A Novel Solar Rooftop Agriculture System Integrated with CNT Nanofluid Spectral Splitter for Efficient Food Production
Abstract
:1. Introduction
2. Description of Solar Greenhouse with NSS-PCMs
3. Experiment and Model
3.1. Experimental Testing on Thermal Environment
3.2. Thermal Model System
3.3. Performance Evaluation
4. Results and Discussion
4.1. System Structure Optimization
4.1.1. One-Day Thermal Environment and Model Verification
4.1.2. Parameter Optimization
4.2. 75-Day Thermal Environmental Tests in Greenhouse
4.3. Growth Analysis of Three Experimental Vegetables
5. Conclusions
- (1)
- The solar roof greenhouse with NSS-PCMs effectively regulated temperature, reducing indoor air temperatures by 3.8 °C during the day and increasing them by 5.6 °C during nighttime. Over 80% of the 300–800 nm light spectrum, optimal for vegetable photosynthesis, was transmitted into the greenhouse, while the remaining wavelengths were absorbed for heat storage, providing warmth during the night.
- (2)
- By optimizing the phase transition temperature (18 °C, 20 °C, and 22 °C) and phase change thickness (2 cm, 3 cm, and 4 cm), the heat absorption and storage capacity were improved, heat release time was extended, and temperature fluctuations were reduced. This enhanced the system’s thermal efficiency and photothermal conversion efficiency, stabilized the indoor climate, and provided a more suitable and stable environment for plant growth.
- (3)
- Based on the verified model, the thermal efficiency increased with the phase transition thickness and phase transition temperature of PCMs, with the optimal thickness and temperature of 4 cm and 22 °C. Compared to conventional greenhouses, the optimized solar greenhouse lowered daytime temperatures by 5–6 °C and raised nighttime temperatures by 6.9 °C, ensuring ideal conditions for plant growth throughout the day.
- (4)
- The 75-day temperature detection showed that optimal temperature ranges were maintained for approximately 60 days, both during daytime and nighttime, with an 80% assurance rate.
- (5)
- The growth rates of purslane, asparagus, and lettuce in the experimental group increased by 55%, 35%, and 40%, respectively. The leaves were notably greener, glossier, and more vibrant compared to the control group. In terms of trace elements, the purslane from the experimental group contained 2.5, 1.35, 1.7, and 1.49 times more sodium, potassium, magnesium, and calcium, respectively. For lettuce, the trace elements were 3.8, 1.28, 2.01, and 2.06 times higher. Additionally, for the lettuce from the experimental group, protein, carbohydrates, and soluble solids were 2.25, 1.56, and 1.48 times higher than the control group.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
α | spectral absorptivity |
δ | thickness, m |
ε | spectral emissivity |
λ | heat conductivity coefficient |
μ | dynamic viscosity, Pa·s |
ρ | density, kg/m3 |
σ | Boltzmann’s constant, |
5.67 × 10−8, W·m−2·K−4 | |
τ | spectral transmittance |
c | specific heat capacity, J/kg·K |
De | water pipe diameter, m |
E | radiation heat transfer, W |
Hp | enthalpy of PCMs, J·kg−1 |
Hs | critical enthalpy, J·kg−1 |
L | thickness, m |
Nu | Nusselt number |
Pr | Prandtl criterion umber |
Qlatent | latent heat of the PCMs, J |
Q | heat conduction |
Qs | apparent heat of phase transition, J |
QL | latent heat of phase change, J |
Re | Reynolds number |
sin(h) | solar hour angle |
T | temperatures, °C |
ua | wind velocity, m/s |
References
- Zambrano-Prado, P.; Muñoz-Liesa, J.; Josa, A.; Rieradevall, J.; Alamús, R.; Gasso-Domingo, S.; Gabarrell, X. Assessment of the food-water-energy nexus suitability of rooftops. A methodological remote sensing approach in an urban Mediterranean area. Sustain. Cities Soc. 2021, 75, 103287. [Google Scholar] [CrossRef]
