Mechanical Properties of Permeable Concrete Reinforced with Polypropylene Fibers for Different Water–Cement Ratios
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Coarse Aggregate Selection
2.3. Permeability
2.4. Compressive Strength
2.5. Flexural Strength
3. Analysis and Discussion of Results
3.1. Coarse Aggregate Selection
3.2. Permeability
3.3. Compressive Strength
3.4. Flexural Strength
Facture Energy
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Winnefeld, F.; Leemann, A.; German, A.; Lothenbach, B. CO2 storage in cement and concrete by mineral carbonation. Curr. Opin. Green Sustain. Chem. 2022, 38, 100672. [Google Scholar] [CrossRef]
- Mmachaka, T.; Nel, M.A.; Snow, B.; Adams, J.B. Reduction in pollution load to an urban estuary using a sustainable drainage system treatment train. Mar. Pollut. Bull. 2023, 194, 115378. [Google Scholar] [CrossRef] [PubMed]
- Fresno, D.C.; Bayón, J.R.; Hernández, J.R.; Muñoz, F.B. Sistemas Urbanos de Drenaje Sostenible (SUDS). Interciencia 2005, 30, 255–260. [Google Scholar]
- Joshi, P.; Leitão, J.; Maurer, M.; Bach, P. Not all SuDS are created equal: Impact of different approaches on combined sewer overflows. Water Res. 2021, 191, 116780. [Google Scholar] [CrossRef] [PubMed]
- AlShareedah, O.; Production, S. Pervious concrete mixture optimization, physical, and mechanical properties and pavement design: A review. J. Clean. Prod. 2021, 288, 125095. [Google Scholar] [CrossRef]
- Joshaghani, A.; Moazenian, A.; Shuaibu, R.A. Experimental Study on the Use of Trass as a Supplementary Cementitious Material in Pervious Concrete. J. Environ. Sci. Eng. A 2017, 6, 39–52. [Google Scholar] [CrossRef]
- Anand, V. Performance of Induction Motor and BLDC Motor and Design of Induction Motor driven Solar Electric Vehicle (IM-SEV). Int. J. Adv. Res. Sci. Commun. Technol. (IJARSCT) 2021, 6, 1046–1053. [Google Scholar] [CrossRef]
- Bhandwalkar, V.; Dere, T.; Patekar, V.; Magar, S. Making Porous Concrete for Rain Water Harvesting and Urban Road. Int. Res. J. Mod. Eng. Technol. Sci. 2020, 2, 2582–5208. [Google Scholar]
- Chandrappa, A.K.; Biligiri, K.P. Pervious concrete as a sustainable pavement material-Research findings and future prospects: A state-of-the-art review. Constr. Build. Mater. 2016, 111, 262–274. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Liu, G.; Peng, X. Preparation and performance evaluation of an innovative pervious concrete pavement. Constr. Build. Mater. 2017, 138, 479–485. [Google Scholar] [CrossRef]
- Huang, B.; Wu, H.; Shu, X.; Burdette, E.G. Laboratory evaluation of permeability and strength of polymer-modified pervious concrete. Constr. Build. Mater. 2010, 24, 818–823. [Google Scholar] [CrossRef]
- Torres, A.; Hu, J.; Ramos, A. The effect of the cementitious paste thickness on the performance of pervious concrete. Constr. Build. Mater. 2015, 95, 850–859. [Google Scholar] [CrossRef]
- Deo, O.; Neithalath, N. Compressive behavior of pervious concretes and a quantification of the influence of random pore structure features. Mater. Sci. Eng. A 2010, 528, 402–412. [Google Scholar] [CrossRef]
- Haselbach, L.M.; Gaither, A. Preliminary Field Testing: Urban Heat Island Impacts and Pervious Concrete. 2008. Available online: https://trid.trb.org (accessed on 20 May 2023).
