Digital Evolution in Nigerian Heavy-Engineering Projects: A Comprehensive Analysis of Technology Adoption for Competitive Edge
Abstract
:1. Introduction
2. Literature Review
2.1. Digital Technologies for Heavy-Construction Projects
2.2. Knowledge Gap
2.3. Relevant Theories on Adopting Innovative Technologies
2.4. Theoretical Framework Underpinning This Study
3. Research Method
Methodology for Analyzing Data
4. Results
4.1. Background Information of Respondents
4.2. Level of Implementation of Digital Technologies
4.3. Relationship Between Adoption Level and Competitive Edge
4.4. Model for the Adoption of Digital Technologies
5. Discussion
5.1. Digital Technologies for Intensive Adoption in Heavy-Construction Firms
5.2. Surprising Discoveries
6. Practical Implications of the Digital-Technology-Adoption Model
7. Conclusions and Areas for Future Studies
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Malomane, R.; Musonda, I.; Okoro, C.S. The opportunities and challenges associated with the implementation of fourth industrial revolution technologies to manage health and safety. Int. J. Environ. Res. Public Health 2022, 19, 846. [Google Scholar] [CrossRef]
- Ling, F.Y.; Heng, G.T.H.; Chang-Richards, A.; Chen, X.; Yiu, T.W. Impact of digital technology adoption on the comparative advantage of architectural, engineering, and construction firms in Singapore. J. Constr. Eng. Manag. 2023, 149, 04023125. [Google Scholar] [CrossRef]
- Jaafar, M.; Salman, A.; Ghazali, F.E.M.; Zain, M.Z.M.; Kilau, N.M. The awareness and adoption level of emerging technologies in Fourth Industrial Revolution (4IR) by contractors in Malaysia. Ain Shams Eng. J. 2024, 15, 102710. [Google Scholar] [CrossRef]
- Eze, E.C.; Sofolahan, O.; Ugulu, R.A.; Ameyaw, E.E. Bolstering circular economy in construction through digitalisation. Constr. Innov. 2024. [Google Scholar] [CrossRef]
- Thirumal, S.; Udawatta, N.; Karunasena, G.; Al-Ameri, R. Barriers to Adopting Digital Technologies to Implement Circular Economy Practices in the Construction Industry: A Systematic Literature Review. Sustainability 2024, 16, 3185. [Google Scholar] [CrossRef]
- Aliu, J.; Oke, A.E. Construction in the digital age: Exploring the benefits of digital technologies. Built Environ. Proj. Asset Manag. 2023, 13, 412–429. [Google Scholar] [CrossRef]
- Chen, Z.S.; Zhou, M.D.; Chin, K.S.; Darko, A.; Wang, X.J.; Pedrycz, W. Optimized decision support for BIM maturity assessment. Autom. Constr. 2023, 149, 104808. [Google Scholar] [CrossRef]
- Santoso, D.S.; Gallage, P.G.M.P. Critical factors affecting the performance of large construction projects in developing countries: A case study of Sri Lanka. J. Eng. Des. Technol. 2020, 18, 531–556. [Google Scholar] [CrossRef]
- Yücelgazi, F.; Yitmen, I. An ANP model for risk response assessment in large scale bridge projects. Civ. Eng. Environ. Syst. 2020, 37, 1–27. [Google Scholar] [CrossRef]
- Labaran, Y.H.; Mathur, V.S.; Muhammad, S.U.; Musa, A.A. Carbon footprint management: A review of construction industry. Clean. Eng. Technol. 2022, 9, 100531. [Google Scholar] [CrossRef]