- Alberti, M.A.; Blanco, I.; Vox, G.; Scarascia-Mugnozza, G.; Schettini, E.; da Silva, L.P. The challenge of urban food production and sustainable water use: Current situation and future perspectives of the urban agriculture in Brazil and Italy. Sustain. Cities Soc. 2022, 83, 103961. [Google Scholar] [CrossRef]
- Song, S.; Lim, M.S.; Richards, D.R.; Tan, H.T.W. Utilization of the food provisioning service of urban community gardens: Current status, contributors and their social acceptance in Singapore. Sustain. Cities Soc. 2022, 76, 103368. [Google Scholar] [CrossRef]
- Toboso-Chavero, S.; Montealegre, A.L.; García-Pérez, S.; Sierra-Pérez, J.; Muñoz-Liesa, J.; Durany, X.G.; Villalba, G.; Madrid-López, C. The potential of local food, energy, and water production systems on urban rooftops considering consumption patterns and urban morphology. Sustain. Cities Soc. 2023, 95, 104599. [Google Scholar] [CrossRef]
- Kumar, P.; Debele, S.E.; Khalili, S.; Halios, C.H.; Sahani, J.; Aghamohammadi, N.; Andrade, M.d.F.; Athanassiadou, M.; Bhui, K.; Calvillo, N.; et al. Urban heat mitigation by green and blue infrastructure: Drivers, effectiveness, and future needs. Innovation 2024, 5, 100588. [Google Scholar] [CrossRef]
- Yang, B.-Y.; Zhao, T.; Hu, L.-X.; Browning, M.H.E.M.; Heinrich, J.; Dharmage, S.C.; Jalaludin, B.; Knibbs, L.D.; Liu, X.-X.; Luo, Y.-N.; et al. Greenspace and human health: An umbrella review. Innovation 2021, 2, 100164. [Google Scholar] [CrossRef]
- Ben Amara, H.; Bouadila, S.; Fatnassi, H.; Arici, M.; Allah Guizani, A. Climate assessment of greenhouse equipped with south-oriented PV roofs: An experimental and computational fluid dynamics study. Sustain. Energy Technol. Assess. 2021, 45, 101100. [Google Scholar] [CrossRef]
- Shi, K.; Yu, B.; Ma, J.; Cao, W.; Cui, Y. Impacts of slope climbing of urban expansion on global sustainable development. Innovation 2023, 4, 100529. [Google Scholar] [CrossRef]
- Hawes, J.K.; Goldstein, B.P.; Newell, J.P.; Dorr, E.; Caputo, S.; Fox-Kämper, R.; Grard, B.; Ilieva, R.T.; Fargue-Lelièvre, A.; Poniży, L.; et al. Comparing the carbon footprints of urban and conventional agriculture. Nat. Cities 2024, 1, 164–173. [Google Scholar] [CrossRef]
- Yang, R.; Xu, C.; Zhang, H.; Wang, Z.; Pradhan, P.; Lian, X.; Jiao, L.; Bai, X.; Cui, S.; Hu, Y.; et al. Urban rooftops for food and energy in China. Nat. Cities 2024, 1, 741–750. [Google Scholar] [CrossRef]
- Masilela, C.O. Urban Agriculture. In The Wiley Blackwell Encyclopedia of Urban and Regional Studies; John Wiley & Sons: Hoboken, NJ, USA, 2019; pp. 1–8. [Google Scholar] [CrossRef]
- Hallett, S.; Hoagland, L.; Toner, E. Urban Agriculture: Environmental, Economic, and Social Perspectives. In Horticultural Reviews, Volume 44; Wiley: Hoboken, NJ, USA, 2016; pp. 65–120. [Google Scholar] [CrossRef]
- Qiu, J.; Zhao, H.; Chang, N.-B.; Wardropper, C.B.; Campbell, C.; Baggio, J.A.; Guan, Z.; Kohl, P.; Newell, J.; Wu, J. Scale up urban agriculture to leverage transformative food systems change, advance social–ecological resilience and improve sustainability. Nat. Food 2024, 5, 83–92. [Google Scholar] [CrossRef]
- Nie, J.; Xu, J.; Su, H.; Gao, H.; Jia, J.; Guo, T. Optimization of characteristic parameters of rectangular solar chimney adapted to agricultural greenhouses. Case Stud. Therm. Eng. 2024, 54, 103971. [Google Scholar] [CrossRef]
- Hosseini, M.; Shahverdian, M.H.; Sayyaadi, H.; Javadijam, R. Renewable energy supplying strategy for a greenhouse based on the water-energy-economy nexus. J. Clean. Prod. 2024, 457, 142388. [Google Scholar] [CrossRef]
