The Detailed Axial Compression Behavior of CFST Columns Infilled by Lightweight Concrete
Abstract
:1. Introduction
2. Research Significance
3. A Review of the Experimental Work
4. The Nonlinear Finite Element Analysis (NLFEA) Program
4.1. General
4.2. Description of NLFEA
4.2.1. Element Types
4.2.2. Material Properties
4.2.3. Failure Criteria and Analysis
4.3. Validation Process
5. Results and Discussion
5.1. Failure Modes of the LWCFST Specimens
5.2. Compression Loading Versus End Shortening Curves
5.3. Performance Indices
5.4. Limitations
6. Strength Predictions by Design Specifications
7. Conclusions
- The utilization of the CFST columns has a direct positive effect on the columns’ compressive strength, toughness, and ductility where concrete is poured inside hollow steel tubes of finite thickness with the ductility being further improved by the utilization of lightweight concrete.
- Short CFST specimens (L/D = 3) with small tube thickness (D/t = 36) have a smooth descending branch in the load–deflection curve after their maximum compression strength is reached, while specimens with larger tube thicknesses (D/t = 21) do not show any descending behavior where failure occurs suddenly.
- Columns with medium slenderness (L/D = 6) experienced a combination failure mode between the local and global buckling, where local buckling occurs mainly for the short columns.
- CFST columns with a length-to-diameter ratio exceeding nine and a small steel tube thickness behave similarly to the medium slenderness column where the failure was a combination of the local and global buckling. In contrast, larger tube thicknesses (D/t = 21) experienced global buckling failure.
- Providing steel tubes to the conventionally utilized RC columns increases their compression capacity, with the behavior being preferable for thin steel tubes of both long and short columns. In addition, increasing the compressive strength of the used lightweight concrete further improves their structural behavior. In contrast, CFST columns with a medium length-to-diameter ratio had their maximum capacity with thick steel tubes.
- The predicted compressive strength capacities of the LWCFST columns given by AISC360-16 were conservative, with a difference percentage reaching 4% from the values provided by the NLFEA. On the other hand, the estimations of EC4 were not conservative, with a 12% difference percentage.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Column | , MPa | L/D | D/t | Δu, mm | Pu, kN | K, kN/mm | EA, kN·mm | DI | CI | PI |
---|---|---|---|---|---|---|---|---|---|---|
C30LD3Dt36 | 30 | 3 | 36 | 21.08 | 726 | 257 | 14,385 | 2.534 | 0.911 | 2.309 |
C40LD3Dt36 | 40 | 18.48 | 777 | 365 | 13,568 | 2.340 | 0.837 | 1.960 | ||
C50LD3Dt36 | 50 | 16.45 | 819 | 389 | 12,908 | 2.213 | 0.774 | 1.712 | ||