- Oke, A.E.; Aliu, J.; Fadamiro, P.O.; Akanni, P.O.; Stephen, S.S. Attaining digital transformation in construction: An appraisal of the awareness and usage of automation techniques. J. Build. Eng. 2023, 67, 105968. [Google Scholar] [CrossRef]
- Kumar, V.; Singh, R.; Pandey, A. Multiple stakeholders’ critical success factors scale for success on large construction projects. Asian J. Civ. Eng. 2024, 25, 1691–1705. [Google Scholar] [CrossRef]
- Cao, D.; Teng, X.; Chen, Y.; Tan, D.; Wang, G. Digital transformation strategies of project-based firms: Case study of a large-scale construction company in China. Asia Pac. J. Innov. Entrep. 2023, 17, 82–98. [Google Scholar] [CrossRef]
- Abioye, S.O.; Oyedele, L.O.; Akanbi, L.; Ajayi, A.; Delgado, J.M.D.; Bilal, M.; Akinade, O.O.; Ahmed, A. Artificial intelligence in the construction industry: A review of present status, opportunities and future challenges. J. Build. Eng. 2021, 44, 103299. [Google Scholar] [CrossRef]
- Adekunle, P.; Aigbavboa, C.; Akinradewo, O.; Oke, A.; Aghimien, D. Construction Information Management: Benefits to the Construction Industry. Sustainability 2022, 14, 11366. [Google Scholar] [CrossRef]
- Chan, D.W.; Olawumi, T.O.; Saka, A.B.; Ekundayo, D. Comparative analysis of the barriers to smart sustainable practices adoption in the construction industry between Hong Kong and Nigeria. Int. J. Constr. Manag. 2022, 24, 1499–1509. [Google Scholar] [CrossRef]
- Hwang, B.G.; Ngo, J.; Her, P.W.Y. Integrated Digital Delivery: Implementation status and project performance in the Singapore construction industry. J. Clean. Prod. 2020, 262, 121396. [Google Scholar] [CrossRef]
- Albeaino, G.; Gheisari, M. Trends, benefits, and barriers of unmanned aerial systems in the construction industry: A survey study in the United States. J. Inf. Technol. Constr. 2021, 26, 84–111. [Google Scholar] [CrossRef]
- Yang, W.C.; Hsieh, H.M.; Chen, J.P.; Liu, L.C.; Chen, C.H. Effects of a low-protein nutritional formula with dietary counseling in older adults with chronic kidney disease stages 3–5: A randomized controlled trial. BMC Nephrol. 2023, 24, 372. [Google Scholar] [CrossRef]
- Ramanna, T.R.; Venkatesh, M.P.; Manohar, G. Critical barriers to sustainable construction technology adoption in developing countries—A case study in India. Int. Res. J. Adv. Eng. Hub (IRJAEH) 2024, 2, 271–286. [Google Scholar] [CrossRef]
- Oke, A.E.; Aliu, J.; Onajite, S.A. Barriers to the adoption of digital technologies for sustainable construction in a developing economy. Archit. Eng. Des. Manag. 2023, 20, 431–447. [Google Scholar] [CrossRef]
- Katebi, A.; Homami, P.; Najmeddin, M. Acceptance model of precast concrete components in building construction based on Technology Acceptance Model (TAM) and Technology, Organization, and Environment (TOE) framework. J. Build. Eng. 2022, 45, 103518. [Google Scholar] [CrossRef]
- Mansour, H.; Aminudin, E.; Mansour, T.; Abidin, N.I.A.B.; Lou, E. Resource-Based View in Construction Project Management Research: A Meta-Analysis. IOP Conf. Ser. Earth Environ. Sci. 2022, 1067, 012057. [Google Scholar] [CrossRef]
- Rogers, E.M. Diffusion of Innovations. 2003. Available online: https://en.wikipedia.org/wiki/Diffusion_of_innovations (accessed on 20 December 2024).
