Investigation into the Early Cracking Behavior of High-Geothermal Tunnel Lining Concrete Based on Thermal–Mechanical Coupling Model
Abstract
:1. Introduction
2. Background and Theory
2.1. Topography
2.2. Materials
2.3. Calculation Theory
2.3.1. Heat Transfer Mechanism
2.3.2. Environmental Temperature
2.3.3. Adiabatic Temperature Rise of Concrete
2.3.4. Mechanical Properties of Concrete
2.3.5. Thermal–Mechanical Coupling Procedures
3. Numerical Model
3.1. Model Establishment
3.2. Model Analysis
3.2.1. Temperature Field
3.2.2. Stress Field
3.3. Model Validation
4. Parameter Analysis
4.1. Surrounding Rock Temperature
4.2. Thermal Insulation Layer
4.3. Curing Condition
4.3.1. Formwork Heat Convection Properties
4.3.2. Formwork Removal Time
5. Conclusions
- (1)
- Considering the effect of geothermal source, the temperature of the internal surface is higher than that of the external surface, with the temperature difference reaching a peak of 15.98 °C at 60 h. In terms of stress field, the higher cracking risk occurs on the external surface of the lining sidewall at 24 h, and the cracking risk for the tunnel lining gradually decreases after 24 h.
- (2)
- The maximum temperature difference within the lining structure is linearly related to the surrounding rock temperature. When the surrounding rock temperature exceeds 68.7 °C, thermal insulation measures for the tunnel lining are necessary. In addition, the tensile stress levels and cracking risk duration of the lining structure greatly increase with the surrounding rock temperature.
- (3)
- For thermal insulation, laying a sandwiched structure with rigid polyurethane materials not only reduces the heat conduction from geothermal source to tunnel structure, but also ensures the durability of the lining concrete. A layer thickness range of 20–60 mm is conducive to achieving superior thermal insulation at a low cost.
- (4)
- During the curing stage, applying formwork with a larger heat convection coefficient is an effective approach to decrease the temperature gradient caused by the formwork removal, mitigating the cracking behavior of the tunnel lining. Considering the construction progress, it is more appropriate to remove the formwork at 48 h.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ye, F.; Qin, N.; Liang, X.; Ouyang, A.H.; Qin, Z.; Su, E.J. Analyses of the defects in highway tunnels in China. Tunn. Undergr. Space Technol. 2021, 107, 103658. [Google Scholar] [CrossRef]
- Lu, C.F.; Cai, C.X. Challenges and countermeasures for construction safety during the Sichuan-Tibet railway project. Engineering 2019, 5, 833–838. [Google Scholar] [CrossRef]
- Zhu, H.H.; Yan, J.X.; Liang, W.H. Challenges and development prospects of ultra-long and ultra-deep mountain tunnels. Engineering 2019, 5, 384–392. [Google Scholar] [CrossRef]
- Zeng, Y.H.; Tao, L.L.; Ye, X.Q.; Zhou, X.H.; Fang, Y.; Fan, L.; Liu, X.R.; Yang, Z.X. Temperature reduction for extra-long railway tunnel with high geotemperature by longitudinal ventilation. Tunn. Undergr. Space Technol. 2020, 99, 103381. [Google Scholar] [CrossRef]