C60LD3Dt36 | 60 | 13.83 | 867 | 423 | 11,275 | 2.183 | 0.729 | 1.591 | ||
C30LD3Dt31 | 30 | 31 | 18.95 | 864 | 340 | 15,387 | 3.419 | 1.004 | 3.434 | |
C40LD3Dt31 | 40 | 16.62 | 925 | 483 | 14,513 | 3.209 | 0.933 | 2.993 | ||
C50LD3Dt31 | 50 | 14.79 | 975 | 515 | 13,807 | 3.008 | 0.868 | 2.612 | ||
C60LD3Dt31 | 60 | 12.43 | 1031 | 559 | 12,060 | 2.909 | 0.823 | 2.394 | ||
C30LD3Dt26 | 30 | 26 | 15.45 | 1116 | 539 | 16,207 | 4.540 | 1.168 | 5.302 | |
C40LD3Dt26 | 40 | 13.55 | 1194 | 765 | 15,287 | 4.278 | 1.099 | 4.702 | ||
C50LD3Dt26 | 50 | 12.06 | 1259 | 815 | 14,542 | 3.806 | 1.034 | 3.936 | ||
C60LD3Dt26 | 60 | 10.14 | 1332 | 886 | 12,703 | 3.740 | 0.988 | 3.695 | ||
C30LD3Dt21 | 30 | 21 | 11.61 | 1473 | 947 | 16,551 | 5.123 | 1.541 | 7.896 | |
C40LD3Dt21 | 40 | 10.18 | 1576 | 1345 | 15,611 | 4.827 | 1.451 | 7.003 | ||
C50LD3Dt21 | 50 | 9.06 | 1662 | 1432 | 14,850 | 4.433 | 1.365 | 6.049 | ||
C60LD3Dt21 | 60 | 7.62 | 1758 | 1556 | 12,972 | 4.221 | 1.304 | 5.504 | ||
C30LD6Dt36 | 30 | 6 | 36 | 19.33 | 666 | 215 | 12,096 | 1.601 | 0.836 | 1.338 |
C40LD6Dt36 | 40 | 16.95 | 713 | 306 | 11,408 | 1.479 | 0.768 | 1.135 | ||
C50LD6Dt36 | 50 | 15.08 | 751 | 326 | 10,853 | 1.390 | 0.709 | 0.986 | ||
C60LD6Dt36 | 60 | 12.68 | 795 | 354 | 9480 | 1.344 | 0.668 | 0.898 | ||
C30LD6Dt31 | 30 | 31 | 17.38 | 806 | 293 | 13,156 | 2.237 | 0.936 | 2.095 | |
C40LD6Dt31 | 40 | 15.24 | 862 | 416 | 12,408 | 2.108 | 0.870 | 1.833 | ||
C50LD6Dt31 | 50 | 13.56 | 909 | 443 | 11,804 | 1.923 | 0.810 | 1.557 | ||
C60LD6Dt31 | 60 | 11.40 | 962 | 482 | 10,311 | 1.843 | 0.767 | 1.415 | ||
C30LD6Dt26 | 30 | 26 | 14.17 | 1031 | 465 | 13,724 | 2.854 | 1.078 | 3.078 | |
C40LD6Dt26 | 40 | 12.43 | 1103 | 661 | 12,944 | 2.690 | 1.015 | 2.730 | ||
C50LD6Dt26 | 50 | 11.06 | 1163 | 704 | 12,314 | 2.470 | 0.955 | 2.358 | ||
C60LD6Dt26 | 60 | 9.30 | 1230 | 765 | 10,756 | 2.352 | 0.912 | 2.146 | ||
C30LD6Dt21 | 30 | 21 | 10.64 | 1369 | 842 | 14,101 | 3.298 | 1.432 | 4.723 | |
C40LD6Dt21 | 40 | 9.34 | 1465 | 1196 | 13,300 | 2.972 | 1.348 | 4.005 | ||
C50LD6Dt21 | 50 | 8.31 | 1544 | 1274 | 12,652 | 2.753 | 1.268 | 3.490 | ||
C60LD6Dt21 | 60 | 6.98 | 1634 | 1383 | 11,052 | 2.662 | 1.211 | 3.225 | ||
C30LD9Dt36 | 30 | 9 | 36 | 18.29 | 630 | 193 | 10,831 | 1.178 | 0.791 | 0.852 |
C40LD9Dt36 | 40 | 16.04 | 674 | 274 | 10,216 | 1.116 | 0.727 | 0.738 | ||
C50LD9Dt36 | 50 | 14.27 | 711 | 292 | 9718 | 1.090 | 0.671 | 0.607 | ||
C60LD9Dt36 | 60 | 12.00 | 752 | 317 | 8489 | 1.088 | 0.632 | 0.561 | ||
C30LD9Dt31 | 30 | 31 | 16.44 | 760 | 265 | 11,739 | 1.465 | 0.883 | 1.294 | |
C40LD9Dt31 | 40 | 14.42 | 813 | 377 | 11,073 | 1.353 | 0.820 | 1.110 | ||
C50LD9Dt31 | 50 | 12.84 | 857 | 402 | 10,533 | 1.280 | 0.764 | 0.977 | ||