- Mehrad, A.; Zangeneh, M.H.T. Comparison between qualitative and quantitative research approaches: Social sciences. Int. J. Res. Educ. Stud. Iran 2019, 5, 1–7. [Google Scholar]
- Yamane, T. Statistics: An Introductory Analysis, 2nd ed.; Harper and Row: New York, NY, USA, 1967; 919p. [Google Scholar]
- Muhamad Don, M.A. Peranan wakaf untuk pembangunan pendidikan tinggi; sejarah silam dan pelaksanaan di Malaysia. In Proceedings of the 3rd International Conference on Arabic Studies and Islamic Civilization, Kuala Lumpur, Malaysia, 14–15 March 2016; Volume 2016, pp. 188–194. [Google Scholar]
- Bujang, M.A.; Omar, E.D.; Baharum, N.A. A review on sample size determination for Cronbach’s alpha test: A simple guide for researchers. Malays. J. Med. Sci. MJMS 2018, 25, 85. [Google Scholar] [CrossRef]
- Kamis, A.S.; Fuad, A.F.A.; Ashaari, A.; Noor, C.W.M. Development of WOP mathematical model for efficient course alteration: LNG tanker manoeuvring analysis and Mann-Whitney U test. Ocean Eng. 2021, 239, 109768. [Google Scholar] [CrossRef]
- Piepho, H.P. A coefficient of determination (R2) for generalized linear mixed models. Biom. J. 2019, 61, 860–872. [Google Scholar] [CrossRef]
- Oke, A.E.; Arowoiya, V.A.; Akomolafe, O.T. Influence of the Internet of Things’ application on construction project performance. Int. J. Constr. Manag. 2022, 22, 2517–2527. [Google Scholar] [CrossRef]
- Elghaish, F.; Hosseini, M.R.; Matarneh, S.; Talebi, S.; Wu, S.; Martek, I.; Poshdar, M.; Ghodrati, N. Blockchain and the ‘Internet of Things’ for the construction industry: Research trends and opportunities. Autom. Constr. 2021, 132, 103942. [Google Scholar] [CrossRef]
- Chen, X.; Chang-Richards, A.Y.; Yiu, T.W.; Ling, F.Y.Y.; Pelosi, A.; Yang, N. A multivariate regression analysis of barriers to digital technologies adoption in the construction industry. Eng. Constr. Archit. Manag. 2023. [Google Scholar] [CrossRef]
- Munawar, H.S.; Ullah, F.; Qayyum, S.; Shahzad, D. Big data in construction: Current applications and future opportunities. Big Data Cogn. Comput. 2022, 6, 18. [Google Scholar] [CrossRef]
- Regona, M.; Yigitcanlar, T.; Xia, B.; Li, R.Y.M. Opportunities and adoption challenges of AI in the construction industry: A PRISMA review. J. Open Innov. Technol. Mark. Complex. 2022, 8, 45. [Google Scholar] [CrossRef]
- Li, F.; Laili, Y.; Chen, X.; Lou, Y.; Wang, C.; Yang, H.; Gao, X.; Han, H. Towards big data driven construction industry. J. Ind. Inf. Integr. 2023, 35, 100483. [Google Scholar] [CrossRef]
- Ebekozien, A.; Aigbavboa, C.; Aliu, J.; Thwala, W.D.; Emuchay, F.E. Improving Safety on Building Project Sites: The Role of Sensor-Based Technology. In Proceedings of the Construction Industry Development Board Postgraduate Research Conference, Eastern Cape, South Africa, 10–12 July 2022; pp. 23–32. [Google Scholar]
- Adekunle, S.A.; Aigbavboa, C.O.; Ejohwomu, O.A. Understanding the BIM actor role: A study of employer and employee preference and availability in the construction industry. Eng. Constr. Archit. Manag. 2022, 31, 160–180. [Google Scholar] [CrossRef]
- Liu, K.; Xiang, X.; Yin, L. Radio Frequency Database Construction and Modulation Recognition in Wireless Sensor Networks. Sensors 2022, 22, 5715. [Google Scholar] [CrossRef]
- Oke, A.E.; Aliu, J.; Agbaje, D.H.; Singh, P.S.J.; Alade, K.T.; Samsurijan, M.S. Effective measures to bolster the deployment of indoor environmental quality (IEQ) principles in building design: A focus on quantity surveying (QS) firms in Nigeria. Manag. Environ. Qual. Int. J. 2023, 35, 818–838. [Google Scholar] [CrossRef]