- Kong, F.M.; Xue, Y.G.; Gong, H.M.; Jiang, X.D.; Song, Q.; Fu, Y.S.; Fu, K. The formation mechanism of dynamic water and mud inrush geohazard triggered by deep-buried tunnel crossing active fault: Insights from the geomechanical model test. Tunn. Undergr. Space Technol. 2023, 142, 105437. [Google Scholar] [CrossRef]
- Zhou, P.; Feng, Y.; Zhou, F.C.; Wei, Z.Q.; Gou, S.J.; Xu, H.B.; Wang, Z.J. Evaluation system of worker comfort for high geothermal tunnel during construction: A case study on the highway tunnel with the highest temperature in China. Tunn. Undergr. Space Technol. 2023, 135, 105028. [Google Scholar] [CrossRef]
- Zhao, K.M.; Ji, W.H.; Cao, X.L.; Yuan, Y.P.; Li, H.C. Evaluation of cooling measures performance and thermal-humidity environment for ultra-high geothermal railway tunnel construction by using WBGT. Eng. Appl. Comput. Fluid Mech. 2024, 18, 2357725. [Google Scholar] [CrossRef]
- Hu, Y.P.; Wang, M.N.; Wang, Q.L.; Liu, D.G.; Tong, J.J. Field test of thermal environment and thermal adaptation of workers in high geothermal tunnel. Build. Environ. 2019, 160, 106174. [Google Scholar]
- Xu, Y.; Li, Z.J.; Wang, J.J.; Lu, Y.B.; Cheng, Z.; Wang, J.K.; Lin, Z. Improving thermal environment and ventilation efficiency in high-temperature excavation tunnels via an innovative heat insulation and cooling baffle. Therm. Sci. Eng. Prog. 2024, 55, 102992. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, X.H.; Liu, X.R.; Qi, Z.F.; Li, N.; Chen, X. Cooling effect and parameter analysis of applying heat insulation layer to tunnel regionalization in construction period based on geothermal level. Int. J. Therm. Sci. 2025, 208, 109413. [Google Scholar] [CrossRef]
- Qin, Y.P.; Hou, H.A.; Guo, M.Y.; Liu, Q.; Tang, F. Simulated and experimental study on effect of thermal insulation layer on temperature field and heat dissipation of roadway surrounding rock. Case Stud. Therm. Eng. 2024, 53, 103960. [Google Scholar] [CrossRef]
- Lin, M.; Zhou, P.; Jiang, Y.F.; Zhou, F.C.; Lin, J.Y.; Wang, Z.J. Numerical investigation on comprehensive control system of cooling and heat insulation for high geothermal tunnel: A case study on the highway tunnel with the highest temperature in China. Int. J. Therm. Sci. 2022, 173, 107385. [Google Scholar] [CrossRef]
- Zhang, H.; Hao, Z.H.; Zhang, G.; Tao, Y.C.; Wang, L. The cooling effect of high geothermal tunnel construction environment: A case of ice and spray method in an extra-long tunnel. Int. J. Therm. Sci. 2022, 178, 107606. [Google Scholar] [CrossRef]
- Yuan, Q.; Peng, M.Q.; Yao, H.; Zhang, S.H.; Li, Y.L. The internal temperature field of shotcrete in high geothermal tunnel and its effect on microstructures and mechanical properties. Constr. Build. Mater. 2022, 335, 127507. [Google Scholar] [CrossRef]
- Li, Z.G.; Wang, Y.; Tong, Y.P.; Zhang, S.H.; Niu, D.T. Compressive and hydration behavior of steel fiber-reinforced concrete under high geothermal environment. Constr. Build. Mater. 2023, 406, 133378. [Google Scholar] [CrossRef]
- Chen, J.S.; Zeng, L.P.; Wang, W.; Qiao, M.; Zhao, S.; Zhu, B.S. Influence of main components of accelerators on mechanical property and hydration of Portland cement in a dry-hot geothermal environment. Constr. Build. Mater. 2023, 394, 132290. [Google Scholar] [CrossRef]