C60LD9Dt31 | 60 | 10.79 | 907 | 436 | 9201 | 1.263 | 0.724 | 0.914 | ||
C30LD9Dt26 | 30 | 26 | 13.41 | 980 | 431 | 12,344 | 1.854 | 1.025 | 1.901 | |
C40LD9Dt26 | 40 | 11.76 | 1048 | 612 | 11,643 | 1.740 | 0.965 | 1.679 | ||
C50LD9Dt26 | 50 | 10.47 | 1105 | 652 | 11,076 | 1.633 | 0.908 | 1.482 | ||
C60LD9Dt26 | 60 | 8.80 | 1169 | 708 | 9675 | 1.611 | 0.867 | 1.397 | ||
C30LD9Dt21 | 30 | 21 | 10.07 | 1306 | 784 | 12,733 | 2.159 | 1.367 | 2.951 | |
C40LD9Dt21 | 40 | 8.83 | 1398 | 1113 | 12,010 | 1.964 | 1.286 | 2.526 | ||
C50LD9Dt21 | 50 | 7.86 | 1473 | 1186 | 11,425 | 1.841 | 1.210 | 2.227 | ||
C60LD9Dt21 | 60 | 6.61 | 1559 | 1288 | 9980 | 1.780 | 1.156 | 2.058 |
Column | Pu,NLFEA, kN | Pu,AISC, kN | Pu,EC4, kN | ||
---|---|---|---|---|---|
C30LD3Dt36 | 726 | 734 | 1.010 | 528 | 0.727 |
C40LD3Dt36 | 777 | 772 | 0.994 | 556 | 0.716 |
C50LD3Dt36 | 819 | 842 | 1.027 | 606 | 0.740 |
C60LD3Dt36 | 867 | 894 | 1.031 | 644 | 0.742 |
C30LD3Dt31 | 864 | 866 | 1.003 | 624 | 0.722 |
C40LD3Dt31 | 925 | 927 | 1.003 | 668 | 0.722 |
C50LD3Dt31 | 975 | 1001 | 1.027 | 721 | 0.740 |
C60LD3Dt31 | 1031 | 1042 | 1.011 | 750 | 0.728 |
C30LD3Dt26 | 1116 | 1166 | 1.045 | 840 | 0.752 |
C40LD3Dt26 | 1194 | 1253 | 1.049 | 902 | 0.755 |
C50LD3Dt26 | 1259 | 1284 | 1.020 | 924 | 0.734 |
C60LD3Dt26 | 1332 | 1358 | 1.020 | 978 | 0.734 |
C30LD3Dt21 | 1473 | 1540 | 1.045 | 1109 | 0.753 |
C40LD3Dt21 | 1576 | 1654 | 1.049 | 1191 | 0.756 |
C50LD3Dt21 | 1662 | 1750 | 1.053 | 1260 | 0.758 |
C60LD3Dt21 | 1758 | 1794 | 1.020 | 1292 | 0.735 |
C30LD6Dt36 | 666 | 688 | 1.034 | 558 | 0.837 |
C40LD6Dt36 | 713 | 725 | 1.018 | 588 | 0.824 |
C50LD6Dt36 | 751 | 786 | 1.046 | 637 | 0.848 |
C60LD6Dt36 | 795 | 819 | 1.030 | 664 | 0.835 |
C30LD6Dt31 | 806 | 859 | 1.066 | 696 | 0.863 |
C40LD6Dt31 | 862 | 923 | 1.071 | 748 | 0.867 |
C50LD6Dt31 | 909 | 970 | 1.068 | 786 | 0.865 |
C60LD6Dt31 | 962 | 1003 | 1.043 | 812 | 0.845 |
C30LD6Dt26 | 1031 | 1103 | 1.070 | 893 | 0.867 |
C40LD6Dt26 | 1103 | 1185 | 1.075 | 960 | 0.871 |
C50LD6Dt26 | 1163 | 1255 | 1.079 | 1016 | 0.874 |
C60LD6Dt26 | 1230 | 1287 | 1.046 | 1043 | 0.848 |
C30LD6Dt21 | 1369 | 1505 | 1.099 | 1219 | 0.890 |
C40LD6Dt21 | 1465 | 1547 | 1.056 | 1253 | 0.855 |
C50LD6Dt21 | 1544 | 1651 | 1.070 | 1338 | 0.866 |
C60LD6Dt21 | 1634 | 1721 | 1.053 | 1394 | 0.853 |
C30LD9Dt36 | 630 | 690 | 1.094 | 645 | 1.023 |
C40LD9Dt36 | 674 | 743 | 1.101 | 694 | 1.030 |
C50LD9Dt36 | 711 | 763 | 1.074 | 714 | 1.004 |
C60LD9Dt36 | 752 | 810 | 1.076 | 757 | 1.006 |
C30LD9Dt31 | 760 | 840 | 1.106 | 785 | 1.034 |
C40LD9Dt31 | 813 | 887 | 1.091 | 829 | 1.020 |
C50LD9Dt31 | 857 | 968 | 1.130 | 905 | 1.057 |
C60LD9Dt31 | 907 | 1031 | 1.137 | 964 | 1.063 |
C30LD9Dt26 | 980 | 1086 | 1.109 | 1016 | 1.037 |
C40LD9Dt26 | 1048 | 1165 | 1.111 | 1090 | 1.039 |
C50LD9Dt26 | 1105 | 1262 | 1.142 | 1180 | 1.068 |
