Numerical Study of the Effect of Out-of-Plane Distance in the Lateral Direction at the Mid-Span of a Steel Beam on the Sectional Moment Capacity
Abstract
:1. Introduction
2. Current Design Models
3. Finite Element Model Study
3.1. Modeling and Characteristics of Steel Materials
3.2. Model Studies of Structure
3.3. Selection of the Optimal Mesh Size for Element Convergence
4. Verifying Results from FEM Modeling and Current Design Codes
4.1. Verifying Results from FEM
4.2. Verifying Results from Current Design Codes
5. Results and Discussion
5.1. Bending Moment and Deflection Relationship
5.2. Shape of Deformations and Stress Distribution
5.3. Effect of Variables and Out-of-Plane Distance on Beam Efficiency
5.3.1. Effect of Beam Cross-Sectional Dimensions
5.3.2. Effect of Beam Length
5.3.3. Steel Yield Stress Effect
5.3.4. Effect of Out-of-Plane Distance on Range and Rate of Change for All Variables
5.4. The Discussion
6. Prediction of Beam Capacity with Out-of-Plane Distance
7. Conclusions
- The existing design codes were used to predict the BFIB beam capacity without out-of-plane distance in the compact category; both the FEM simulation results and the experimental test results were less than the steel beam capacity.
- The existing design codes were used to predict the beam capacity, and any application of the out-of-plane distance was more than the steel beam capacity, i.e., they were on the unsafe side of the design.
- The reduction ratios of the ultimate moment capacity in out-of-plane BFIB steel beams were directly proportional to the out-of-plane distance, cross-sectional dimensions, and yield stress of the steel beams, while the length of the steel beams had no effect.
- The effect of cross-sectional dimensions and steel yield stress on the reduction ratios was nonlinear, except for the out-of-plane distance which was linear.
- When an out-of-plane distance of 300 mm was applied to the BFIB-300 steel beam, this distance was only equal to the width of the cross-section flange of the steel beam; the reduction ratio in the ultimate moment capacity was 0.60. As the cross-sectional dimensions increased, the reduction ratio increased, reaching 0.50 with the BFIB-600 steel beam.
- In steel beams that contain an out-of-plane distance, failure is always due to the concentration of compressive stresses at the inner edge; there is a concentration of tensile stresses at the outer edge of the upper flange at the point of contact with the out-of-plane distance that results from global buckling along the entire length of the beam.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, C.H.; Han, K.H.; Uang, C.M.; Kim, D.-K.; Park, C.-H.; Kim, J.-H. Flexural strength and rotation capacity of I-shaped beams fabricated from 800 MPa steel. J. Struct. Eng. 2013, 139, 1043–1058. [Google Scholar] [CrossRef]
- Thomas, S.J.; Earls, C.J. Cross-sectional compactness and bracing requirements for HPS483W girders. J. Struct. Eng. 2003, 129, 1569–1583. [Google Scholar] [CrossRef]
- Han, Y.; Li, N.; Zhang, G. Study on flexural behavior of corroded i-shaped steel beams strengthened with hybrid CFRP/GFRP sheets. Materials 2023, 16, 5080. [Google Scholar] [CrossRef]
- Earls, C.J.; Shah, B.J. High performance steel bridge girder compactness. J. Constr. Steel Res. 2002, 58, 859–880. [Google Scholar] [CrossRef]
- Green, P.S.; Sause, R.; Ricles, J.M. Strength and ductility of HPS flexural members. J. Constr. Steel Res. 2002, 58, 907–941. [Google Scholar] [CrossRef]
- Earls, C.J. Uniform moment behavior of high performance steel I-shaped beams. J. Constr. Steel Res. 2001, 57, 711–728. [Google Scholar] [CrossRef]
- Xue, J.; Ma, S.; Chen, X.; Wu, Q.; Wang, Y.; Wang, Y.; Akbar, M.; Yang, N. Experimental investigation and design of novel hollow flange beams under bending. Buildings 2024, 14, 1413. [Google Scholar] [CrossRef]
- El-Mahdy, G.M.; El-Saadaway, M.M. Ultimate strength of singly symmetric I-section steel beams with variable flange ratio. Thin-Walled Struct. 2015, 87, 149–157. [Google Scholar] [CrossRef]
