A Parametric Study on the Behavior of Arch Composite Beams Prestressed with External Tendons
Abstract
:1. Introduction
2. Experiment
2.1. Beam Design
- Structural steel yield strength (230 MPa);
- Concrete grade C45/50;
- Prestressing strand of 1860 MPa strength;
- Reinforcement bars with diameters of 8 mm and 10 mm, and a yield strength of 400 MPa.
2.2. Beam Fabrication
2.3. Material Properties
2.4. Instrumentation
2.5. Loading
2.6. Shear Connectors
2.7. Beam Results
3. Finite Element Modeling
3.1. Element Type
3.2. Shear Connectors Modeling
3.3. Meshing
3.4. Contact Properties and Boundary Conditions
3.5. Loading Steps
3.6. Material Modeling
3.6.1. Steel
3.6.2. Concrete
3.7. Finite Element Validation
4. Parametric Study
4.1. Results and Discussion
4.1.1. Influence of Initial Prestressing Stress
Effect on Initial Stiffness, Ultimate Load, and Yield Load
Effect on Stresses in the Bottom Flange
Effect on Increment Stresses in the Tendons
4.1.2. Influence of Rise-to-Span Ratio
Without Tendons
With Tendons
4.1.3. Influence of Beam Length
5. Conclusions
- The numerical model created using ABAQUS successfully simulated the behavior of arch composites prestressed with external tendons, as demonstrated by the comparison between the numerical models and experimental data.
- The presence of tendons even without initial prestressing enhances the serviceability behavior, increases the ultimate load by 40%, and equilibrates the horizontal thrust of the arch.
- The findings indicate that the prestressed tendons enhanced the structural performance by augmenting its ultimate moment resistance by 80%, balancing the horizontal forces, reducing the support spreading, and diminishing the deflection of the arch beams by 60%, in comparison to non-prestressed beams.
- The increase in the initial prestressing stress has a significant effect on the overall behavior of the beams at the elastic stages for the evaluated models compared with control beam. When submitted to higher initial stresses, the tendons suffered lower stress increments due to the loading action. In tendons with lower initial stresses, the increments were higher. The total stresses are similar in both cases, which leads them to resemble the ultimate load.
- For shallower beams to achieve the same gain in overall behavior and an increased ultimate moment resistance, a higher prestressing setting is required than for deep beams.
- The prestress was found to be more effective in longer spans and the incremental prestress in tendons was found to be more remarkable.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
σi | Initial prestress stresses |
D | Diameter of prestress cable |
Fy | Yield load |
Is | Initial stiffness |
Fu | Ultimate load |
σp | Tendon stresses after loading |
L | Beam length |
Fuc | Ultimate load of control beam |
Isc | Initial stiffness of control beam |
Ha | Rise of the arch |
H | Height of the beam |
References