C60LD9Dt26 | 1169 | 1345 | 1.150 | 1257 | 1.075 |
C30LD9Dt21 | 1306 | 1511 | 1.157 | 1413 | 1.081 |
C40LD9Dt21 | 1398 | 1570 | 1.123 | 1468 | 1.050 |
C50LD9Dt21 | 1473 | 1699 | 1.153 | 1589 | 1.078 |
C60LD9Dt21 | 1559 | 1774 | 1.138 | 1658 | 1.064 |
References
- Han, L.-H.; Li, W.; Bjorhovde, R. Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members. J. Constr. Steel Res. 2014, 100, 211–228. [Google Scholar] [CrossRef]
- Al-Rousan, R.Z.; Alnemrawi, B.R.; Sawalha, H.M. The ultimate capacity of geopolymer recycled aggregate concrete filled steel tubular columns: Numerical and theoretical study. J. Build. Eng. 2024, 96, 110365. [Google Scholar] [CrossRef]
- Liew, J.Y.R.; Xiong, M.; Xiong, D. Design of Concrete Filled Tubular Beam-columns with High Strength Steel and Concrete. Structures 2016, 8, 213–226. [Google Scholar] [CrossRef]
- Romero, M.L.; Ibañez, C.; Espinos, A.; Portolés, J.M.; Hospitaler, A. Influence of Ultra-high Strength Concrete on Circular Concrete-filled Dual Steel Columns. Structures 2017, 9, 13–20. [Google Scholar] [CrossRef]
- Hassanein, M.F.; Elchalakani, M.; Karrech, A.; Patel, V.I.; Yang, B. Behaviour of Concrete-filled Double-skin Short Columns Under Compression Through Finite Element Modelling: SHS Outer and SHS Inner Tubes. Structures 2018, 14, 358–375. [Google Scholar] [CrossRef]
- Ekmekyapar, T. Experimental performance of concrete filled welded steel tube columns. J. Constr. Steel Res. 2016, 117, 175–184. [Google Scholar] [CrossRef]
- Abdalla, K.M.; Al-Rousan, R.; Alhassan, M.A.; Lagaros, N.D. Finite-element modelling of concrete-filled steel tube columns wrapped with CFRP. Proc. Inst. Civ. Eng.-Struct. Build. 2020, 173, 844–857. [Google Scholar] [CrossRef]
- Al-Rousan, R.Z.; Alnemrawi, B.R. Cyclic Behavior of CFRP Confined Circular CFST Damaged by Alkali-Silica Reaction. Int. J. Civ. Eng. 2023, 21, 1159–1180. [Google Scholar] [CrossRef]
- Chan, T.-M.; Huai, Y.-M.; Wang, W. Experimental investigation on lightweight concrete-filled cold-formed elliptical hollow section stub columns. J. Constr. Steel Res. 2015, 115, 434–444. [Google Scholar] [CrossRef]
- Serras, D.N.; Skalomenos, K.A.; Hatzigeorgiou, G.D.; Beskos, D.E. Modeling of circular concrete-filled steel tubes subjected to cyclic lateral loading. Structures 2016, 8, 75–93. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J.; Wang, H. Seismic Behavior of Blind Bolted CFST Frames with Semi-rigid Connections. Structures 2017, 9, 91–104. [Google Scholar] [CrossRef]
- ASTMC330/C330M−17; Standard Specification for Lightweight Aggregates for Structural Concrete. ASTM International: West Conshohocken, PA, USA, 2017.
- ACI213R-03; Guide for Structural Lightweight-Aggregate Concrete. American Concrete Institute: Farmington Hills, MI, USA, 2003.