- Hamoda, A.; Yehia, S.A.; Ahmed, M.; Sennah, K.; Abadel, A.A.; Shahin, R.I. Experimental and numerical investigation of shear strengthening of simply supported deep beams incorporating stainless steel plates. Buildings 2024, 14, 3680. [Google Scholar] [CrossRef]
- Elamary, A.S.; Mohamed, M.A.; Sharaky, I.A.; Mohamed, A.K.; Alharthi, Y.M.; Ali, M.A.M. Utilizing artificial intelligence approaches to determine the shear strength of steel beams with flat webs. Metals 2023, 13, 232. [Google Scholar] [CrossRef]
- Nikoomanesh, M.R.; Goudarzi, M.A. Experimental and numerical evaluation of shear load capacity for sinusoidal corrugated web girders. Thin-Walled Struct. 2020, 153, 106798. [Google Scholar] [CrossRef]
- Jáger, B.; Kövesdi, B.; Dunai, L. Numerical investigations on bending and shear buckling interaction of I-Girders with slender WEB. Thin-Walled Struct. 2019, 143, 106199. [Google Scholar] [CrossRef]
- Lim, J.; Kang, Y.-J.; Lee, J.; Kim, S.; Lee, K. Experimental and analytical study of horizontally curved i-girders subjected to equal end moments. Metals 2021, 11, 1132. [Google Scholar] [CrossRef]
- Andrade, A.; Camotim, D. Lateral-torsional buckling of singly symmetric web-tapered beams: Theory and application. J. Eng. Mech. ASCE 2005, 131, 586–597. [Google Scholar] [CrossRef]
- Andrade, A.; Camotim, D.; Dinis, P.B. Lateral-torsional buckling of singly symmetric web-tapered thin-walled I-beams: 1D model vs. shell FEA. Comput. Struct. 2007, 85, 1343–1359. [Google Scholar] [CrossRef]
- Mascolo, I.; Modano, M.; Fiorillo, A.; Fulgione, M.; Pasquino, V.; Fraternali, F. Experimental and numerical study on the lateral-torsional buckling of steel c-beams with variable cross-section. Metals 2018, 8, 941. [Google Scholar] [CrossRef]
- Asgarian, B.; Soltani, M.; Mohri, F. Lateral-torsional buckling of tapered thin-walled beams with arbitrary cross-sections. Thin-Walled Struct. 2013, 62, 96–108. [Google Scholar] [CrossRef]
- Tan, L.; Zhou, Y.; Kong, H.; Yue, Z.; Wang, Q.; Zhou, L. Dynamic monitoring of steel beam stress based on PMN-PT sensor. Buildings 2024, 14, 2831. [Google Scholar] [CrossRef]
- Sayed, A.M. Numerical study of the effects of flange damage on the steel beam capacity under static and fatigue flexural loads. Results Eng. 2023, 17, 100835. [Google Scholar] [CrossRef]
- Nasery, M.M. Investigation on behaviours along weak axes of steel beam under low velocity impact loading: Experimental and numerical. Buildings 2023, 13, 2331. [Google Scholar] [CrossRef]
- Narendra, P.V.R.; Singh, K.D. Elliptical hollow section steel cantilever beams under extremely low cycle fatigue flexural load–a finite element study. Thin-Walled Struct. 2017, 119, 126–150. [Google Scholar] [CrossRef]
- Yuan, H.X.; Wang, Y.Q.; Gardner, L.; Shi, Y.J. Local-overall interactive buckling of welded stainless steel box section compression members. Eng. Struct. 2014, 67, 62–76. [Google Scholar] [CrossRef]
- Cai, M.; Liu, S.; Wang, F. Temperature effect of composite girders with corrugated steel webs considering local longitudinal stiffness of webs. Buildings 2024, 14, 1939. [Google Scholar] [CrossRef]
- Abed, F.; Abdul-Latif, A.; Yehia, A. Experimental study on the mechanical behavior of en08 steel at different temperatures and strain rates. Metals 2018, 8, 736. [Google Scholar] [CrossRef]
- Hu, W.; Zhang, Z.; Shi, J.; Chen, Y.; Li, Y.; Feng, Q. Refined analysis of spatial three-curved steel box girder bridge and temperature stress prediction based on WOA-BPNN. Buildings 2024, 14, 415. [Google Scholar] [CrossRef]
- Saliba, N.; Real, E.; Gardner, L. Shear design recommendations for stainless steel plate girders. Eng. Struct. 2014, 59, 220–228. [Google Scholar] [CrossRef]
- EN 1993-1-4; Eurocode 3: Design of Steel Structures–Part 1.4: General Rules Supplementary Rules for Stainless Steel. CEN: Brussels, Belgium, 2006.
- EN 1993-1-5; Eurocode 3: Design of Steel Structures–Part 1.5: Plated Structural Elements. CEN: Brussels, Belgium, 2006.
- Sayed, A.M.; Aljarbou, M.H. Numerical study of the effect of circular openings in the upper surface of rectangular hollow flange steel beams on the sectional moment capacity. Results Eng. 2024, 24, 103620. [Google Scholar] [CrossRef]
- Perera, N.; Mahendran, M. Section moment capacity tests of hollow flange steel plate girders. J. Constr. Steel Res. 2018, 148, 97–111. [Google Scholar] [CrossRef]