Description | Frequency | Percentage |
---|---|---|
Professional Rank | ||
Executive level | 61 | 26.63 |
Managerial level | 70 | 30.57 |
Technical specialist | 98 | 42.80 |
Total | 229 | 100 |
Years of industry experience | ||
1 year to 5 years | 66 | 28.80 |
6 years to 10 years | 89 | 38.86 |
11 years to 20 years | 57 | 24.89 |
Over 25 years | 17 | 7.42 |
Total | 229 | 100 |
Involvement in technology integration | ||
Assess, analyze and/or suggest technologies for consideration | 36 | 15.72 |
Make determinations regarding the procurement and/or integration of technologies | 78 | 34.06 |
Engage in the application and assimilation of technologies | 91 | 39.74 |
Additional roles or responsibilities | 24 | 10.48 |
Total | 229 | 100 |
Occupational position | ||
Architects | 45 | 19.65 |
Builders | 52 | 22.71 |
Engineers (mechanical, electrical, etc) | 66 | 28.81 |
Quantity surveyors | 51 | 22.26 |
Others | 15 | 6.57 |
Total | 229 | 100 |
Description | Frequency | Percentage |
---|---|---|
Industry segmentation | ||
Contractor | 135 | 58.96 |
Consultant | 94 | 41.04 |
Total | 229 | 100 |
Industry of operation | ||
Civil engineering and infrastructure | 64 | 27.94 |
Transportation and highways | 32 | 13.97 |
Industrial plant construction | 34 | 14.85 |
Water and environmental engineering | 45 | 19.65 |
Urban design | 51 | 22.26 |
Others | 3 | 1.33 |
Total | 229 | 100 |
Years of operation | ||
1 year to 5 years | 35 | 15.28 |
6 years to 10 years | 56 | 24.45 |
11 years to 20 years | 72 | 31.41 |
Over 25 years | 66 | 28.86 |
Total | 229 | 100 |
Code | Digital Technologies | Mean | Wilcoxon b | Efficient Resource Management (CE1) | Real-Time Monitoring and Control (CE2) | Data-Driven Decision-Making (CE3) | Improved Collaboration and Communication (CE4) |
---|---|---|---|---|---|---|---|
DT1 | Artificial intelligence (AI) | 4.65 | 8.321 ** | — | 0.451 ** | 0.412 ** | 0.412 ** |
0.000 | — | 0.362 | 0.212 | 0.212 | |||
— | — | — | — | ||||
— | — | — | — | ||||
— | — | — | — | ||||
DT2 | Radio frequency identification (RFID) | 3.11 | —0.421 | — | 0.265 * | 0.313 * | — |
0.362 | — | 0.025 | 0.025 | — | |||
— | 0.367 * | 0.267 * | — | ||||
— | 0.033 | 0.033 | — | ||||
— | — | — | — | ||||
— | — | — | — | ||||
DT3 | Building information modeling (BIM) | 2.03 | 6.873 ** | — | — | 0.216 * | 0.231 ** |
0.000 | — | — | 0.001 | 0.001 | |||
— | — | 0.254 * | 0.245 ** | ||||
— | — | 0.004 | 0.013 | ||||
— | — | — | — | ||||
DT4 | Robotic technology | 3.01 | 3.413 ** | 0.322 ** | — | 0.255 ** | — |
0.000 | 0.023 | — | 0.017 | — | |||
0.322 ** | — | 0.340 ** | — | ||||
0.002 | — | 0.003 | — | ||||
— | — | — | — | ||||
DT5 | Cloud-based technology | 3.94 | 3.453 ** | 0.167 ** | 0.356 ** | 0.316 ** | — |
0.000 | 0.004 | 0.001 | 0.292 | — | |||
0.412 ** | 0.302 ** | — | — | ||||
0.001 | 0.021 | — | — | ||||
0.421 ** | — | — | — | ||||
0.009 | — | — | — | ||||
— | — | — | — | ||||
DT6 | Design for manufacturing and assembly (DfMA) | 3.05 | −4.923 ** | — | — | 0.234 * | 0.225 * |
0.256 | — | — | 0.017 | 0.026 | |||
— | — | 0.318 * | — | ||||
— | — | 0.022 | |||||
— | — | — | — | ||||
DT7 | Augmented/virtual/mixed reality (AR/VR/MR) | 3.10 | −2.654 ** | — | — | — | — |
0.367 | — | — | — | — | |||
— | — | — | — | ||||
— | — | — | — | ||||
— | — | — | — | ||||
DT8 | Machine learning | 2.15 | 0.982 | 0.303 ** | — | 0.266 ** | — |
0.001 | 0.003 | — | 0.031 | — | |||