- Zhou, Y.; Liu, X.; Xing, F.; Cui, H.; Sui, L. Axial compressive behavior of FRP-confined lightweight aggregate concrete: An experimental study and stress-strain relation model. Constr. Build. Mater. 2016, 119, 1–15. [Google Scholar] [CrossRef]
- Fu, Z.; Ji, B.; Lv, L.; Yang, M. The mechanical properties of lightweight aggregate concrete confined by steel tube. Des. Constr. Rehabil. Maint. Bridges 2011, 33–39. [Google Scholar]
- Kanagaraj, B.; Anand, N.; Praveen, B.; Kandasami, S.; Lubloy, E.; Naser, M.Z. Physical characteristics and mechanical properties of a sustainable lightweight geopolymer based self-compacting concrete with expanded clay aggregates. Dev. Built Environ. 2023, 13, 100115. [Google Scholar] [CrossRef]
- de Oliveira, W.L.A.; De Nardin, S.; de Cresce El Debs, A.L.H.; El Debs, M.K. Influence of concrete strength and length/diameter on the axial capacity of CFT columns. J. Constr. Steel Res. 2009, 65, 2103–2110. [Google Scholar] [CrossRef]
- Ekmekyapar, T.; Al-Eliwi, B.J.M. Experimental behaviour of circular concrete filled steel tube columns and design specifications. Thin-Walled Struct. 2016, 105, 220–230. [Google Scholar] [CrossRef]
- Al-Eliwi, B.J.M.; Ekmekyapar, T.; Al-Samaraie, M.I.A.; Doğru, M.H. Behavior of Reinforced Lightweight Aggregate Concrete-filled Circular Steel Tube Columns Under Axial Loading. Structures 2018, 16, 101–111. [Google Scholar] [CrossRef]
- Al-Rousan, R.; Nusier, O.; Abdalla, K.; Alhassan, M.; Lagaros, N.D. NLFEA of Sulfate-Damaged Circular CFT Steel Columns Confined with CFRP Composites and Subjected to Axial and Cyclic Lateral Loads. Buildings 2022, 12, 296. [Google Scholar] [CrossRef]
- Al-Rousan, R.Z.; Sawalha, H.M. The behavior of concrete filled steel tubular columns infilled with high-strength geopolymer recycled aggregate concrete. Steel Compos. Struct. 2024, 51, 661. [Google Scholar] [CrossRef]
- Zhong-qiu, F.; Bo-hai, J.; Lei, L.; Wen-jie, Z.J.I.-X. Behavior of lightweight aggregate concrete filled steel tubular slender columns under axial compression. Adv. Steel Constr. 2011, 7, 144–156. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, X.; Xing, F.; Li, D.; Wang, Y.; Sui, L. Behavior and modeling of FRP-concrete-steel double-skin tubular columns made of full lightweight aggregate concrete. Constr. Build. Mater. 2017, 139, 52–63. [Google Scholar] [CrossRef]
- Al-Rousan, R.Z.; Barfed, M.H. Impact of curvature type on the behavior of slender reinforced concrete rectangular column confined with CFRP composite. Compos. Part B Eng. 2019, 173, 106939. [Google Scholar] [CrossRef]
- Xue, H.; Zhao, K.; Xia, F.; Wang, G.; Shen, A. Numerical Investigation of the Ultimate Load-Carrying Capacity of Square Concrete-Filled Steel Tube Columns Considering Initial Stresses Generated during Construction. Buildings 2023, 13, 2830. [Google Scholar] [CrossRef]
- Ghannam, S.; Jawad, Y.A.; Hunaiti, Y. Failure of lightweight aggregate concrete-filled steel tubular columns. Steel Compos. Struct. 2004, 4, 1–8. [Google Scholar] [CrossRef]
- Mouli, M.; Khelafi, H. Strength of short composite rectangular hollow section columns filled with lightweight aggregate concrete. Eng. Struct. 2007, 29, 1791–1797. [Google Scholar] [CrossRef]
- Fu, Z.; Ji, B.; Zhou, Y.; Wang, X. An experimental behavior of lightweight aggregate concrete filled steel tubular stub under axial compression. Des. Constr. Rehabil. Maint. Bridges 2011, 24–32. [Google Scholar]