- Huang, J.; Luo, Z.; Khan, M.B.E. Impact of aggregate type and size and mineral admixtures on the properties of pervious concrete: An experimental investigation. Constr. Build. Mater. 2020, 265, 120759. [Google Scholar] [CrossRef]
- Maguesvari, M.U.; Narasimha, V.L. Studies on Characterization of Pervious Concrete for Pavement Applications. Procedia Soc. Behav. Sci. 2013, 104, 198–207. [Google Scholar] [CrossRef]
- Deo, O.; Neithalath, N. Compressive response of pervious concretes proportioned for desired porosities. Constr. Build. Mater. 2011, 25, 4181–4189. [Google Scholar] [CrossRef]
- Ćosić, K.; Korat, L.; Ducman, V.; Netinger, I. Influence of aggregate type and size on properties of pervious concrete. Constr. Build. Mater. 2015, 78, 69–76. [Google Scholar] [CrossRef]
- Tennis, P.D.; Leming, M.L.; Akers, D.J. Pervious Concrete Pavements; Portland Cement Association: Skokie, IL, USA, 2004. [Google Scholar]
- ACI Committee. 522R-10: Report on Pervious Concrete; ACI Committee: Farmington Hills, MI, USA, 2010. [Google Scholar]
- Sandoval, G.F.B.; Galobardes, I.; Schwantes-Cezario, N.; Campos, A.; Toralles, B.M. Correlation between permeability and porosity for pervious concrete (PC). Dyna 2019, 86, 151–159. [Google Scholar] [CrossRef]
- Yang, J.; Jiang, G. Experimental study on properties of pervious concrete pavement materials. Cem. Concr. Res. 2003, 33, 381–386. [Google Scholar] [CrossRef]
- Rehder, B.; Banh, K.; Neithalath, N. Fracture behavior of pervious concretes: The effects of pore structure and fibers. Eng. Fract. Mech. 2014, 118, 1–16. [Google Scholar] [CrossRef]
- Kharbikar, F.V.; Pathak, S. Enhancing the strength of pervious concrete using polypropylene fiber. Innov. Ideas Educ. 2017, 3, 235–246. [Google Scholar]
- Alberti, M.G.; Gálvez, J.C.; Enfedaque, A.; Picazo, A.; Ramírez, W.J. Mixed mode fracture of polyolefin fibre reinforced concrete. Theor. Appl. Fract. Mech. 2022, 122, 103560. [Google Scholar] [CrossRef]
- Hou, W.; Zhang, G.; He, S. Fire Resistance Tests on Prestressed Concrete Box Girder with Intumescent Fire-Retardant Coatings. Fire Technol. 2022, 58, 107–131. [Google Scholar] [CrossRef]
- Alberti, M.G.; Gálvez, J.C.; Enfedaque, A.; Castellanos, R. Influence of High Temperature on the Fracture Properties of Polyolefin Fibre Reinforced Concrete. Materials 2021, 14, 601. [Google Scholar] [CrossRef]
- Moein, M.M.; Saradar, A.; Rahmati, K.; Rezakhani, Y.; Ashkan, S.A.; Karakouzian, M. Reliability analysis and experimental investigation of impact resistance of concrete reinforced with polyolefin fiber in different shapes, lengths, and doses. J. Build. Eng. 2023, 69, 106262. [Google Scholar] [CrossRef]
- Spalvier, A.; Díaz, A.; Marrero, I.; Baliosian, T.; Pielarisi, R.; Segura, L. Recomendaciones Sobre Pavimentos de Hormigón Permeable; Instituto de Estructuras y Transporte: Montevideo, Uruguay, 2021. [Google Scholar]
- NTE INEN 696:2011; Aggregates. Granulometric Analysis in Aggregates, Fine and Coarse. Instituto Ecuatoriano de Normalización: Quito, Ecuador, 2011.
- NTE INEN 858:2010; Aggregates. Determination of Unit Mass (Volumetric Weight) and Void Percentage. Instituto Ecuatoriano de Normalización: Quito, Ecuador, 2010.
- NTE INEN 856:2010; Aggregates. Determination of Density, Relative Density (Specific Gravity) and Absorption of Fine Aggregate. Instituto Ecuatoriano De Normalización: Quito, Ecuador, 2010.