- Cui, S.G.; Liu, P.; Su, J.; Cui, E.Q.; Guo, C.; Zhu, B. Experimental study on mechanical and microstructural properties of cement-based paste for shotcrete use in high-temperature geothermal environment. Constr. Build. Mater. 2018, 174, 603–612. [Google Scholar] [CrossRef]
- He, S.L.; Cao, J.; Chai, J.R.; Yang, Y.; Li, M.; Qin, Y.; Xu, Z.G. Effect of temperature gradients on the microstructural characteristics and mechanical properties of concrete. Cem. Concr. Res. 2024, 184, 107608. [Google Scholar] [CrossRef]
- Yan, B.Q.; Zhang, W.X.; Yi, W.J. Multi-scale study on the mechanical properties of concrete based on crack propagation under hygrothermal coupling. J. Build. Eng. 2024, 91, 109680. [Google Scholar] [CrossRef]
- Zhou, Y.C.; Yan, Y.; Qin, Y.; Yu, C.; Wang, W.B.; Liu, J.P.; Wang, K.C. The effect of temperature rise inhibitor on the hydration and strength development of slag/fly ash blended cement paste. Constr. Build. Mater. 2023, 395, 132307. [Google Scholar] [CrossRef]
- Li, M.; Xu, W.; Wang, Y.J.; Tian, Q.; Liu, J.P. Shrinkage crack inhibiting of cast in situ tunnel concrete by double regulation on temperature and deformation of concrete at early age. Constr. Build. Mater. 2020, 240, 117834. [Google Scholar] [CrossRef]
- Li, Z.L.; An, R.; Zhang, W.Z.; Fan, X.; Jin, H.S.; Liu, J.; Liu, W.; Zhu, J.H.; Xing, F.; Jiang, Z.L. Investigating the effects of seawater and sea sand aggregates and supplementary cementitious materials on the early shrinkage and crack resistance of concrete. Constr. Build. Mater. 2023, 392, 131719. [Google Scholar] [CrossRef]
- Liu, J.P.; Tian, Q.; Wang, Y.J.; Li, H.; Xu, W. Evaluation method and mitigation strategies for shrinkage cracking of modern concrete. Engineering 2021, 7, 348–357. [Google Scholar] [CrossRef]
- Peng, Z.Z.; Wang, Q.; Zhou, W.; Chang, X.L.; Yue, Q.; Huang, C.B. Meso-scale simulation of thermal fracture in concrete based on the coupled thermal-mechanical phase-field model. Constr. Build. Mater. 2023, 403, 133095. [Google Scholar] [CrossRef]
- Wang, Q.L.; Wang, M.N.; Yuan, Y.; Hu, Y.P.; Wang, H. Thermomechanical behavior of tunnel linings in the geothermal environment: Field tests and analytical study. Tunn. Undergr. Space Technol. 2023, 137, 105109. [Google Scholar] [CrossRef]
- GB/175-2023; Ordinary Portland Cement. Ministry of Industry and Information Technology: Beijing, China, 2023. (In Chinese)
- GB/T 50081-2019; Standard for Test Methods of Concrete Physical and Mechanical Properties. Ministry of Housing and Urban-Rural Development, People's Republic of China: Beijing, China, 2021. (In Chinese)
- Fan, L.T.; Tao, L.L.; Duan, S.Q.; Luo, M.R.; He, C.; Zeng, Y.H.; Chen, Y.L.; Song, Y.; Qi, Z.F. Temperature field analysis in tunnel construction ventilation with emphasis on duct leakage and thermal conductivity. Case Stud. Therm. Eng. 2024, 61, 105102. [Google Scholar] [CrossRef]
- Luo, M.R.; Zhang, X.Y.; Yuan, Z.B.; Wu, X.J.; Zeng, Y.H.; Ye, Y.Z. Thermal performance comparison and new layout scheme study of high geothermal tunnel insulation layer. Case Stud. Therm. Eng. 2023, 52, 103780. [Google Scholar] [CrossRef]