- Graciano, C. Strength of longitudinally stiffened webs subjected to concentrated loading. J. Struct. Eng. 2005, 131, 268–278. [Google Scholar] [CrossRef]
- Silwal, P.K.; Parvin, A.; Alhusban, M. Numerical investigation on strengthening of steel beams for corrosion damage or web openings using carbon fiber reinforced polymer sheets. Buildings 2024, 14, 1069. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, S.; Feng, S.; Fan, D.; Zhang, F.; Cao, H. Study on the bending performance of prefabricated h-shaped steel beams with different bolt hole types. Buildings 2024, 14, 2988. [Google Scholar] [CrossRef]
- Yu, N.T.; Kim, B.; Yuan, W.B.; Li, L.Y.; Yu, F. An analytical solution of distortional buckling resistance of cold-formed steel channel-section beams with web openings. Thin-Walled Struct. 2019, 135, 446–452. [Google Scholar] [CrossRef]
- El-Ariss, B.; Elkholy, S. Feasibility of reusing damaged steel beams in temporary structures. Infrastructures 2021, 6, 69. [Google Scholar] [CrossRef]
- Hou, W.; Wang, L.; Shi, D. Flexural behaviour of strengthened damaged steel beams using carbon fibre-reinforced polymer sheets. Sci. Rep. 2022, 12, 10134. [Google Scholar] [CrossRef]
- Kumar, S.; Gupta, P.K.; Iqbal, M.A. Experimental and numerical study on self-compacting alkali-activated slag concrete-filled steel tubes. J. Constr. Steel Res. 2024, 214, 108453. [Google Scholar] [CrossRef]
- Wang, Y.-B.; Li, G.-Q.; Chen, S.-W.; Sun, F.-F. Experimental and numerical study on the behavior of axially compressed high strength steel box-columns. Eng. Struct. 2014, 58, 79–91. [Google Scholar] [CrossRef]
- Rabi, M.; Ferreira, F.P.V.; Abarkan, I.; Limbachiya, V.; Shamass, R. Prediction of the cross-sectional capacity of cold-formed CHS using numerical modelling and machine learning. Results Eng. 2023, 17, 100902. [Google Scholar] [CrossRef]
- Al-Kaseasbeh, Q. Analysis of hydrocarbon fire-exposed cold-formed steel columns. Results Eng. 2023, 20, 101400. [Google Scholar] [CrossRef]
- Chan, C.L.; Khalid, Y.A.; Sahari, B.B.; Hamouda, A.M.S. Finite element analysis of corrugated web beams under bending. J. Constr. Steel Res. 2002, 58, 1391–1406. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Chen, Y. Experimental study and finite element analysis of square stub columns with straight ribs of concrete-filled thin-walled steel tube. J. Build. Struct. 2006, 27, 16–22. [Google Scholar]
- Shao, Y.B.; Mohamed, H.S.; Wang, L.; Wu, C.S. Experimental and numerical investigation on stiffened rectangular hollow flange beam. Int. J. Steel Struct. 2020, 20, 1564–1581. [Google Scholar] [CrossRef]
- Erdal, F.; Tunca, O.; Tas, S.; Ozcelik, R. Experimental and finite element study of optimal designed steel corrugated web beams. Adv. Struct. Eng. 2021, 24, 1814–1827. [Google Scholar] [CrossRef]
- Isleem, H.F.; Chukka, N.D.K.R.; Bahrami, A.; Oyebisi, S.; Kumar, R.; Qiong, T. Nonlinear finite element and analytical modelling of reinforced concrete filled steel tube columns under axial compression loading. Results Eng. 2023, 19, 101341. [Google Scholar] [CrossRef]
- Uzzaman, A.; Lim, J.B.P.; Nash, D.; Rhodes, J.; Young, B. Cold-formed steel sections with web openings subjected to web crippling under two-flange loading conditions—Part I: Tests and finite element analysis. Thin-Walled Struct. 2012, 56, 38–48. [Google Scholar] [CrossRef]
- Xue, J.; Ma, S.; Chen, X.; Wu, Q.; Akbar, M. Finite element modeling of assembling rivet-fastened rectangular hollow flange beams in bending. J. Constr. Steel Res. 2023, 211, 108177. [Google Scholar] [CrossRef]
- Senapati, S.; Sangle, K.K. Nonlinear static analysis of cold-formed steel frame with rigid connections. Results Eng. 2022, 15, 100503. [Google Scholar] [CrossRef]
- Perera, N.; Mahendran, M. Finite element analysis and design for section moment capacities of hollow flange steel plate girders. Thin-Walled Struct. 2019, 135, 356–375. [Google Scholar] [CrossRef]
- Tao, Z.; Wang, Z.-B.; Yu, Q. Finite element modelling of concrete-filled steel stub columns under axial compression. J. Construct. Steel Res. 2013, 89, 121–131. [Google Scholar] [CrossRef]