- EC4. Design of Composite Steel and Concrete Structures-Part 1-1: General Rules and Rules for Buildings; European Committee for Standardization: Brussels, Belgium, 2004. [Google Scholar]
- Ji, B.; Fu, Z.; Qu, T.; Wang, M. Stability behavior of lightweight aggregate concrete filled steel tubular columns under axial compression. Adv. Steel Constr. 2013, 9, 1–13. [Google Scholar] [CrossRef]
- AL-Eliwi, B.J.; Ekmekyapar, T.; Faraj, R.H.; Göǧüş, M.T.; AL-Shaar, A.A. Performance of lightweight aggregate and self-compacted concrete-filled steel tube columns. Steel Compos. Struct. 2017, 25, 299–314. [Google Scholar] [CrossRef]
- Al-Rousan, R.; Alnemrawi, B.R. NLFEA of the Behavior of Polypropylene-Fiber-Reinforced Concrete Slabs with Square Opening. Buildings 2024, 14, 480. [Google Scholar] [CrossRef]
- Memarzadeh, A.; Shahmansouri, A.A.; Poologanathan, K. A novel prediction model for post-fire elastic modulus of circular recycled aggregate concrete-filled steel tubular stub columns. Steel Compos. Struct. Int. J. 2022, 44, 309–324. [Google Scholar] [CrossRef]
- Akbarzadeh Bengar, H.; Shahmansouri, A.A. Post-fire behavior of unconfined and steel tube confined rubberized concrete under axial compression. Structures 2021, 32, 731–745. [Google Scholar] [CrossRef]
- ANSI/AISC360-16; Specification for Structural Steel Buildings. American Institute of Steel Construction: Chicago, IL, USA, 2016.
- ANSYS. ANSYS User’s Manual Revision 16.0; ANSYS, Inc.: Canonsburg, PA, USA, 2016. [Google Scholar]
- Almusallam, T.H.; Alsayed, S.H. Stress–strain relationship of normal, high-strength and lightweight concrete. Mag. Concr. Res. 1995, 47, 39–44. [Google Scholar] [CrossRef]
- Willam, K.; Warnke, E. Constitutive model for the triaxial behavior of concrete. Int. Assoc. Bridge Struct. Eng. 1975, 19, 1–30. [Google Scholar] [CrossRef]
- Roeder, C.W.; Cameron, B.; Brown, C.B. Composite Action in Concrete Filled Tubes. J. Struct. Eng. 1999, 125, 477–484. [Google Scholar] [CrossRef]
- Yu, X.; Tao, Z.; Song, T.-Y. Effect of different types of aggregates on the performance of concrete-filled steel tubular stub columns. Mater. Struct. 2016, 49, 3591–3605. [Google Scholar] [CrossRef]
- Han, L.-H.; Yao, G.-H.; Zhao, X.-L. Tests and calculations for hollow structural steel (HSS) stub columns filled with self-consolidating concrete (SCC). J. Constr. Steel Res. 2005, 61, 1241–1269. [Google Scholar] [CrossRef]
- ACI 318. Building Code Requirements for Reinforced Concrete and Commentary; American Concrete Institute: Farmington Hills, MI, USA, 2019. [Google Scholar]
- Ezeldin, A.S.; Balaguru, P.N. Normal- and High-Strength Fiber-Reinforced Concrete under Compression. J. Mater. Civ. Eng. 1992, 4, 415–429. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alnemrawi, B.R.; Al-Rousan, R. The Detailed Axial Compression Behavior of CFST Columns Infilled by Lightweight Concrete. Buildings 2024, 14, 2844. https://doi.org/10.3390/buildings14092844
Alnemrawi BR, Al-Rousan R. The Detailed Axial Compression Behavior of CFST Columns Infilled by Lightweight Concrete. Buildings. 2024; 14(9):2844. https://doi.org/10.3390/buildings14092844
Chicago/Turabian StyleAlnemrawi, Bara’a R., and Rajai Al-Rousan. 2024. "The Detailed Axial Compression Behavior of CFST Columns Infilled by Lightweight Concrete" Buildings 14, no. 9: 2844. https://doi.org/10.3390/buildings14092844
APA StyleAlnemrawi, B. R., & Al-Rousan, R. (2024). The Detailed Axial Compression Behavior of CFST Columns Infilled by Lightweight Concrete. Buildings, 14(9), 2844. https://doi.org/10.3390/buildings14092844