- Cui, H.Z.; Li, Y.H.; Bao, X.H.; Tang, W.C.; Wang, S.Y.; Chen, X.S. Thermal performance and parameter study of steel fiber-reinforced concrete segment lining in energy subway tunnels. Tunn. Undergr. Space Technol. 2022, 128, 104647. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, H.; Zhu, Y.M.; Chen, S.G.; Ran, G.Y. Study on distributions of airflow velocity and convective heat transfer coefficient characterizing duct ventilation in a construction tunnel. Build. Environ. 2021, 188, 107464. [Google Scholar] [CrossRef]
- Lu, M.; Yu, L.; Wang, M.N.; Sun, B.L.; Zhou, Z.Y.; Tang, Y.H. A new approach in calculation of heat release during high geothermal tunnels construction considering ventilation time effect. Int. J. Therm. Sci. 2023, 194, 108589. [Google Scholar] [CrossRef]
- Wang, G.F.; Fang, Y.Q.; Ren, K.F.; Deng, F.Y.; Wang, B.; Zhang, H. Prediction of the temperature field in a tunnel during construction based on airflow-surrounding rock heat transfer. Buildings 2024, 14, 2908. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, X.H.; Liu, X.R.; Chen, X.; Xu, Q.; Wang, Q.L. Ambient temperature prediction model and cooling requirement analyze in the high-altitude construction tunnel passing through the abnormally high geothermal region. Tunn. Undergr. Space Technol. 2023, 141, 105360. [Google Scholar] [CrossRef]
- Niu, D.T.; Zhang, S.H.; Wang, Y.; Hong, M.S.; Li, Z.G. Effect of temperature on the strength, hydration products and microstructure of shotcrete blended with supplementary cementitious materials. Constr. Build. Mater. 2020, 264, 120234. [Google Scholar] [CrossRef]
- Liu, P.; Cui, S.G.; Li, Z.H.; Xu, X.F.; Guo, C. Influence of surrounding rock temperature on mechanical property and pore structure of concrete for shotcrete use in a hot-dry environment of high-temperature geothermal tunnel. Constr. Build. Mater. 2019, 207, 329–337. [Google Scholar] [CrossRef]
- Shen, J.R.; Xu, Q.J.; Wang, S.G. Characterization of thermal damage and compressive strength during drying at elevated temperatures using ultrasonic pulse velocity. J. Build. Eng. 2023, 75, 107029. [Google Scholar] [CrossRef]
- Hu, Y.P.; Wang, Q.L.; Wang, M.N.; Liu, D.G. A study on the thermo-mechanical properties of shotcrete structure in a tunnel, excavated in granite at nearly 90 °C temperature. Tunn. Undergr. Space Technol. 2021, 110, 103830. [Google Scholar] [CrossRef]
- Chen, X.; Zhou, X.H.; Zhong, Z.L.; Liang, N.H.; Wang, Y.; Zhang, X.Y. Study on temperature field and influencing factors of the high geothermal tunnel with extra-long one-end construction ventilation. Int. J. Therm. Sci. 2023, 191, 108322. [Google Scholar] [CrossRef]
- Luo, M.R.; Yuan, Z.B.; Fan, L.T.; Tao, L.L.; Zeng, Y.H.; Yan, Q.X. Investigating the coupling effect of ventilation and GHEs on temperature distribution and heat transfer characteristics. Appl. Therm. Eng. 2024, 248, 123211. [Google Scholar] [CrossRef]
- TB 10003-2016; Code for design of Railway Tunnel. National Railway Administration of People’s Republic of China: Beijing, China, 2016. (In Chinese)
- Ding, J.; Wang, X.; Sun, Z.; Liu, S.; Zhou, J.Y.; Wu, Z.S. Research on the cracking risk index of massive concrete based on Chemo-Thermo-Hygro-Mechanical multi-field coupling model. J. Build. Eng. 2024, 98, 111190. [Google Scholar] [CrossRef]