- ANSI/AISC 360-22; Specification for Structural Steel Buildings. American Institute of Steel Construction: Chicago, IL, USA, 2022.
- EN 1993-1-1: 2005; Eurocode 3: Design of Steel Structures-Part 1-1: General Rules and Rules for Buildings. European Committee for Standardization: Brussels, Belgium, 2005.
- ANSYS. ANSYS Help User’s Manual, Version 22; Swanson Analysis Systems, Inc.: Technology Drive Canonsburg, PA, USA, 2022. [Google Scholar]
- Sayed, A.M.; Alanazi, H. Performance of steel metal prepared using different welding cooling methods. Case Stud. Constr. Mater. 2022, 16, e00953. [Google Scholar] [CrossRef]
- Shi, Y.; Xu, K.; Shi, G.; Li, Y. Local buckling behavior of high strength steel welded I-section flexural members under uniform moment. Adv. Struct. Eng. 2018, 21, 93–108. [Google Scholar] [CrossRef]
- Shokouhian, M.; Shi, Y.J. Flexural strength of hybrid steel I-beams based on slenderness. Eng. Struct. 2015, 93, 114–128. [Google Scholar] [CrossRef]
- Yang, B.; Dong, M.; Han, Q.; Elchalakani, M.; Xiong, G. Flexural behavior and rotation capacity of welded i-beams made from 690-mpa high-strength steel. J. Struct. Eng. 2021, 147, 04020320. [Google Scholar] [CrossRef]
- Saliba, N.; Gardner, L. Experimental study of the shear response of lean duplex stainless steel plate girders. Eng. Struct. 2013, 46, 375–391. [Google Scholar] [CrossRef]
- Beg, D.; Hladnik, L. Slenderness limit of class 3 I cross-sections made of high strength steel. J. Constr. Steel Res. 1996, 38, 201–217. [Google Scholar] [CrossRef]
- Xiong, G.; Kang, S.-B.; Yang, B.; Wang, S.; Bai, J.; Nie, S.; Hu, Y.; Dai, G. Experimental and numerical studies on lateral torsional buckling of welded Q460GJ structural steel beams. Eng. Struct. 2016, 126, 1–14. [Google Scholar] [CrossRef]
Sayed and Alanazi [54] | Shi et al. [55] | Shokouhian and Shi [56] | Yang et al. [57] | ||||||
---|---|---|---|---|---|---|---|---|---|
fy = 282 MPa | fy = 557 MPa | fy = 408.2 MPa | fy = 769 MPa | fy = 754 MPa | |||||
Stress (MPa) | Strain | Stress (MPa) | Strain | Stress (MPa) | Strain | Stress (MPa) | Strain | Stress (MPa) | Strain |
282 | 0.0013 | 557.00 | 0.0027 | 408.20 | 0.0021 | 769.00 | 0.0040 | 754.00 | 0.0039 |
291 | 0.0143 | 563.16 | 0.0063 | 414.13 | 0.0090 | 782.84 | 0.0128 | 767.86 | 0.0082 |
301 | 0.0279 | 570.51 | 0.0096 | 442.08 | 0.0180 | 787.86 | 0.0256 | 776.42 | 0.0126 |
317 | 0.0439 | 609.69 | 0.0199 | 474.90 | 0.0297 | 799.14 | 0.0352 | 780.99 | 0.0165 |
347 | 0.0825 | 640.44 | 0.0312 | 502.04 | 0.0430 | 811.14 | 0.0579 | 792.94 | 0.0279 |
369 | 0.1262 | 673.73 | 0.0491 | 526.75 | 0.0648 | 815.18 | 0.0823 | 800.38 | 0.0395 |
376 | 0.1543 | 693.70 | 0.0731 | 529.50 | 0.0934 | 816.00 | 0.0987 | 811.00 | 0.0718 |
377 | 0.1795 | 695.58 | 0.1079 | 527.00 | 0.1400 | 815.75 | 0.1125 | 799.24 | 0.1000 |
339 | 0.1946 | 687.32 | 0.1266 | 515.50 | 0.2200 | 807.91 | 0.1266 | 775.00 | 0.1168 |
299 | 0.2057 | 672.82 | 0.1428 | 481.00 | 0.2475 | 772.48 | 0.1487 | 747.88 | 0.1312 |
E = 211 GPa | E = 206 GPa | E = 197.6 GPa | E = 190.8 GPa | E = 194.9 GPa |
FE Model Based on | Beam Specimens | Steel Beam Dimensions | fyf (MPa) | fyw (MPa) | |||||
---|---|---|---|---|---|---|---|---|---|
bf (mm) | tf (mm) | dw (mm) | tw (mm) | L (mm) | a (mm) | ||||
Shi et al. [55] | I-460-1 | 167.8 | 13.87 | 520.9 | 11.96 | 3400 | 1000 | 557.0 | 510.5 |
I-460-2 | 260.1 | 13.94 | 610.8 | 12.08 | 3400 | 1000 | 557.0 | 510.5 | |
I-890-3 | 166.5 | 6.35 | 661.0 | 6.17 | 2000 | 600 | 886.0 | 886.0 | |
Saliba and Gardner [58] | I-600 × 200 × 12 × 10-1 | 200.1 | 12.4 | 599.2 | 10.2 | 1360 | 600 | 484.0 | 433.0 |
I-600 × 200 × 12 × 8-2 | 199.8 | 12.3 | 600.0 | 8.4 | 2560 | 1200 | 484.0 | 431.0 | |
I-600 × 200 × 12 × 10-2 | 200.4 | 12.6 | 600.1 | 10.6 | 2560 | 1200 | 484.0 | 433.0 | |
I-600 × 200 × 12 × 15-2 | 200.1 | 15.3 | 599.0 | 15.0 | 2560 | 1200 | 484.0 | 564.0 | |
Shokouhian and Shi [56] | C1 | 169.0 | 11.91 | 357.4 | 7.87 | 3399 | 1000 | 408.2 | 442.8 |
C2 | 263.6 | 11.85 | 358.48 | 7.82 | 3401 | 1000 | 408.2 | 442.8 | |
Yang et al. [57] | Y1-3 | 178.98 | 13.59 | 373.26 | 9.57 | 3500 | 1500 | 769.0 | 781.0 |
Y2-3 | 197.47 | 13.63 | 372.44 | 9.63 | 3500 | 1500 | 769.0 | 781.0 | |