0.287 ** | — | — | — | ||||
0.022 | — | — | — | ||||
— | — | — | — | ||||
DT9 | Internet of Things (IoT) | 3.09 | 6.112 ** | — | 0.205 ** | — | — |
0.000 | — | 0.013 | — | — | |||
— | — | — | — | ||||
— | — | — | — | ||||
— | — | — | — | ||||
DT10 | Big Data | 2.42 | −5.344 ** | 0.223 ** | — | 0.276 ** | — |
0.337 | 0.005 | — | 0.009 | — | |||
0.111 ** | — | 0.221 ** | — | ||||
0.082 | — | 0.037 | — | ||||
— | — | — | — | ||||
DT11 | Computer-aided design (CAD) | 2.41 | −0.335 | — | 0.266 ** | — | 0.333 ** |
0.000 | — | 0.031 | — | 0.001 | |||
— | 0.222 ** | — | 0.316 ** | ||||
— | 0.008 | — | 0.001 | ||||
— | — | — | — | ||||
— | — | — | — | ||||
— | — | — | — | ||||
DT12 | Geographic information system (GIS) | 3.11 | −2.097 | — | — | — | — |
0.412 | — | — | — | — | |||
— | — | — | — | ||||
— | — | — | — | ||||
— | — | — | — | ||||
DT13 | 3D printing or additive manufacturing (AM) | 2.92 | −1.632 | — | — | — | — |
0.001 | — | — | — | — | |||
— | — | — | — | ||||
— | — | — | — | ||||
— | — | — | — | ||||
DT14 | Computer-aided manufacturing | 2.01 | 0.224 | 0.116 ** | — | — | 0.222 ** |
0.000 | 0.001 | — | — | 0.028 | |||
— | — | — | 0.102 ** | ||||
— | — | — | 0.011 | ||||
— | — | — | — | ||||
DT15 | Sensor-based technology | 2.32 | −3.453 ** | 0.294 ** | 0.176 ** | — | — |
0.000 | 0.026 | 0.025 | — | — | |||
0.267 ** | — | — | — | ||||
0.044 | — | — | — | ||||
— | — | — | — | ||||
— | — | — | — | ||||
DT16 | Unmanned aerial vehicle | 2.45 | −1.887 ** | — | 0.221 ** | — | 0.356 ** |
0.003 | — | 0.025 | — | 0.011 | |||
— | 0.102 ** | — | 0.336 ** | ||||
— | 0.017 | — | 0.008 | ||||
DT17 | Cyber-physical systems (CPS) | 2.98 | −0.412 ** | 0.307 ** | — | — | — |
0.001 | 0.031 | — | — | — | |||
— | — | — | — | ||||
DT18 | Cybersecurity | 2.35 | −0.678 | 0.221 ** | — | — | — |
0.008 | 0.031 | — | — | — | |||
0.121 ** | — | 0.222 ** | — | ||||
0.022 | — | 0.013 | — | ||||
— | — | — | — | ||||
DT19 | Big Data analytics | 2.97 | −0.975 | — | — | 0.117 ** | — |
0.002 | — | — | 0.009 | — | |||
— | — | 0.287 ** | — | ||||
— | — | 0.022 | — | ||||
— | — | — | — | ||||
DT20 | Modular construction | 2.01 | −2.412 ** | — | — | — | — |
0.001 | — | — | — | — | |||
— | — | — | — | ||||
— | — | — | — | ||||
Total (overall) | 11 | 10 | 9 | 8 | |||
Total (contractors only) | 6 | 4 | 5 | 5 | |||
Total (consultants only) | 1 | 0 | 3 | 2 |
Dependent Variable | Independent Variable | β | σ | b | t Value | p-Value | R2 | Adj R2 |
---|---|---|---|---|---|---|---|---|
CE1—Efficient resource management | Constant | 2.276 | 0.341 | NA | 6.587 | <0.001 ** | — | — |
Cloud-based technology (DT5) | 0.269 | 0.071 | 0.325 | 3.116 | 0.003 * | 0.173 | 0.171 | |
Artificial intelligence (DT1) | 0.176 | 0.078 | 0.226 | 2.238 | 0.022 * | 0.225 | 0.267 | |
CE2—Real-time monitoring and control | Constant | 2.432 | 0.226 | NA | 11.467 | <0.001 ** | — | — |
Cloud-based technology (DT5) | 0.267 | 0.067 | 0.367 | 3.678 | <0.001 ** | 0.147 | 0.136 | |
CE3—Data-driven decision-making | Constant | 2.612 | 0.226 | NA | 11.456 | <0.013 | — | — |
Big Data analytics (DT19) | 0.278 | 0.078 | 0.322 | 3.176 | 0.001 ** | 0.105 | 0.098 | |
CE4—Improved collaboration and communication | Constant | 2.237 | 0.316 | NA | 6.187 | <0.001 ** | — | — |
Sensor-based technology (DT15) | 0.248 | 0.078 | 0.261 | 3.005 | 0.002 ** | 0.125 | 0.126 | |
Internet of Things (IoT) (DT9) | 0.218 | 0.079 | 0.267 | 2.561 | 0.002 ** | 0.184 | 0.163 |