- Yuan, Y.; Ji, Y.; Wang, W.; Shi, D.; Hai, L.; Ma, Q.; Yang, Q.; Xie, Y.; Li, B.; Wu, G.; et al. Balancing energy harvesting and crop production in a nanofluid spectral splitting covering for an active solar greenhouse. Energy 2023, 278, 127706. [Google Scholar] [CrossRef]
- Kumar, C.M.S.; Singh, S.; Gupta, M.K.; Nimdeo, Y.M.; Raushan, R.; Deorankar, A.V.; Kumar, T.M.A.; Rout, P.K.; Chanotiya, C.S.; Pakhale, V.D.; et al. Solar energy: A promising renewable source for meeting energy demand in Indian agriculture applications. Sustain. Energy Technol. Assess. 2023, 55, 102905. [Google Scholar] [CrossRef]
- Joudi, K.A.; Farhan, A.A. Greenhouse heating by solar air heaters on the roof. Renew. Energy 2014, 72, 406–414. [Google Scholar] [CrossRef]
- Deng, L.; Huang, L.; Zhang, Y.; Li, A.; Gao, R.; Zhang, L.; Lei, W. Analytic model for calculation of soil temperature and heat balance of bare soil surface in solar greenhouse. Sol. Energy 2023, 249, 312–326. [Google Scholar] [CrossRef]
- Guo, Y.; Zhao, H.; Zhang, S.; Wang, Y.; Chow, D. Modeling and optimization of environment in agricultural greenhouses for improving cleaner and sustainable crop production. J. Clean. Prod. 2021, 285, 124843. [Google Scholar] [CrossRef]
- Jeong, S.J.; Niu, G.; Zhen, S. Far-red light and temperature interactively regulate plant growth and morphology of lettuce and basil. Environ. Exp. Bot. 2024, 218, 105589. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, W.; Wang, P.; Zhao, S.; Wang, D.; Zhao, X. Evolution of microbial community and the volatilome of fresh-cut chili pepper during storage under different temperature conditions: Correlation of microbiota and volatile organic compounds. Food Chem. 2024, 451, 139401. [Google Scholar] [CrossRef]
- Xue, R.; Zhang, C.; Yan, H.; Disasa, K.N.; Lakhiar, I.A.; Akhlaq, M.; Hameed, M.U.; Li, J.; Ren, J.; Deng, S.; et al. Determination of the optimal frequency and duration of micro-spray patterns for high-temperature environment tomatoes based on the Fuzzy Borda model. Agric. Water Manag. 2025, 307, 109240. [Google Scholar] [CrossRef]
- Ren, S.; Giusti, M.M. The effect of whey protein concentration and preheating temperature on the color and stability of purple corn, grape and black carrot anthocyanins in the presence of ascorbic acid. Food Res. Int. 2021, 144, 110350. [Google Scholar] [CrossRef]
- Zahra Haeri, S.; Khiadani, M.; Ramezanzadeh, B.; Kariman, H.; Zargar, M. Photo-thermal conversion properties of hybrid NH2-MIL-125/TiN/EG nanofluids for solar energy harvesting. Appl. Therm. Eng. 2025, 258, 124607. [Google Scholar] [CrossRef]
- Suresh, C.; Chithambaram, V.; Muthucumaraswamy, R.; Praveenkumar, S.; Saleh, S.M.; Rao, M.C.; Basem, A.; Alawee, W.H.; Majdi, H.S.; Omara, Z.M.; et al. Transformative nanofluid solutions: Elevating solar still performance for enhanced output. Ain Shams Eng. J. 2024, 15, 103088. [Google Scholar] [CrossRef]
- Htwe, Y.Z.N.; Mamat, H. Progress and prospects on stability and thermal properties of surfactant assisted graphene, carbon nanotubes based nanofluid and their hybrid for next-generation thermal management. J. Mol. Liq. 2024, 414, 126235. [Google Scholar] [CrossRef]
- Wen, J.; Li, X.; Chen, W.; Liu, J. Systematical investigation on the solar-thermal conversion performance of TiN plasmonic nanofluids for the direct absorption solar collectors. Colloids Surf. A Physicochem. Eng. Asp. 2021, 624, 126837. [Google Scholar] [CrossRef]
- Menbari, A.; Alemrajabi, A.A.; Rezaei, A. Heat transfer analysis and the effect of CuO/Water nanofluid on direct absorption concentrating solar collector. Appl. Therm. Eng. 2016, 104, 176–183. [Google Scholar] [CrossRef]