Y6-3 | 201.46 | 13.50 | 323.94 | 9.65 | 3500 | 1500 | 769.0 | 781.0 | |
Y8-3 | 159.95 | 16.10 | 319.15 | 9.64 | 3500 | 1500 | 754.0 | 781.0 | |
Y9-3 | 159.15 | 16.26 | 370.11 | 9.90 | 3500 | 1500 | 754.0 | 781.0 | |
Y10-3 | 177.81 | 16.03 | 369.95 | 9.81 | 3500 | 1500 | 754.0 | 781.0 | |
Y12-4 | 177.40 | 16.38 | 320.19 | 9.50 | 4000 | 1200 | 754.0 | 781.0 | |
Y13-4 | 159.34 | 16.35 | 368.8 | 9.68 | 4000 | 1200 | 754.0 | 781.0 | |
Y14-4 | 182.36 | 16.11 | 368.32 | 9.51 | 4000 | 1200 | 754.0 | 781.0 | |
Beg and Hladnik [59] | B1 | 271.00 | 12.40 | 222.70 | 10.40 | 5000 | 1800 | 797.0 | 775 |
C1 | 251.00 | 12.60 | 221.30 | 10.40 | 5000 | 1800 | 776.0 | 775 | |
D1 | 220.80 | 12.40 | 220.90 | 10.40 | 5000 | 1800 | 873.0 | 830 | |
E1 | 198.80 | 12.60 | 220.70 | 10.40 | 5000 | 1800 | 797.0 | 830 | |
Xiong et al. [60] | C1 | 180.17 | 10.48 | 249.26 | 9.01 | 5000 | 2500 | 525.0 | 541.0 |
C2 | 179.19 | 10.49 | 247.74 | 9.00 | 6000 | 3000 | 525.0 | 541.0 | |
C3 | 179.15 | 10.47 | 431.03 | 8.79 | 5000 | 2500 | 525.0 | 541.0 |
FE Model Based on | Beam Specimens | ANSI/AISC 360-22 [51] | Eurocode-3 [52] | ||||
---|---|---|---|---|---|---|---|
Flange | Web | Section | Flange | Web | Section | ||
Shi et al. [55] | I-460-1 | C | C | C | Class-1 | Class-1 | Class-1 |
I-460-2 | NC | C | NC | Class-3 | Class-2 | Class-3 | |
I-890-3 | NC | S | S | Class-4 | Class-4 | Class-4 | |
Saliba and Gardner [58] | I-600 × 200 × 12 × 10-1 | NC | C | NC | Class-3 | Class-2 | Class-3 |
I-600 × 200 × 12 × 8-2 | NC | C | NC | Class-3 | Class-3 | Class-3 | |
I-600 × 200 × 12 × 10-2 | NC | C | NC | Class-3 | Class-2 | Class-3 | |
I-600 × 200 × 12 × 15-2 | C | C | C | Class-2 | Class-1 | Class-2 | |
Shokouhian and Shi [56] | C1 | C | C | C | Class-2 | Class-1 | Class-2 |
C2 | NC | C | NC | Class-4 | Class-1 | Class-4 | |
Yang et al. [57] | Y1-3 | NC | C | NC | Class-3 | Class-1 | Class-3 |
Y2-3 | NC | C | NC | Class-3 | Class-1 | Class-3 | |
Y6-3 | NC | C | NC | Class-3 | Class-1 | Class-3 | |
Y8-3 | C | C | C | Class-1 | Class-1 | Class-1 | |
Y9-3 | C | C | C | Class-1 | Class-1 | Class-1 | |
Y10-3 | C | C | C | Class-2 | Class-1 | Class-2 | |
Y12-4 | C | C | C | Class-2 | Class-1 | Class-2 | |
Y13-4 | C | C | C | Class-1 | Class-1 | Class-1 | |
Y14-4 | C | C | C | Class-2 | Class-1 | Class-2 | |
Beg and Hladnik [59] | B1 | NC | C | NC | Class-4 | Class-1 | Class-4 |
C1 | NC | C | NC | Class-4 | Class-1 | Class-4 | |
D1 | NC | C | NC | Class-4 | Class-1 | Class-4 | |
E1 | NC | C | NC | Class-4 | Class-1 | Class-4 | |
Xiong et al. [60] | C1 | NC | C | NC | Class-3 | Class-1 | Class-3 |
C2 | NC | C | NC | Class-3 | Class-1 | Class-3 | |
C3 | NC | C | NC | Class-3 | Class-2 | Class-3 |
Beam Specimens | Steel Beam Cross-Section Dimensions (mm) | fy (MPa) | Cases of Out-of-Plane Distance, OOP, (mm) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
bf | tf | dw | tw | L | a | 1 | 2 | 3 | 4 | 5 | 6 | 7 | ||
BFIB500-L10-Fy282 | 300 | 30 | 440 | 16 | 10,000 | 5000 | 282 | 300 | 400 | 500 | 600 | 800 | 1000 | 2000 |
BFIB500-L9-Fy282 | 300 | 30 | 440 | 16 | 9000 | 4500 | 282 | 300 | 400 | 500 | 600 | 800 | 1000 | 2000 |
BFIB500-L8-Fy282 | 300 | 30 | 440 | 16 | 8000 | 4000 | 282 | 300 | 400 | 500 | 600 | 800 | 1000 | 2000 |
BFIB500-L6-Fy282 | 300 | 30 | 440 | 16 | 6000 | 3000 | 282 | 300 | 400 | 500 | 600 | 800 | 1000 | 2000 |
BFIB300-L10-Fy282 | 300 | 20 | 276 | 12 | 10,000 | 5000 | 282 | 300 | 400 | 500 | 600 | 800 | 1000 | 2000 |
BFIB300-L9-Fy282 | 300 | 20 | 276 | 12 | 9000 | 4500 | 282 | 300 | 400 | 500 | --- | --- | --- | --- |
BFIB300-L8-Fy282 | 300 | 20 | 276 | 12 | 8000 | 4000 | 282 | 300 | 400 | 500 | --- | --- | --- | --- |
BFIB300-L6-Fy282 | 300 | 20 | 276 | 12 | 6000 | 3000 | 282 | 300 | 400 | 500 | --- | --- | --- | --- |
BFIB400-L10-Fy282 | 300 | 26 | 348 | 14 | 10,000 | 5000 | 282 | 300 | 400 | 500 | 600 | 800 | 1000 | 2000 |
BFIB400-L9-Fy282 | 300 | 26 | 348 | 14 | 9000 | 4500 | 282 | 300 | 400 | 500 | --- | --- | --- | --- |
BFIB400-L8-Fy282 | 300 | 26 | 348 | 14 | 8000 | 4000 | 282 | 300 | 400 | 500 | --- | --- | --- | --- |
BFIB400-L6-Fy282 | 300 | 26 | 348 | 14 | 6000 | 3000 | 282 | 300 | 400 | 500 | --- | --- | --- | --- |