- Zhou, X.H.; Chen, X.; Wang, Y.; Liang, N.H.; Liu, X.R. A method for predicting the ambient temperature distribution of high-temperature tunnels and influencing factors analyze. Case Stud. Therm. Eng. 2024, 53, 103831. [Google Scholar] [CrossRef]
- Luo, M.R.; Tao, Y.C.; Yuan, Z.B.; Tao, L.L.; He, C.; Yuan, Y.P.; Tian, X.Y.; Zeng, Y.H. Effect of tunnel ventilation on surrounding rock temperature field and heat regulating circle during construction phase. Tunn. Undergr. Space Technol. 2024, 150, 105835. [Google Scholar] [CrossRef]
- Q/CR 9604-2015; Technical Specification for Construction of High-Speed Railway Tunnel. China State Railway Group Co., Ltd.: Beijing, China, 2015. (In Chinese)
- Guo, C.C.; Ji, X.Q.; Sun, H.; Qin, L.; Guan, H.; Chu, X.X. A theoretical model to predict the cooling effect of sprayed polymer under hydro-thermal condition. Appl. Therm. Eng. 2024, 257, 124166. [Google Scholar] [CrossRef]
- Li, W.J.; Feng, Z.; Su, H.; Zou, S.H.; Zeng, L.P. Analysis of thermal insulation effect of off-wall insulation lining in high-temperature tunnel. Case Stud. Therm. Eng. 2024, 61, 104957. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, X.H.; Liu, X.R.; Li, N.; Qi, Z.F.; Zhang, J.L. Investigation and optimization heat and humidity environmental control model in construction tunnels: A multifactorial approach incorporating ventilation parameters and hot water quantity. Tunn. Undergr. Space Technol. 2024, 153, 106039. [Google Scholar] [CrossRef]
Materials | Elastic Modulus (GPa) | Compressive Strength (MPa) | Poisson’s Ratio | Thermal Expansion Coefficient (1/°C) | Thermal Conductivity (W·(m·K)−1) | Specific Heat (J·(kg·°C)−1) |
---|---|---|---|---|---|---|
Shotcrete | 23.2 | 31.5 | 0.25 | 7.8 × 10−6 | 920 | 3.0 |
Lining concrete | 24.9 | 43.1 | 0.20 | 8 × 10−6 | 840 | 1.9 |
Water | Cement | Fly Ash | Fine Aggregate | Coarse Aggregate |
---|---|---|---|---|
166 | 260 | 110 | 784 | 1000 |
Materials | Density (kg/m3) | Thermal Expansion Coefficient (1/°C) | Thermal Conductivity (W·(m·K)−1) | Specific Heat (J·(kg·°C)−1) |
---|---|---|---|---|
Silicate composite | 80 | 5.0 × 10−6 | 0.045 | 1100 |
Rigid polyurethane | 30 | 7.8 × 10−6 | 0.027 | 920 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, S.; Zhao, D.; Yi, P.; Chen, Q.; Liu, W. Investigation into the Early Cracking Behavior of High-Geothermal Tunnel Lining Concrete Based on Thermal–Mechanical Coupling Model. Buildings 2025, 15, 301. https://doi.org/10.3390/buildings15020301
Xie S, Zhao D, Yi P, Chen Q, Liu W. Investigation into the Early Cracking Behavior of High-Geothermal Tunnel Lining Concrete Based on Thermal–Mechanical Coupling Model. Buildings. 2025; 15(2):301. https://doi.org/10.3390/buildings15020301
Chicago/Turabian StyleXie, Si, Dan Zhao, Peng Yi, Qian Chen, and Wei Liu. 2025. "Investigation into the Early Cracking Behavior of High-Geothermal Tunnel Lining Concrete Based on Thermal–Mechanical Coupling Model" Buildings 15, no. 2: 301. https://doi.org/10.3390/buildings15020301
APA StyleXie, S., Zhao, D., Yi, P., Chen, Q., & Liu, W. (2025). Investigation into the Early Cracking Behavior of High-Geothermal Tunnel Lining Concrete Based on Thermal–Mechanical Coupling Model. Buildings, 15(2), 301. https://doi.org/10.3390/buildings15020301