- Lewis, W.J.; Russell, J.M.; Li, T.Q. Moment-less arches of constant axial stress: Implications for design. Eng. Struct. 2024, 300, 116968. [Google Scholar] [CrossRef]
- Alhassankoo, Y.T.; Al-Darzi, S.Y.; Ibrahim, K.A. Investigating the Behavior of Steel-Concrete Composite Arch Beam with Different Types of Shear Connectors. Tikrit J. Eng. Sci. 2024, 31, 233–245. [Google Scholar] [CrossRef]
- Yang, F. Seismic vulnerability analysis on an extra-large highway-railway dual-used arch bridge. Appl. Comput. Eng. 2023, 24, 25–37. [Google Scholar] [CrossRef]
- Gambhir, M.L. Stability Analysis and Design of Structures; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Han, J.C. Study on Steel and Concrete Composite Structure Bridge. Highlights Sci. Eng. Technol. 2024, 106, 305–310. [Google Scholar] [CrossRef]
- Tang, W. Research on the application of high-performance concrete and steel structure combination in civil engineering. Appl. Math. Nonlinear Sci. 2024, 9. [Google Scholar] [CrossRef]
- Wu, H.; Bowman, M.D. Examination of Post-Tensioned Steel Bridges in Indiana; Publication FHWA/IN/JTRP-2000/16, Joint Transportation Research Program; Indiana Department of Transportation and Purdue University: West Lafayette, IN, USA, 2000. [Google Scholar] [CrossRef]
- Ayyub, B.M.; Sohn, Y.G.; Saadatmanesh, H. Prestressed composite girders under positive moment. J. Struct. Eng. 1990, 116, 2931–2951. [Google Scholar] [CrossRef]
- Chen, S.; Gu, P. Load carrying capacity of composite beams prestressed with external tendons under positive moment. J. Constr. Steel Res. 2005, 61, 515–530. [Google Scholar] [CrossRef]
- Uy, B.; Craine, S. Static Flexural Behaviour of Externally Post-Tensioned Steel-Concrete Composite Beams. Adv. Struct. Eng. 2004, 7, 1–20. [Google Scholar] [CrossRef]
- Zona, A.; Ragni, L.; Dall’Asta, A. Simplified method for the analysis of externally prestressed steel–concrete composite beams. J. Constr. Steel Res. 2009, 65, 308–313. [Google Scholar] [CrossRef]
- Chen, S.; Jia, Y. Numerical Investigation of Inelastic Buckling of Steel–Concrete Composite Beams Prestressed with External Tendons. Thin-Walled Struct. 2010, 48, 233–242. [Google Scholar] [CrossRef]
- Nie, J.G.; Tao, M.X.; Cai, C.S. Analytical and numerical modeling of prestressed continuous steel-concrete composite beams. J. Struct. Eng. 2011, 137, 1405–1418. [Google Scholar] [CrossRef]
- El-Zohairy, A.; Salim, H.; Shaaban, H.; Mustafa, S.; El-Shihy, A. Finite-Element Modeling of Externally Postten-sioned Composite Beams. J. Bridg. Eng. 2015, 20, 04015018. [Google Scholar] [CrossRef]
- Lou, T.; Lopes, S.M.R. Numerical modeling of externally prestressed steel–concrete composite beams. J. Constr. Steel Res. 2016, 121, 229–236. [Google Scholar] [CrossRef]
- Moscoso, A.M.; Tamayo, J.L.P.; Morsch, I.B. Numerical simulation of external pre-stressed steel-concrete composite beams. Comput. Concr. 2017, 19, 191–201. [Google Scholar] [CrossRef]