BFIB600-L10-Fy282 | 300 | 32 | 536 | 17 | 10,000 | 5000 | 282 | 300 | 400 | 500 | 600 | 800 | 1000 | 2000 |
BFIB600-L9-Fy282 | 300 | 32 | 536 | 17 | 9000 | 4500 | 282 | 300 | 400 | 500 | --- | --- | --- | --- |
BFIB600-L8-Fy282 | 300 | 32 | 536 | 17 | 8000 | 4000 | 282 | 300 | 400 | 500 | --- | --- | --- | --- |
BFIB600-L6-Fy282 | 300 | 32 | 536 | 17 | 6000 | 3000 | 282 | 300 | 400 | 500 | --- | --- | --- | --- |
BFIB500-L10-fy408 | 300 | 30 | 440 | 16 | 10,000 | 5000 | 408 | 300 | 400 | 500 | 600 | 800 | 1000 | 2000 |
BFIB500-L10-fy557 | 300 | 30 | 440 | 16 | 10,000 | 5000 | 557 | 300 | 400 | 500 | 600 | 800 | 1000 | 2000 |
BFIB500-L10-fy769 | 300 | 30 | 440 | 16 | 10,000 | 5000 | 769 | 300 | 400 | 500 | 600 | 800 | 1000 | 2000 |
FE Model Based on | Beam Specimens | Mu.Exp (kN.m) | FEM Results | Eurocode-3 | ANSI/AISC 360-22 | |||
---|---|---|---|---|---|---|---|---|
Mu.FEM (kN.m) | Mu.FEM/Mu.Exp | MEC3 (kN.m) | MEC3/Mu.Exp | MAISC (kN.m) | MAISC/Mu.Exp | |||
Shi et al. [55] | I-460-1 | 1225.40 | 1220.71 | 0.996 | 1107.42 | 0.904 | 1107.42 | 0.904 |
I-460-2 | 1999.70 | 2029.06 | 1.015 | 1634.49 | 0.817 | 1802.57 | 0.901 | |
I-890-3 | 797.10 | 804.00 | 1.009 | 778.91 | 0.977 | 778.91 | 0.977 | |
Saliba and Gardner [58] | I-600 × 200 × 12 × 10-1 | 1102.80 | 1126.05 | 1.021 | 1003.66 | 0.910 | 1054.88 | 0.957 |
I-600 × 200 × 12 × 8-2 | 1172.00 | 1184.33 | 1.011 | 948.38 | 0.809 | 1053.68 | 0.899 | |
I-600 × 200 × 12 × 10-2 | 1395.00 | 1380.12 | 0.989 | 1029.32 | 0.738 | 1163.15 | 0.834 | |
I-600 × 200 × 12 × 15-2 | 2162.00 | 2139.76 | 0.990 | 1669.12 | 0.772 | 1669.12 | 0.772 | |
Shokouhian and Shi [56] | C1 | 447.91 | 455.66 | 1.017 | 414.72 | 0.926 | 414.72 | 0.926 |
C2 | 616.70 | 613.08 | 0.994 | 502.49 | 0.815 | 572.10 | 0.928 | |
Yang et al. [57] | Y1-3 | 1012.23 | 1037.91 | 1.025 | 858.61 | 0.848 | 976.23 | 0.964 |
Y2-3 | 1117.22 | 1149.06 | 1.028 | 931.68 | 0.834 | 1043.37 | 0.934 | |
Y6-3 | 962.23 | 957.55 | 0.995 | 798.76 | 0.830 | 887.64 | 0.922 | |
Y8-3 | 955.01 | 964.44 | 1.010 | 842.67 | 0.882 | 842.67 | 0.882 | |
Y9-3 | 1158.33 | 1191.08 | 1.028 | 1018.66 | 0.879 | 1018.66 | 0.879 | |
Y10-3 | 1230.55 | 1251.79 | 1.017 | 1091.67 | 0.887 | 1091.67 | 0.887 | |
Y12-4 | 1065.00 | 1034.81 | 0.972 | 927.58 | 0.871 | 927.58 | 0.871 | |
Y13-4 | 1184.36 | 1179.61 | 0.996 | 1013.63 | 0.856 | 1013.63 | 0.856 | |
Y14-4 | 1274.40 | 1290.05 | 1.012 | 1103.45 | 0.866 | 1103.45 | 0.866 | |
Beg and Hladnik [59] | B1 | 703.80 | 724.61 | 1.030 | 515.43 | 0.732 | 670.31 | 0.952 |
C1 | 646.20 | 640.70 | 0.991 | 506.92 | 0.784 | 614.36 | 0.951 | |
D1 | 644.40 | 638.66 | 0.991 | 518.41 | 0.804 | 620.38 | 0.963 | |
E1 | 559.80 | 567.00 | 1.013 | 502.72 | 0.898 | 515.72 | 0.921 | |
Xiong et al. [60] | C1 | 335.3 | 344.88 | 1.029 | 292.81 | 0.873 | 313.81 | 0.936 |
C2 | 326.39 | 324.12 | 0.993 | 289.58 | 0.887 | 301.58 | 0.924 | |
C5 | 634.68 | 631.40 | 0.995 | 561.05 | 0.884 | 574.05 | 0.904 |
FEM Specimens | OOP (mm) | Shear Span (m) | FEM Results | ANSI/AISC 360-22 [51] Eurocode-3 [52] | ||
---|---|---|---|---|---|---|
MFEM (kN.m) | MOOP/Mwoop | MCode (kN.m) | MCode/MFEM | |||
BFIB500-L10-fy282-without OOP | 0 | 5.0 | 1648.57 | 1.00 | 1442.40 | 0.87 |
BFIB500-L10-fy282-OOP300 | 300 | 5.0 | 905.30 | 0.55 | --- | 1.59 |
BFIB500-L10-fy282-OOP400 | 400 | 5.0 | 561.24 | 0.34 | --- | 2.57 |
BFIB500-L10-fy282-OOP500 | 500 | 5.0 | 437.09 | 0.27 | --- | 3.30 |
BFIB500-L10-fy282-OOP600 | 600 | 5.0 | 337.79 | 0.20 | --- | 4.27 |
BFIB500-L10-fy282-OOP800 | 800 | 5.0 | 247.05 | 0.15 | --- | 5.84 |
BFIB500-L10-fy282-OOP1000 | 1000 | 5.0 | 169.49 | 0.10 | --- | 8.51 |
BFIB500-L10-fy282-OOP2000 | 2000 | 5.0 | 117.27 | 0.07 | --- | 12.30 |
BFIB500-L9-fy282-without OOP | 0 | 4.5 | 1700.46 | 1.00 | 1442.40 | 0.85 |
BFIB500-L9-fy282-OOP300 | 300 | 4.5 | 902.65 | 0.53 | --- | 1.60 |
BFIB500-L9-fy282-OOP400 | 400 | 4.5 | 563.22 | 0.33 | --- | 2.56 |
BFIB500-L9-fy282-OOP500 | 500 | 4.5 | 435.76 | 0.26 | --- | 3.31 |
BFIB500-L9-fy282-OOP600 | 600 | 4.5 | 336.89 | 0.20 | --- | 4.28 |
BFIB500-L9-fy282-OOP800 | 800 | 4.5 | 249.01 | 0.15 | --- | 5.79 |
BFIB500-L9-fy282-OOP1000 | 1000 | 4.5 | 169.70 | 0.10 | --- | 8.50 |
