detecting Concrete Cracks at the No. 3 Huaiyin Pumping Station in the South-to-North Water Diversion Project in China. Buildings, 14(8), 2431. https://doi.org/10.3390/buildings14082431