- NTE INEN 857:2010; Aggregates. Determination of Density, Relative Density (Specific Gravity) and Absorption of Coarse Aggregate. Instituto Ecuatoriano De Normalización: Quito, Ecuador, 2010.
- ASTM C31/C31M; Standard Test Practice for Making and Curing Concrete Test Specimens in the Field. American Society for Testing and Materials: West Conshohocken, PA, USA, 2019.
- ASTM C39/C39M; Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. American Society for Testing and Materials: West Conshohocken, PA, USA, 2017.
- Ali, T.K.M.; Hilal, N.; Faraj, R.H.; Al-Hadithi, A.I. Properties of eco-friendly pervious concrete containing polystyrene aggregates reinforced with waste PET fibers. Innov. Infrastruct. Solut. 2020, 5, 77. [Google Scholar] [CrossRef]
- ASTM C1231/C1231M-15; Standard Practice for Use of Unbonded Caps in Determination of Compressive Strength of Hardened Cylindrical Concrete Specimens. ASTM: West Conshohocken, PA, USA, 2023. Available online: https://www.astm.org/c1231_c1231m-15.html (accessed on 15 August 2023).
- ASTM C78-09; Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading). American Society for Testing and Materials: West Conshohocken, PA, USA, 2010.
- ASTM C1609/C1609M; Standard Test Method for Flexural Perfor-mance of Fiber-Reinforced Concrete (Using Beam With Third-Point Loading). American Society for Testing and Materials: West Conshohocken, USA, 2024.
- Hung, V.V.; Seo, S.Y.; Kim, H.W.; Lee, G.C. Permeability and Strength of Pervious Concrete According to Aggregate Size and Blocking Material. Sustainability 2021, 13, 426. [Google Scholar] [CrossRef]
- Emiko, L.; Kiang Hwee, T.; Tien Fang, F. Effect of mix proportion on strength and permeability of pervious concrete for use in pavement. J. East. Asia Soc. Transp. Stud. 2013, 10, 1565–1575. [Google Scholar]
- NBR 16416; Pavimentos Permeáveis de Concreto—Requisitos e Procedimentos. Brazilian National Standards Organization: Sao Paulo, Brazil, 2015.
- Patidar, R.; Yadav, S. Experimental study of pervious concrete with polypropylene fiber. IRJET 2017, 4, 22–27. [Google Scholar]
- Hughes, B.P.; Fattuhi, N.I. Improving the toughness of high strength cement paste with fibre reinforcement. Composites 1976, 7, 185–188. [Google Scholar] [CrossRef]
- Jalixto Cuyo, B.C.; Percca Ucsa, A. Influencia de las Fibras de Polipropileno en las Propiedades Plásticas y Mecánicas del Concreto F’c=210, 280 Kg/cm2-Cusco 2021. 2021. Available online: https://hdl.handle.net/20.500.12692/74728 (accessed on 15 August 2023).