BFIB500-L9-fy282-OOP2000 | 2000 | 4.5 | 117.18 | 0.07 | --- | 12.31 |
BFIB500-L8-fy282-without OOP | 0 | 4.0 | 1695.00 | 1.00 | 1442.40 | 0.85 |
BFIB500-L8-fy282-OOP300 | 300 | 4.0 | 914.66 | 0.54 | --- | 1.58 |
BFIB500-L8-fy282-OOP400 | 400 | 4.0 | 558.53 | 0.33 | --- | 2.58 |
BFIB500-L8-fy282-OOP500 | 500 | 4.0 | 439.43 | 0.26 | --- | 3.28 |
BFIB500-L8-fy282-OOP600 | 600 | 4.0 | 335.27 | 0.20 | --- | 4.30 |
BFIB500-L8-fy282-OOP800 | 800 | 4.0 | 247.38 | 0.15 | --- | 5.83 |
BFIB500-L8-fy282-OOP1000 | 1000 | 4.0 | 168.90 | 0.10 | --- | 8.54 |
BFIB500-L8-fy282-OOP2000 | 2000 | 4.0 | 117.18 | 0.07 | --- | 12.31 |
BFIB500-L6-fy282-without OOP | 0 | 3.0 | 1691.78 | 1.00 | 1442.40 | 0.85 |
BFIB500-L6-fy282-OOP300 | 300 | 3.0 | 918.72 | 0.54 | --- | 1.57 |
BFIB500-L6-fy282-OOP400 | 400 | 3.0 | 564.39 | 0.33 | --- | 2.56 |
BFIB500-L6-fy282-OOP500 | 500 | 3.0 | 439.43 | 0.26 | --- | 3.28 |
BFIB500-L6-fy282-OOP600 | 600 | 3.0 | 336.28 | 0.20 | --- | 4.29 |
BFIB500-L6-fy282-OOP800 | 800 | 3.0 | 248.69 | 0.15 | --- | 5.80 |
BFIB500-L6-fy282-OOP1000 | 1000 | 3.0 | 169.10 | 0.10 | --- | 8.53 |
BFIB500-L6-fy282-OOP2000 | 2000 | 3.0 | 117.18 | 0.07 | --- | 12.31 |
BFIB300-L10-fy282-without OOP | 0 | 5.0 | 614.00 | 1.00 | 541.23 | 0.88 |
BFIB300-L10-fy282-OOP300 | 300 | 5.0 | 369.82 | 0.60 | --- | 1.46 |
BFIB300-L10-fy282-OOP400 | 400 | 5.0 | 262.61 | 0.43 | --- | 2.06 |
BFIB300-L10-fy282-OOP500 | 500 | 5.0 | 207.80 | 0.34 | --- | 2.60 |
BFIB300-L10-fy282-OOP600 | 600 | 5.0 | 166.38 | 0.27 | --- | 3.25 |
BFIB300-L10-fy282-OOP800 | 800 | 5.0 | 104.63 | 0.17 | --- | 5.17 |
BFIB300-L10-fy282-OOP1000 | 1000 | 5.0 | 87.19 | 0.14 | --- | 6.21 |
BFIB300-L10-fy282-OOP2000 | 2000 | 5.0 | 66.84 | 0.11 | --- | 8.10 |
BFIB300-L9-fy282-without OOP | 0 | 4.5 | 620.81 | 1.00 | 541.23 | 0.87 |
BFIB300-L9-fy282-OOP300 | 300 | 4.5 | 379.92 | 0.61 | --- | 1.42 |
BFIB300-L9-fy282-OOP400 | 400 | 4.5 | 264.64 | 0.43 | --- | 2.05 |
BFIB300-L9-fy282-OOP500 | 500 | 4.5 | 207.94 | 0.33 | --- | 2.60 |
BFIB300-L8-fy282-without OOP | 0 | 4.0 | 623.80 | 1.00 | 541.23 | 0.87 |
BFIB300-L8-fy282-OOP300 | 300 | 4.0 | 375.85 | 0.60 | --- | 1.44 |
BFIB300-L8-fy282-OOP400 | 400 | 4.0 | 263.73 | 0.42 | --- | 2.05 |
BFIB300-L8-fy282-OOP500 | 500 | 4.0 | 209.25 | 0.34 | --- | 2.59 |
BFIB300-L6-fy282-without OOP | 0 | 3.0 | 629.72 | 1.00 | 541.23 | 0.86 |
BFIB300-L6-fy282-OOP300 | 300 | 3.0 | 381.45 | 0.61 | --- | 1.42 |
BFIB300-L6-fy282-OOP400 | 400 | 3.0 | 264.85 | 0.42 | --- | 2.04 |
BFIB300-L6-fy282-OOP500 | 500 | 3.0 | 209.25 | 0.33 | --- | 2.59 |
BFIB400-L10-fy282-without OOP | 0 | 5.0 | 1109.65 | 1.00 | 960.99 | 0.87 |
BFIB400-L10-fy282-OOP300 | 300 | 5.0 | 640.83 | 0.58 | --- | 1.50 |
BFIB400-L10-fy282-OOP400 | 400 | 5.0 | 410.68 | 0.37 | --- | 2.34 |
BFIB400-L10-fy282-OOP500 | 500 | 5.0 | 317.75 | 0.29 | --- | 3.02 |
BFIB400-L10-fy282-OOP600 | 600 | 5.0 | 246.06 | 0.22 | --- | 3.91 |
BFIB400-L10-fy282-OOP800 | 800 | 5.0 | 178.25 | 0.16 | --- | 5.39 |
BFIB400-L10-fy282-OOP1000 | 1000 | 5.0 | 129.51 | 0.12 | --- | 7.42 |
BFIB400-L10-fy282-OOP2000 | 2000 | 5.0 | 93.00 | 0.08 | --- | 10.33 |
BFIB400-L9-fy282-without OOP | 0 | 4.5 | 1093.16 | 1.00 | 960.99 | 0.88 |
BFIB400-L9-fy282-OOP300 | 300 | 4.5 | 638.65 | 0.58 | --- | 1.50 |
BFIB400-L9-fy282-OOP400 | 400 | 4.5 | 411.94 | 0.38 | --- | 2.33 |
BFIB400-L9-fy282-OOP500 | 500 | 4.5 | 320.85 | 0.29 | --- | 3.00 |
BFIB400-L8-fy282-without OOP | 0 | 4.0 | 1097.59 | 1.00 | 960.99 | 0.88 |
BFIB400-L8-fy282-OOP300 | 300 | 4.0 | 641.31 | 0.58 | --- | 1.50 |
BFIB400-L8-fy282-OOP400 | 400 | 4.0 | 407.20 | 0.37 | --- | 2.36 |
BFIB400-L8-fy282-OOP500 | 500 | 4.0 | 322.40 | 0.29 | --- | 2.98 |
BFIB400-L6-fy282-without OOP | 0 | 3.0 | 1120.15 | 1.00 | 960.99 | 0.86 |
BFIB400-L6-fy282-OOP300 | 300 | 3.0 | 645.91 | 0.58 | --- | 1.49 |
BFIB400-L6-fy282-OOP400 | 400 | 3.0 | 408.59 | 0.36 | --- | 2.35 |
BFIB400-L6-fy282-OOP500 | 500 | 3.0 | 320.85 | 0.29 | --- | 3.00 |
BFIB600-L10-fy282-without OOP | 0 | 5.0 | 2283.04 | 1.00 | 1926.68 | 0.84 |
BFIB600-L10-fy282-OOP300 | 300 | 5.0 | 1147.39 | 0.50 | --- | 1.68 |
BFIB600-L10-fy282-OOP400 | 400 | 5.0 | 714.58 | 0.31 | --- | 2.70 |
BFIB600-L10-fy282-OOP500 | 500 | 5.0 | 549.28 | 0.24 | --- | 3.51 |