- Babar, H.; Wu, H.; Zhang, W.; Xie, Y. Harnessing nano-synergy: A comprehensive study of thermophysical characteristics of silver, beryllium oxide, and silicon carbide in hybrid nanofluid formulations. J. Mol. Liq. 2024, 414, 126175. [Google Scholar] [CrossRef]
- Mukherjee, S.; Mishra, P.C.; Chaudhuri, P. Stability of Heat Transfer Nanofluids—A Review. ChemBioEng Rev. 2018, 5, 312–333. [Google Scholar] [CrossRef]
- Xu, J.; Chen, B.; Yuan, K.; Shu, J.; Yang, Q. Optimization and performance assessment of Ag@SiO2 core–shell nanofluids for spectral splitting PV/T system: Theoretical and experiment analysis. Sol. Energy 2024, 283, 113030. [Google Scholar] [CrossRef]
- Zhang, G.; Shan, S.; Wu, H.; Tian, J.; Cheng, Z.; Zhou, Z. Investigation on the radiative characteristics of ZnO-SiO2 nanofluids in spectral splitting photovoltaic/thermal systems. Sol. Energy Mater. Sol. Cells 2024, 277, 113129. [Google Scholar] [CrossRef]
- Chougule, S.S.; Srivastava, A.; Bolegave, G.G.; Gaikwad, B.A.; Shirage, P.M.; Markides, C.N. Next-generation solar technologies: Unlocking the potential of Ag-ZnO hybrid nanofluids for enhanced spectral-splitting photovoltaic-thermal systems. Renew. Energy 2024, 236, 121405. [Google Scholar] [CrossRef]
- Subramanian, M.; Hoang, A.T.; Kalidasan, B.; Nižetić, S.; Solomon, J.M.; Balasubramanian, D.; Subramaniyan, C.; Thenmozhi, G.; Metghalchi, H.; Nguyen, X.P. A technical review on composite phase change material based secondary assisted battery thermal management system for electric vehicles. J. Clean. Prod. 2021, 322, 129079. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Rafa, N.; Mehnaz, T.; Ahmed, B.; Islam, N.; Mofijur, M.; Hoang, A.T.; Shafiullah, G. Integration of phase change materials in improving the performance of heating, cooling, and clean energy storage systems: An overview. J. Clean. Prod. 2022, 364, 132639. [Google Scholar] [CrossRef]
- Benli, H.; Durmuş, A. Performance analysis of a latent heat storage system with phase change material for new designed solar collectors in greenhouse heating. Sol. Energy 2009, 83, 2109–2119. [Google Scholar] [CrossRef]
- Bouadila, S.; Kooli, S.; Skouri, S.; Lazaar, M.; Farhat, A. Improvement of the greenhouse climate using a solar air heater with latent storage energy. Energy 2014, 64, 663–672. [Google Scholar] [CrossRef]
- Padash, A.; Shahabivand, S.; Behtash, F.; Aghaee, A. A practicable method for zinc enrichment in lettuce leaves by the endophyte fungus Piriformospora indica under increasing zinc supply. Sci. Hortic. 2016, 213, 367–372. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; Zheng, C.; Guo, H.; Shan, F. Nondestructive evaluation of Chinese cabbage quality using mechanical vibration response. Comput. Electron. Agric. 2021, 188, 106317. [Google Scholar] [CrossRef]
- Yu, B.; He, W.; Li, N.; Wang, L.; Cai, J.; Chen, H.; Ji, J.; Xu, G. Experimental and numerical performance analysis of a TC-Trombe wall. Appl. Energy 2017, 206, 70–82. [Google Scholar] [CrossRef]
- Hassan, A.; Abbas, S.; Yousuf, S.; Abbas, F.; Amin, N.M.; Ali, S.; Shahid Mastoi, M. An experimental and numerical study on the impact of various parameters in improving the heat transfer performance characteristics of a water based photovoltaic thermal system. Renew. Energy 2023, 202, 499–512. [Google Scholar] [CrossRef]
- Abbas, S.; Yuan, Y.; Zhou, J.; Hassan, A.; Yu, M.; Yasheng, J. Experimental and analytical analysis of the impact of different base plate materials and design parameters on the performance of the photovoltaic/thermal system. Renew. Energy 2022, 187, 522–536. [Google Scholar] [CrossRef]
- Alsaqoor, S.; Alqatamin, A.; Alahmer, A.; Nan, Z.; Al-Husban, Y.; Jouhara, H. The impact of phase change material on photovoltaic thermal (PVT) systems: A numerical study. Int. J. Thermofluids 2023, 18, 100365. [Google Scholar] [CrossRef]