- Guevara Fallas, G.; Hidalgo Madrigal, C.; Pizarro García, M.; Rodríguez Valenciano, I.; Rojas Vega, L.D.; Segura Guzmán, G. Efecto de la variación agua/cemento en el concreto. Rev. Tecnol. Marcha 2012, 25, 80–86. [Google Scholar] [CrossRef]
- Solís-Carcaño, R.; Moreno, E.I.; Arcadia-Abad, C. Estudio de la resistencia del concreto por el efecto combinado de la relación agua-cemento, la relación grava-arena y el origen de los agregados. Rev. Tec. Fac. Ing. Univ. Zulia 2008, 31, 213–224. [Google Scholar]
- Joshi, T.; Dave, U. Evaluation of strength, permeability and void ratio of Pervious concrete with changing W/C ratio and aggregate size. Int. J. Civ. Eng. Technol. 2016, 7, 276–284. [Google Scholar]
Property | Coarse Aggregate (Gravel) | Fine Aggregate (Sand) | ||
---|---|---|---|---|
19 mm | 13 mm | 9.5 mm | ||
Fineness Modulus (%) | - | - | - | 2.530 |
Real Density (g/cm3) | 2.739 | 2.508 | 2.53 | 2.157 |
Absorption Capacity (%) | 1.940 | 2.280 | 2.50 | 2.440 |
Loose Bulk Density (kg/dm3) | 1.296 | 1.301 | 1.31 | 1.578 |
Compacted Bulk Density (kg/dm3) | 1.444 | 1.497 | 1.51 | 1.643 |
Polypropylene Fiber | Properties |
---|---|
Length (mm) | 50 |
Shape | Straight |
Density (g/cm3) | 0.91 (±0.01%) |
Modulus of Elasticity (MPa) | ≥5000 |
Tensile Strength (MPa) | ≥500 |
Elongation at Brake (%) | ≥20 |
Surface | Rough |
Dosage | P-1 | P-2 | P-3 |
---|---|---|---|
Particle size (mm) | 19.00 | 13.00 | 9.50 |
Number of Cylinders | 6.00 | 6.00 | 6.00 |
w/c | 0.41 | 0.41 | 0.41 |
Coarse Aggregate (kg/m3) | 1310.03 | 1364.26 | 1376.76 |
Fine Aggregate (kg/m3) | 143.69 | 150.06 | 151.88 |
Water (kg/m3) | 110.98 | 109.71 | 113.98 |
Cement (kg/m3) | 265.12 | 265.12 | 265.07 |
Dosage | 1PC | 1PCF | 2PC | 2PCF |
---|---|---|---|---|
Aggregate Size (mm) | 13.00 | 13.00 | 13.00 | 13.00 |
w/c Ratio | 0.30 | 0.30 | 0.35 | 0.35 |
Coarse Aggregate (kg/m3) | 1300.34 | 1300.34 | 1299.99 | 1299.99 |
Fine Aggregate (kg/m3) | 231.87 | 231.87 | 226.35 | 226.35 |
Water (kg/m3) | 104.94 | 104.94 | 113.41 | 113.41 |
Cement (kg/m3) | 349.79 | 349.78 | 324.03 | 324.03 |
Fiber (kg/m3) | - | 0.60 | - | 0.60 |
Plasticizer (kg/m3) | 1.75 | 1.75 | 1.62 | 1.62 |
Standard | Compressive Strength | Flexural Strength | Porosity | Permeability Index |
---|---|---|---|---|
MPa | MPa | % | (cm/s) | |
ACI 522R-10 | 6.8–25.0 | 2.8–3.6 | 15–30 | >0.1 |
NBR 16416/2015 | 20.0–35.0 | >1.00 | 15–30 | >0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez, W.; Mayacela, M.; Contreras, L.; Shambi, A.; Ramírez, F.; Chacón, J. Mechanical Properties of Permeable Concrete Reinforced with Polypropylene Fibers for Different Water–Cement Ratios. Buildings 2024, 14, 2935. https://doi.org/10.3390/buildings14092935
Ramírez W, Mayacela M, Contreras L, Shambi A, Ramírez F, Chacón J. Mechanical Properties of Permeable Concrete Reinforced with Polypropylene Fibers for Different Water–Cement Ratios. Buildings. 2024; 14(9):2935. https://doi.org/10.3390/buildings14092935
Chicago/Turabian StyleRamírez, Wladimir, Margarita Mayacela, Luis Contreras, Alejandra Shambi, Francisco Ramírez, and Jonatan Chacón. 2024. "Mechanical Properties of Permeable Concrete Reinforced with Polypropylene Fibers for Different Water–Cement Ratios" Buildings 14, no. 9: 2935. https://doi.org/10.3390/buildings14092935
APA StyleRamírez, W., Mayacela, M., Contreras, L., Shambi, A., Ramírez, F., & Chacón, J. (2024). Mechanical Properties of Permeable Concrete Reinforced with Polypropylene Fibers for Different Water–Cement Ratios. Buildings, 14(9), 2935. https://doi.org/10.3390/buildings14092935