BFIB600-L10-fy282-OOP600 | 600 | 5.0 | 415.01 | 0.18 | --- | 4.64 |
BFIB600-L10-fy282-OOP800 | 800 | 5.0 | 292.95 | 0.13 | --- | 6.58 |
BFIB600-L10-fy282-OOP1000 | 1000 | 5.0 | 195.30 | 0.09 | --- | 9.87 |
BFIB600-L10-fy282-OOP2000 | 2000 | 5.0 | 130.20 | 0.06 | --- | 14.80 |
BFIB600-L9-fy282-without OOP | 0 | 4.5 | 2277.41 | 1.00 | 1926.68 | 0.85 |
BFIB600-L9-fy282-OOP300 | 300 | 4.5 | 1157.15 | 0.51 | --- | 1.67 |
BFIB600-L9-fy282-OOP400 | 400 | 4.5 | 714.59 | 0.31 | --- | 2.70 |
BFIB600-L9-fy282-OOP500 | 500 | 4.5 | 549.28 | 0.24 | --- | 3.51 |
BFIB600-L8-fy282-without OOP | 0 | 4.0 | 2276.29 | 1.00 | 1926.68 | 0.85 |
BFIB600-L8-fy282-OOP300 | 300 | 4.0 | 1146.23 | 0.50 | --- | 1.68 |
BFIB600-L8-fy282-OOP400 | 400 | 4.0 | 718.89 | 0.32 | --- | 2.68 |
BFIB600-L8-fy282-OOP500 | 500 | 4.0 | 546.84 | 0.24 | --- | 3.52 |
BFIB600-L6-fy282-without OOP | 0 | 3.0 | 2253.80 | 1.00 | 1926.68 | 0.85 |
BFIB600-L6-fy282-OOP300 | 300 | 3.0 | 1159.71 | 0.51 | --- | 1.66 |
BFIB600-L6-fy282-OOP400 | 400 | 3.0 | 713.41 | 0.32 | --- | 2.70 |
BFIB600-L6-fy282-OOP500 | 500 | 3.0 | 546.84 | 0.24 | --- | 3.52 |
BFIB500-L10-fy408-without OOP | 0 | 5.0 | 2341.41 | 1.00 | 2087.90 | 0.89 |
BFIB500-L10-fy408-OOP300 | 300 | 5.0 | 1267.99 | 0.54 | --- | 1.65 |
BFIB500-L10-fy408-OOP400 | 400 | 5.0 | 792.44 | 0.34 | --- | 2.63 |
BFIB500-L10-fy408-OOP500 | 500 | 5.0 | 616.74 | 0.26 | --- | 3.39 |
BFIB500-L10-fy408-OOP600 | 600 | 5.0 | 453.87 | 0.19 | --- | 4.60 |
BFIB500-L10-fy408-OOP800 | 800 | 5.0 | 327.79 | 0.14 | --- | 6.37 |
BFIB500-L10-fy408-OOP1000 | 1000 | 5.0 | 222.47 | 0.10 | --- | 9.39 |
BFIB500-L10-fy408-OOP2000 | 2000 | 5.0 | 156.88 | 0.07 | --- | 13.31 |
BFIB500-L10-fy557-without OOP | 0 | 5.0 | 3160.82 | 1.00 | 2848.99 | 0.90 |
BFIB500-L10-fy557-OOP300 | 300 | 5.0 | 1660.14 | 0.53 | --- | 1.72 |
BFIB500-L10-fy557-OOP400 | 400 | 5.0 | 1046.59 | 0.33 | --- | 2.72 |
BFIB500-L10-fy557-OOP500 | 500 | 5.0 | 790.21 | 0.25 | --- | 3.61 |
BFIB500-L10-fy557-OOP600 | 600 | 5.0 | 588.72 | 0.19 | --- | 4.84 |
BFIB500-L10-fy557-OOP800 | 800 | 5.0 | 417.23 | 0.13 | --- | 6.83 |
BFIB500-L10-fy557-OOP1000 | 1000 | 5.0 | 268.67 | 0.09 | --- | 10.60 |
BFIB500-L10-fy557-OOP2000 | 2000 | 5.0 | 192.71 | 0.06 | --- | 14.78 |
BFIB500-L10-fy769-without OOP | 0 | 5.0 | 4368.50 | 1.00 | 3933.35 | 0.90 |
BFIB500-L10-fy769-OOP300 | 300 | 5.0 | 2227.32 | 0.51 | --- | 1.77 |
BFIB500-L10-fy769-OOP400 | 400 | 5.0 | 1398.09 | 0.32 | --- | 2.81 |
BFIB500-L10-fy769-OOP500 | 500 | 5.0 | 1062.51 | 0.24 | --- | 3.70 |
BFIB500-L10-fy769-OOP600 | 600 | 5.0 | 790.61 | 0.18 | --- | 4.98 |
BFIB500-L10-fy769-OOP800 | 800 | 5.0 | 524.22 | 0.12 | --- | 7.50 |
BFIB500-L10-fy769-OOP1000 | 1000 | 5.0 | 323.26 | 0.07 | --- | 12.17 |
BFIB500-L10-fy769-OOP2000 | 2000 | 5.0 | 266.46 | 0.06 | --- | 14.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sayed, A.M.; Ali, N.M.; Aljarbou, M.H.; Alzlfawi, A.; Aldhobaib, S.; Alanazi, H.; Altuwayjiri, A.H. Numerical Study of the Effect of Out-of-Plane Distance in the Lateral Direction at the Mid-Span of a Steel Beam on the Sectional Moment Capacity. Buildings 2025, 15, 283. https://doi.org/10.3390/buildings15020283
Sayed AM, Ali NM, Aljarbou MH, Alzlfawi A, Aldhobaib S, Alanazi H, Altuwayjiri AH. Numerical Study of the Effect of Out-of-Plane Distance in the Lateral Direction at the Mid-Span of a Steel Beam on the Sectional Moment Capacity. Buildings. 2025; 15(2):283. https://doi.org/10.3390/buildings15020283
Chicago/Turabian StyleSayed, Ahmed Mohamed, Nageh M. Ali, Mishal H. Aljarbou, Abdullah Alzlfawi, Salman Aldhobaib, Hani Alanazi, and Abdulmalik H. Altuwayjiri. 2025. "Numerical Study of the Effect of Out-of-Plane Distance in the Lateral Direction at the Mid-Span of a Steel Beam on the Sectional Moment Capacity" Buildings 15, no. 2: 283. https://doi.org/10.3390/buildings15020283
APA StyleSayed, A. M., Ali, N. M., Aljarbou, M. H., Alzlfawi, A., Aldhobaib, S., Alanazi, H., & Altuwayjiri, A. H. (2025). Numerical Study of the Effect of Out-of-Plane Distance in the Lateral Direction at the Mid-Span of a Steel Beam on the Sectional Moment Capacity. Buildings, 15(2), 283. https://doi.org/10.3390/buildings15020283