- Sousa, J.B.M.; Parente, E.; Lima, E.M.F.; Oliveira, M.V.X. Beam-tendon finite elements for post-tensioned steel-concrete composite beams with partial interaction. J. Constr. Steel Res. 2019, 159, 147–160. [Google Scholar] [CrossRef]
- El-Zohairy, A.; Salim, H. Steel–concrete composite beams strengthened with externally post-tensioned tendons under fatigue. J. Bridg. Eng. 2019, 24, 04019027. [Google Scholar] [CrossRef]
- Kim, K.S.; Lee, D.H.; Choi, S.M.; Choi, Y.H. Flexural behavior of prestressed composite beams with cor-rugated web: Part I. Development and analysis. Composites 2011, 42 Pt B, 1603–1616. [Google Scholar] [CrossRef]
- Nawar, M.T.; El-Zohairy, A.; Maaly, H.M.; Husain, M.; Salama, I.; Mousa, E. Prestressed Steel-Concrete Composite I-Beams with Single and Double Corrugated Web. Buildings 2023, 13, 647. [Google Scholar] [CrossRef]
- Karla, R.; Thiago, T.; Lorenzo, L.; Adenilcia, C. Behavior of composite beams with external prestressing in sagging moment regions. Revista IBRACON de Estruturas e Materiais 2021, 14, e14405. [Google Scholar] [CrossRef]
- Moreira da Rocha Almeida, M.; Clemente de Souza, A.S.; Teixeira de Albuquerque, A. Experimental study of prestressed steel-concrete composite beams with profiled steel decking. J. Constr. Steel Res. 2022, 194, 107331. [Google Scholar] [CrossRef]
- Hu, Z.; Shah, Y.; Yu, S. Cracking Analysis of Pre-stressed Steel–concrete Composite Girder at Negative Moment Zone. Arab. J. Sci. Eng. 2021, 46, 10771–10783. [Google Scholar] [CrossRef]
- Jian, X.; Zhang, N.; Liu, H.; Zhao, Z.; Lei, M.; Chen, Z. Interface slip of steel-concrete composite beams reinforced with CFRP sheet under creep effect. Sci. Rep. 2022, 12, 22375. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wang, Y.; Khan, M.; Li, D.; Uy, B.; Thai, H.-T.; Ngo, T. A review on long-term behaviour of steel-concrete composite structures. Ce/papers 2023, 6, 268–275. [Google Scholar] [CrossRef]
- Rafieizonooz, M.; Jang, H.; Kim, J.; Kim, C.-S.; Kim, T.; Wi, S.; Banihashemi, S.; Khankhaje, E. Performances and properties of steel and composite prestressed tendons—A review. Heliyon 2024, 10, e31720. [Google Scholar] [CrossRef]
- ENV 1994-2; Eurocode 4: Design of Composite Steel and Concrete Structures. Part 2: Rules for Bridges. European Committee for Standardization: Bruxelles, Belgium, 1997.
- Su, Q.; Yang, G.; Bradford, M. Bearing Capacity of Perfobond Rib Shear Connectors in Composite Girder Bridges. J. Bridge Eng. 2016, 21. [Google Scholar] [CrossRef]
- Ahn, J.H.; Lee, C.G.; Won, J.H.; Kim, S.H. Shear resistance of the perfobond-rib shear connector depending on concrete strength and rib arrangement. J. Constr. Steel Res. 2010, 66, 1295–1307. [Google Scholar] [CrossRef]
- ASTM C39/C39M-21; Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens. ASTM International: West Conshohocken, PA, USA, 2021. [CrossRef]