- Zhou, S.; Bai, F.; Razaqpur, G.; Wang, B. Effect of key parameters on the transient thermal performance of a building envelope with Trombe wall containing phase change material. Energy Build. 2023, 284, 112879. [Google Scholar] [CrossRef]
- Kanzari, I.; Oueslati, H.; Ben Mabrouk, S. Numerical simulation of photovoltaic thermal air panel with phase change materials. Renew. Energy Focus 2021, 37, 27–35. [Google Scholar] [CrossRef]
- Bahaidarah, H.; Subhan, A.; Gandhidasan, P.; Rehman, S. Performance evaluation of a PV (photovoltaic) module by back surface water cooling for hot climatic conditions. Energy 2013, 59, 445–453. [Google Scholar] [CrossRef]
- Gu, Z.; Liu, H.; Li, Y. Thermal energy recovery of air conditioning system––heat recovery system calculation and phase change materials development. Appl. Therm. Eng. 2004, 24, 2511–2526. [Google Scholar] [CrossRef]
- Oliveira, A.V.S.; Avrit, A.; Gradeck, M. Thermocouple response time estimation and temperature signal correction for an accurate heat flux calculation in inverse heat conduction problems. Int. J. Heat Mass Transf. 2022, 185, 122398. [Google Scholar] [CrossRef]
- Zhao, L.; Shui, Z.; Liu, X.; Yang, T.; Duan, G. Computer-aiding evaluation of north wall effects of a solar greenhouse: Multiphysics modelling of the indoor environment. Case Stud. Therm. Eng. 2024, 64, 105361. [Google Scholar] [CrossRef]
- Han, F.; Chen, C.; Chen, H.; Duan, S.; Lu, B.; Jiao, Y.; Li, G. Research on creating the indoor thermal environment of the solar greenhouse based on the solar thermal storage and release characteristics of its north wall. Appl. Therm. Eng. 2024, 241, 122348. [Google Scholar] [CrossRef]
Apparatus | Model | Measuring Parameter | Accuracy |
---|---|---|---|
Data acquisition instrument | Agilent34972 A | Temperature, solar radiation intensity | / |
Thermocouple | K type | Temperature | ±0.5 °C |
Extraction pump | T43-220 | / | ±0.5% |
Spectral illuminometer | HPCS-3200 | Wavelength transmittance | / |
Solar irradiator | TQB-2 | Global solar radiation | ±11.04 |
Hot-wire anemometer | KANOMAX | Airflow velocity | ±5% or ±0.015 m/s |
Material | Acrylic Glass | NF | PCM | Copper Tube | Aluminum | Air | Heat Insulation Layer |
---|---|---|---|---|---|---|---|
α | 0.1 | 0.05 | 0.2 | 0.2 | |||
ε | 0.02 | 0.06 | |||||
cp, J/kg∙K | 1900 | 4180 | 2500 | 390 | 903 | 1005 | 330 |
Thickness, m | 0.01 | 0.01 | 0.02 | 0.05 | 0.001 | 0.015 | |
ρ, kg/m3 | 1200 | 1000 | 880 | 8960 | 2702 | 1.16 | 30 |
λ, W/m2∙K | 0.22 | 0.7 | 0.4 | 398 | 237 | 0.026 | 0.035 |
Transmittance | 0.93 | 0.9 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, W.; Luo, J.; Shi, Y.; Yu, C.; Li, N.; Ji, J.; Yu, B. A Novel Solar Rooftop Agriculture System Integrated with CNT Nanofluid Spectral Splitter for Efficient Food Production. Buildings 2025, 15, 314. https://doi.org/10.3390/buildings15030314
Wei W, Luo J, Shi Y, Yu C, Li N, Ji J, Yu B. A Novel Solar Rooftop Agriculture System Integrated with CNT Nanofluid Spectral Splitter for Efficient Food Production. Buildings. 2025; 15(3):314. https://doi.org/10.3390/buildings15030314
Chicago/Turabian StyleWei, Wei, Jiayi Luo, Yiyu Shi, Chenlei Yu, Niansi Li, Jie Ji, and Bendong Yu. 2025. "A Novel Solar Rooftop Agriculture System Integrated with CNT Nanofluid Spectral Splitter for Efficient Food Production" Buildings 15, no. 3: 314. https://doi.org/10.3390/buildings15030314
APA StyleWei, W., Luo, J., Shi, Y., Yu, C., Li, N., Ji, J., & Yu, B. (2025). A Novel Solar Rooftop Agriculture System Integrated with CNT Nanofluid Spectral Splitter for Efficient Food Production. Buildings, 15(3), 314. https://doi.org/10.3390/buildings15030314