Code | Description | Mean Rank 1 | Mean Rank 2 | Z Value | Sig. (2-Tailed) |
---|---|---|---|---|---|
DT15 | Sensor-based technology | ||||
CE1 | Firms exhibiting lower versus higher efficiency in resource management | 41.27 | 48.19 | −2.219 | 0.025 |
CE4 | Firms exhibiting lower versus higher proficiency in collaboration and communication | 33.80 | 48.14 | −3.575 | 0.006 |
DT19 | Big Data analytics | ||||
CE4 | Firms exhibiting lower versus higher proficiency in collaboration and communication | 41.03 | 50.19 | −3.421 | 0.009 |
CE3 | Firms with low versus higher reliance on data-driven decision-making | 41.05 | 49.89 | −2.363 | 0.013 |
DT16 | Unmanned aerial vehicle | ||||
CE1 | Firms exhibiting lower versus higher efficiency in resource management | 42.27 | 48.19 | −2.221 | 0.033 |
CE4 | Firms exhibiting lower versus higher proficiency in collaboration and communication | 44.13 | 49.22 | −3.421 | 0.000 |
CE3 | Firms with low versus higher reliance on data-driven decision-making | 41.05 | 48.79 | −2.363 | 0.001 |
DT5 | Cloud-based technology | ||||
CE1 | Firms exhibiting lower versus higher efficiency in resource management | 42.37 | 47.29 | −2.219 | 0.025 |
CE4 | Firms exhibiting lower versus higher proficiency in collaboration and communication | 40.11 | 49.33 | −3.421 | 0.008 |
CE3 | Firms with low versus higher reliance on data-driven decision-making | 42.15 | 47.11 | −2.363 | 0.003 |
DT1 | Artificial Intelligence (AI) | ||||
CE1 | Firms exhibiting lower versus higher efficiency in resource management | 41.28 | 47.22 | −2.221 | 0.005 |
CE4 | Firms exhibiting lower versus higher proficiency in collaboration and communication | 41.02 | 52.09 | −3.321 | 0.009 |
CE3 | Firms with low versus higher reliance on data-driven decision-making | 39.15 | 48.38 | −2.112 | 0.026 |
DT10 | Big Data | ||||
CE2 | Firms with lower versus higher utilization of real-time monitoring and control | 39.39 | 48.15 | −3.514 | 0.012 |
DT17 | Cyber-physical systems (CPS) | ||||
CE3 | Firms with low versus higher reliance on data-driven decision-making | 41.05 | 48.81 | −2.263 | 0.003 |
DT6 | Design for manufacturing and assembly (DfMA) | ||||
CE1 | Firms exhibiting lower versus higher efficiency in resource management | 40.27 | 47.19 | −2.109 | 0.025 |
CE4 | Firms exhibiting lower versus higher proficiency in collaboration and communication | 40.03 | 50.19 | −3.333 | 0.003 |
DT4 | Robotic technology | ||||
CE2 | Firms with lower versus higher utilization of real-time monitoring and control | 39.39 | 48.15 | −3.514 | 0.012 |
DT3 | Building information modeling (BIM) | ||||
CE4 | Firms exhibiting lower versus higher proficiency in collaboration and communication | 33.80 | 48.14 | −3.575 | 0.006 |
CE2 | Firms with lower versus higher utilization of real-time monitoring and control | 37.09 | 49.77 | −2.209 | 0.010 |
DT8 | Machine learning | ||||
CE1 | Firms exhibiting lower versus higher efficiency in resource management | 40.30 | 46.08 | −2.648 | 0.030 |
DT9 | Internet of Things (IoT) | ||||
CE3 | Firms with low versus higher reliance on data-driven decision-making | 38.76 | 47.44 | −2.532 | 0.027 |
CE1 | Firms exhibiting lower versus higher efficiency in resource management | 41.18 | 47.19 | −2.547 | 0.042 |
CE2 | Firms with lower versus higher utilization of real-time monitoring and control | 47.02 | 50.31 | −2.978 | 0.011 |
DT2 | Radio frequency identification (RFID) | ||||
CE2 | Firms with lower versus higher utilization of real-time monitoring and control | 38.11 | 50.02 | −2.353 | 0.020 |