- Wang, C.; Cao, D.; Liu, X.; Jing, Y.; Liu, W.; Yang, G. Initial Elastic Stiffness of Bolted Shear Connectors in Steel-Concrete Composite Structures. Adv. Civ. Eng. 2022, 2022, 1–13. [Google Scholar] [CrossRef]
- Saenz, L.P. Discussion of equation for stress-strain curve of concrete by P. Desayi and S. Krishan. J. Am. Concr. Inst. 1964, 61, 1229–1235. [Google Scholar]
- Chahal, S.; Baalbaki, O.; Temsah, Y.; Ghanem, H.; Abou-Saleh, Z. Performance of Two-Way Hinges in Reinforced Concrete Structures. Mag. Civ. Eng. 2021, 102, 10204. [Google Scholar] [CrossRef]
- Edlebi, G.; Masri, A.; Baalbaki, O.; Wehbi, N. Experimental and numerical investigation on the behavior of reinforced concrete walls strengthened by steel members. Asian J. Civ. Eng. 2024, 25, 2761–2774. [Google Scholar] [CrossRef]
- Ghanem, H.; Chahal, S.; Khatib, J.; Elkordi, A. Experimental and Numerical Investigation of the Flexural Behavior of Mortar Beams Strengthened with Recycled Plastic Mesh. Sustainability 2023, 15, 5640. [Google Scholar] [CrossRef]
- Ghanem, H.; Chahal, S.; Khatib, J.; Elkordi, A. Flexural Behavior of Concrete Beams Reinforced with Recycled Plastic Mesh. Buildings 2022, 12, 2085. [Google Scholar] [CrossRef]
- Chahal, S.; Baalbaki, O.; Timsah, Y.; Ghanem, H.; Saleh, Z.A. Experimental Investigation of Two-Way Hinges in Reinforced Concrete Members. In Recent Research in Sustainable Structures: GeoMEast 2019; Sustainable Civil Infrastructures; Springer: Cham, Switzerland, 2020; pp. 128–146. [Google Scholar]
- Lorenc, W.; Kubica, E. Behavior of composite beams prestressed with external tendons: Experimental study. J. Constr. Steel Res. 2006, 62, 1353–1366. [Google Scholar] [CrossRef]
Parameter | Elastic modulus E (MPa) | Poisson’s ratio ᶹυ | Density (Kg/m3) | Eccentricity ε |
39,725 | 0.2 | 2400 | 0.1 | |
Compressive strength (MPa) | Peak compressive strain ἑc (mm/m) | Tensile strength ft | Bi-axial to uni-axial strength ratio fb0/ft0 | |
40 | 2.3 | 3.86 | 1.16 | |
Peak compressive strain ἑc (mm/m) | Tensile strength ft | Dilation angle Ψ | Second stress invariant ratio K | |
2.3 | 3.86 | 36 | 0.667 |
Group | Sub Group | Model | L (mm) | Hb (mm) | Hc (mm) | Hs (mm) | Ha (mm) | Hs-Ha (mm) | bc (mm) | Ha/L | tw (mm) | tf (mm) | D (mm) | σi (MPa) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
G1 | S1 | 1 | 3000 | 285 | 90 | 187 | 135 | 52 | 480 | 0.05 | 8 | 8 | - | 0 |
2 | 3000 | 285 | 90 | 187 | 135 | 52 | 480 | 0.05 | 8 | 8 | 12 | 0 | ||
3 | 3000 | 285 | 90 | 187 | 135 | 52 | 480 | 0.05 | 8 | 8 | 17 | 0 | ||
4 | 3000 | 285 | 90 | 187 | 135 | 52 | 480 | 0.05 | 8 | 8 | 12 | 190 | ||
5 | 3000 | 285 | 90 | 187 | 135 | 52 | 480 | 0.05 | 8 | 8 | 12 | 380 | ||
S2 | 6 | 3000 | 438 | 90 | 348 | 296 | 52 | 480 | 0.10 | 8 | 8 | - | 0 | |
7 | 3000 | 438 | 90 | 348 | 296 | 52 | 480 | 0.10 | 8 | 8 | 12 | 0 | ||
8 | 3000 | 438 | 90 | 348 | 296 | 52 | 480 | 0.10 | 8 | 8 | 12 | 380 | ||
S3 | 9 | 3000 | 633 | 90 | 543 | 491 | 52 | 480 | 0.16 | 8 | 8 | 0 | 0 | |
