A Modified B-Differentiable Equation Method for the Seismic Analysis of Arch Dams Considering the Initial Strength of Contraction Joints
Abstract
:1. Introduction
2. The Modified B-Differentiable Equation Method
3. The FE Model for the Arch Dam–Reservoir–Foundation System
3.1. Computational Method
- (a)
- Dam–Infinite Foundation Interaction
- (b)
- Dam–Reservoir Water Interaction
- (c)
- Method for Solving the Dynamic Equilibrium Equations of Dam–Reservoir–Foundation System
3.2. The FE Mesh of the Arch Dam–Foundation
3.3. The Parameters of Contraction Joints
4. Numerical Results
4.1. Contraction Joint Aperture
- (1)
- Contraction joint model CM1.
- (2)
- Contraction joint model CM2.
- (3)
- Contraction joint model CM3.
- (4)
- Contraction joint model CM4.
4.2. Stress Distribution of the Dam Body
- (1)
- Contact model CM1.
- (2)
- Contact model CM2.
- (3)
- Contact model CM3.
- (4)
- Contact model CM4.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, S. Hydraulic Structures; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Chen, H. Seismic safety of high concrete dams. Earthq. Eng. Eng. Vib. 2014, 13, 1–16. [Google Scholar] [CrossRef]
- Zhang, C. Recent developments on seismic safety evaluation of concrete dams. Earthq. Eng. Resil. 2022, 1, 7–20. [Google Scholar] [CrossRef]
- Rezaiee-Pajand, M.; Kazemiyan, M.S.; Aftabi Sani, A. A Literature Review on Dynamic Analysis of Concrete Gravity and Arch Dams. Arch. Comput. Methods Eng. 2021, 28, 4357–4372. [Google Scholar] [CrossRef]
- Freitas, M.; Léger, P.; Bouaanani, N. Nonlinear data-driven zero-thickness joint element for concrete dam shear keys. Finite Elem. Anal. Des. 2024, 229, 104071. [Google Scholar] [CrossRef]
- Dowling, M.; Hall, J. Nonlinear seismic analysis of arch dams. J. Eng. Mech.-ASCE 1989, 115, 768–789. [Google Scholar] [CrossRef]
- Soltani, N.; Escuder-Bueno, I. Effect of Contraction and Construction Joint Quality on the Static Performance of Concrete Arch Dams. Infrastructures 2024, 9, 231. [Google Scholar] [CrossRef]
- Fenves, G.; Mojtahedi, S.; Reimer, R. Effect of contraction joints on earthquake response of an arch dam. J. Struct. Eng.-ASCE 1992, 118, 1039–1055. [Google Scholar] [CrossRef]
- Mays, J.R.; Roehm, L.H. Effect of vertical contraction joints in concrete arch dams. Comput. Struct. 1993, 47, 615–627. [Google Scholar] [CrossRef]
- Lau David, T.; Noruziaan, B.; Razaqpur, A.G. Modelling of contraction joint and shear sliding effects on earthquake response of arch dams. Earthq. Eng. Struct. Dyn. 1998, 27, 1013–1029. [Google Scholar]
- Azmi, M.; Paultre, P. Three-dimensional analysis of concrete dams including contraction joint non-linearity. Eng. Struct. 2002, 24, 757–771. [Google Scholar] [CrossRef]
- Xu, Q.; Chen, J.Y.; Li, J.; Yue, H.Y. A study on the contraction joint element and damage constitutive model for concrete arch dams. J. Zhejiang Univ. Sci. A 2014, 15, 208–218. [Google Scholar] [CrossRef]
- Hamidreza, A.; Vahid, L. Nonlinear dynamic analysis of arch dams with joint sliding mechanism. Eng. Comput. 2009, 26, 464–482. [Google Scholar]
- Hariri-Ardebili, M.; Mirzabozorg, H.; Kianoush, M. Seismic analysis of high arch dams considering contraction-peripheral joints coupled effects. Open Eng. 2013, 3, 549–564. [Google Scholar] [CrossRef]
- Hall John, F. Efficient non-linear seismic analysis of arch dams. Earthq. Eng. Struct. Dyn. 1998, 27, 1425–1444. [Google Scholar] [CrossRef]
- Ma, T.; Zhang, L.; Xu, W.; Zhang, H.; Wang, W.; Wang, Y. Seismic Fragility Analysis of Arch Dam Based on IDA and ETA Methods. Shock. Vib. 2024, 2024, 6686077. [Google Scholar] [CrossRef]
- Qiu, Y.; Wang, J.; Jin, A.; Xu, Y.; Zhang, C. Simple models for simulating shear key arrangement in nonlinear seismic analysis of arch dams. Soil Dyn. Earthq. Eng. 2021, 151, 107006. [Google Scholar] [CrossRef]
- Chen, D.; Pan, Z.; Zhao, Y. Seismic damage characteristics of high arch dams under oblique incidence of SV waves. Eng. Fail. Anal. 2023, 152, 107445. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, X.; Liu, Y.; Wang, J.; Yi, K.; Yan, J.; Chen, H. Effect of attached outlets on the dynamic response of arch dams. Eng. Struct. 2024, 302, 117392. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, Z.; Li, T. Mixed Finite Element Method for Static and Dynamic Contact Problems with Friction and Initial Gaps. Math. Probl. Eng. 2014, 2014, 465935. [Google Scholar] [CrossRef]