CE1 | Firms exhibiting lower versus higher efficiency in resource management | 41.04 | 42.81 | −2.648 | 0.029 |
CE4 | Firms exhibiting lower versus higher proficiency in collaboration and communication | 40.63 | 41.96 | −2.547 | 0.019 |
DT11 | Computer-aided design (CAD) | ||||
CE1 | Firms exhibiting lower versus higher efficiency in resource management | 41.18 | 47.19 | −2.547 | 0.042 |
CE4 | Firms exhibiting lower versus higher proficiency in collaboration and communication | 41.03 | 52.19 | −3.421 | 0.009 |
DT14 | Computer-aided manufacturing | ||||
CE4 | Firms exhibiting lower versus higher proficiency in collaboration and communication | 33.80 | 48.14 | −3.575 | 0.006 |
DT18 | Cybersecurity | ||||
CE3 | Firms with low versus higher reliance on data-driven decision-making | 41.05 | 49.89 | −2.363 | 0.013 |
Utilization by contractors (n = 135) versus consultants (n = 94) in adoption | 53.85 | 41.56 | −2.117 | 0.002 |
Level of Competitive Edge | Digital Technologies to Be Adopted | ||||||||
---|---|---|---|---|---|---|---|---|---|
Excellent | Row 1—Adopt intensively | ||||||||
CE1, CE2, CE3, CE4 | |||||||||
4 (overall) | — | ||||||||
4 (contractors) | — | ||||||||
4 (consultants) | — | ||||||||
Very good | Row 2—Adopt steadily | ||||||||
CE1, CE2, CE3 | CE1, CE2, CE4 | CE1, CE3, CE4 | CE2, CE3, CE4 | ||||||
3 (overall) | DT5 | — | DT9 | DT1, DT5 | |||||
3 (contractors) | — | — | — | — | |||||
3 (consultants) | — | — | — | — | |||||
Good | Row 3—Adopt cautiously | ||||||||
CE1 & CE2 | CE1 & CE3 | CE1 & CE4 | CE2 & CE3 | CE2 & CE4 | CE3 & CE4 | ||||
2 (overall) | DT15 | DT4, DT8, D10 | DT14 | DT2 | DT11, DT16 | DT3, DT6 | |||
2 (contractors) | DT5 | DT4, DT18 | — | — | — | DT3 | |||
2 (consultants) | — | — | — | — | — | — | |||
Low | Row 4—Adopt after extensive evaluation | ||||||||
CE1 | CE2 | CE3 | CE4 | ||||||
1 (overall) | DT17 | DT9 | DT19 | — | |||||
1 (contractors) | DT15 | — | — | — | |||||
1 (consultants) | — | — | — | — | |||||
None | Row 5—Not crucial for immediate gains | ||||||||
0 (overall) | DT7, DT12, DT13 & DT20 | ||||||||
0 (contractors) | DT1, DT7, DT12, DT13, DT17, DT20 | ||||||||
0 (consultants) | DT1, DT2, DT3, DT4, DT7, DT8, DT9, DT11, DT12, DT13, DT14, DT15, DT17, DT18, DT20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aliu, J.; Oke, A.E.; Jesudaju, O.T.; Akanni, P.O.; Ehbohimen, T.; Dosumu, O.S. Digital Evolution in Nigerian Heavy-Engineering Projects: A Comprehensive Analysis of Technology Adoption for Competitive Edge. Buildings 2025, 15, 380. https://doi.org/10.3390/buildings15030380
Aliu J, Oke AE, Jesudaju OT, Akanni PO, Ehbohimen T, Dosumu OS. Digital Evolution in Nigerian Heavy-Engineering Projects: A Comprehensive Analysis of Technology Adoption for Competitive Edge. Buildings. 2025; 15(3):380. https://doi.org/10.3390/buildings15030380
Chicago/Turabian StyleAliu, John, Ayodeji Emmanuel Oke, Oluwatayo Timothy Jesudaju, Prince O. Akanni, Tolulope Ehbohimen, and Oluwaseun Sunday Dosumu. 2025. "Digital Evolution in Nigerian Heavy-Engineering Projects: A Comprehensive Analysis of Technology Adoption for Competitive Edge" Buildings 15, no. 3: 380. https://doi.org/10.3390/buildings15030380
APA StyleAliu, J., Oke, A. E., Jesudaju, O. T., Akanni, P. O., Ehbohimen, T., & Dosumu, O. S. (2025). Digital Evolution in Nigerian Heavy-Engineering Projects: A Comprehensive Analysis of Technology Adoption for Competitive Edge. Buildings, 15(3), 380. https://doi.org/10.3390/buildings15030380