10 | 3000 | 633 | 90 | 543 | 491 | 52 | 480 | 0.16 | 8 | 8 | 12 | 0 | ||
11 | 3000 | 633 | 90 | 543 | 491 | 52 | 480 | 0.16 | 8 | 8 | 12 | 380 | ||
G2 | S1 | 12 | 6000 | 465 | 90 | 375 | 270 | 105 | 960 | 0.05 | 8 | 8 | - | 0 |
13 | 6000 | 465 | 90 | 375 | 270 | 105 | 960 | 0.05 | 8 | 8 | 12 | 0 | ||
14 | 6000 | 465 | 90 | 375 | 270 | 105 | 960 | 0.05 | 8 | 8 | 12 | 190 | ||
15 | 6000 | 465 | 90 | 375 | 270 | 105 | 960 | 0.05 | 8 | 8 | 12 | 380 | ||
S2 | 16 | 6000 | 735 | 90 | 645 | 540 | 105 | 960 | 0.09 | 8 | 8 | - | 0 | |
17 | 6000 | 735 | 90 | 645 | 540 | 105 | 960 | 0.09 | 8 | 8 | 12 | 0 | ||
18 | 6000 | 735 | 90 | 645 | 540 | 105 | 960 | 0.09 | 8 | 8 | 12 | 190 | ||
19 | 6000 | 735 | 90 | 645 | 540 | 105 | 960 | 0.09 | 8 | 8 | 12 | 380 | ||
S3 | 20 | 6000 | 1155 | 90 | 1065 | 960 | 105 | 960 | 0.16 | 8 | 8 | - | 0 | |
21 | 6000 | 1155 | 90 | 1065 | 960 | 105 | 960 | 0.16 | 8 | 8 | 12 | 0 | ||
22 | 6000 | 1155 | 90 | 1065 | 960 | 105 | 960 | 0.16 | 8 | 8 | 12 | 190 | ||
23 | 6000 | 1155 | 90 | 1065 | 960 | 105 | 960 | 0.16 | 8 | 8 | 12 | 380 | ||
G3 | S1 | 24 | 9000 | 696 | 90 | 606 | 450 | 156 | 1440 | 0.05 | 8 | 8 | - | 0 |
25 | 9000 | 696 | 90 | 606 | 450 | 156 | 1440 | 0.05 | 8 | 8 | 12 | 0 | ||
26 | 9000 | 696 | 90 | 606 | 450 | 156 | 1440 | 0.05 | 8 | 8 | 12 | 190 | ||
27 | 9000 | 696 | 90 | 606 | 450 | 156 | 1440 | 0.05 | 8 | 8 | 12 | 380 | ||
S2 | 28 | 9000 | 1146 | 90 | 1056 | 900 | 156 | 1440 | 0.10 | 8 | 8 | - | 0 | |
29 | 9000 | 1146 | 90 | 1056 | 900 | 156 | 1440 | 0.10 | 8 | 8 | 12 | 0 | ||
30 | 9000 | 1146 | 90 | 1056 | 900 | 156 | 1440 | 0.10 | 8 | 8 | 12 | 190 | ||
31 | 9000 | 1146 | 90 | 1056 | 900 | 156 | 1440 | 0.10 | 8 | 8 | 12 | 380 | ||
S3 | 32 | 9000 | 1686 | 90 | 1596 | 1440 | 156 | 1440 | 0.16 | 8 | 8 | - | 0 | |
33 | 9000 | 1686 | 90 | 1596 | 1440 | 156 | 1440 | 0.16 | 8 | 8 | 12 | 0 | ||
34 | 9000 | 1686 | 90 | 1596 | 1440 | 156 | 1440 | 0.16 | 8 | 8 | 12 | 190 | ||
35 | 9000 | 1686 | 90 | 1596 | 1440 | 156 | 1440 | 0.16 | 8 | 8 | 12 | 380 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabsabi, A.; Baalbaki, O.; Masri, A.; Ghanem, H. A Parametric Study on the Behavior of Arch Composite Beams Prestressed with External Tendons. Buildings 2025, 15, 330. https://doi.org/10.3390/buildings15030330
Sabsabi A, Baalbaki O, Masri A, Ghanem H. A Parametric Study on the Behavior of Arch Composite Beams Prestressed with External Tendons. Buildings. 2025; 15(3):330. https://doi.org/10.3390/buildings15030330
Chicago/Turabian StyleSabsabi, Abdelrahim, Oussama Baalbaki, Adnan Masri, and Hassan Ghanem. 2025. "A Parametric Study on the Behavior of Arch Composite Beams Prestressed with External Tendons" Buildings 15, no. 3: 330. https://doi.org/10.3390/buildings15030330
APA StyleSabsabi, A., Baalbaki, O., Masri, A., & Ghanem, H. (2025). A Parametric Study on the Behavior of Arch Composite Beams Prestressed with External Tendons. Buildings, 15(3), 330. https://doi.org/10.3390/buildings15030330