- Du, C.; Jiang, S. Nonlinear Dynamic Responses of Arch Dam with Shear Keys. Math. Comput. Appl. 2010, 15, 828–833. [Google Scholar] [CrossRef]
- Sun, W. Seismic response control of high arch dams including contraction joint using nonlinear super-elastic SMA damper. Constr. Build. Mater. 2011, 25, 3762–3767. [Google Scholar] [CrossRef]
- Mirzabozorg, H.; Akbari, M.; Hariri Ardebili, M.A. Wave passage and incoherency effects on seismic response of high arch dams. Earthq. Eng. Eng. Vib. 2012, 11, 567–578. [Google Scholar] [CrossRef]
- Guo, S.; Liao, J.; Huang, H.; Liang, H.; Li, D.; Chen, H.; Zhang, A.; Tian, Y. The Effect of Shear Sliding of Vertical Contraction Joints on Seismic Response of High Arch Dams with Fine Finite Element Model. Adv. Civ. Eng. 2020, 2020, 4353609. [Google Scholar] [CrossRef]
- Guo, S.; Liang, H.; Wu, S.; Xiong, K.; Li, D.; Chen, H.; Zhang, A. Seismic damage investigation of arch dams under different water levels based on massively parallel computation. Soil Dyn. Earthq. Eng. 2020, 129, 105917. [Google Scholar] [CrossRef]
- Xue, B.; Wang, J.; Li, N.; Zhang, C.; Chen, J. Comparison of the Seismic Responses of an Arch Dam under Excitation from the Design Response Spectrum in the New and Old Chinese National Standards. Water 2022, 14, 832. [Google Scholar] [CrossRef]
- Pang, J.S. Newton’s Method for B-Differentiable Equations. Math. Oper. Res. 1990, 15, 311–341. [Google Scholar] [CrossRef]
- Xue, B.; Du, X.; Wang, J.; Yu, X. A Scaled Boundary Finite-Element Method with B-Differentiable Equations for 3D Frictional Contact Problems. Fractal Fract. 2022, 6, 133. [Google Scholar] [CrossRef]
- Christensen, P.W.; Klarbring, A.; Pang, J.S.; Strömberg, N. Formulation and comparison of algorithms for frictional contact problems. Int. J. Numer. Methods Eng. 1998, 42, 145–173. [Google Scholar] [CrossRef]
- Liao, Z. Extrapolation non-reflecting boundary conditions. Wave Motion 1996, 24, 117–138. [Google Scholar] [CrossRef]
- Westergaard, H.M. Water pressures on dams during earthquakes. Trans. Am. Soc. Civ. Eng. 1933, 98, 418–432. [Google Scholar] [CrossRef]
- Pan, J.; Xu, Y.; Jin, F.; Wang, J. Seismic stability assessment of an arch dam-foundation system. Earthq. Eng. Eng. Vib. 2015, 14, 517–526. [Google Scholar] [CrossRef]
Material | Density (kg/m3) | Elastic Modulus (GPa) | Poisson’s Ratio | Coefficient of Linear Expansion (/°C) | Thermal Conductivity (W/m·°C) | Specific Heat Capacity (kJ/(kg·°C)) |
---|---|---|---|---|---|---|
Concrete | 2400 | 21 | 0.167 | 1.0 × 10−5 | 3.0 | 970 |
Bedrock I | 2755 | 13.5 | 0.24 | 1.0 × 10−5 | 2.67 | 840 |
Bedrock II | 2700 | 10.0 | 0.26 | 1.0 × 10−5 | 2.67 | 840 |
Model Number | Normal Tensile Strength (MPa) | Tangential Shear Strength (MPa) |
---|---|---|
CM1 | 1.0 | 3.0 |
CM2 | 0.5 | 1.0 |
CM3 | 0.0 | 1.0 |
CM4 | 0.0 | 0.0 |
MPS | TS-UF | TS-DF | CS-UF | CS-DF | |
---|---|---|---|---|---|
Contact Model | |||||
CM1 | 2.74 | 3.82 | 7.40 | 5.89 | |
CM2 | 2.61 | 3.20 | 7.30 | 6.49 | |
CM3 | 2.59 | 3.09 | 7.30 | 6.50 | |
CM4 | 2.53 | 3.83 | 7.66 | 7.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, Y.; Xue, B.; Wang, F.; Du, X.; Lei, J. A Modified B-Differentiable Equation Method for the Seismic Analysis of Arch Dams Considering the Initial Strength of Contraction Joints. Buildings 2025, 15, 317. https://doi.org/10.3390/buildings15030317
Pan Y, Xue B, Wang F, Du X, Lei J. A Modified B-Differentiable Equation Method for the Seismic Analysis of Arch Dams Considering the Initial Strength of Contraction Joints. Buildings. 2025; 15(3):317. https://doi.org/10.3390/buildings15030317
Chicago/Turabian StylePan, Yanhui, Binghan Xue, Feng Wang, Xueming Du, and Jianwei Lei. 2025. "A Modified B-Differentiable Equation Method for the Seismic Analysis of Arch Dams Considering the Initial Strength of Contraction Joints" Buildings 15, no. 3: 317. https://doi.org/10.3390/buildings15030317
APA StylePan, Y., Xue, B., Wang, F., Du, X., & Lei, J. (2025). A Modified B-Differentiable Equation Method for the Seismic Analysis of Arch Dams Considering the Initial Strength of Contraction Joints. Buildings, 15(3), 317. https://doi.org/10.3390/buildings15030317