Impacts of Vertical Greenery on Outdoor Thermal Comfort and Carbon Emission Reduction at the Urban Scale in Turin, Italy
Abstract
:1. Introduction
1.1. Background
1.2. Examining the Factors Influencing UHI
1.3. Urban Heat Island Mitigation Scenarios and State-of-the-Art
1.4. Objectives and Contributions
2. Materials and Methods
2.1. Data Gathering
2.1.1. Satellite Data
2.1.2. Weather Data
2.2. Remote Sensing Technique to Retrieve SUHI
2.2.1. Top of Atmospheric Spectral Radiance
2.2.2. The Conversion of Radiance to At-Sensor Temperature
2.2.3. The Normalized Different Vegetation Index (NDVI) Method for Emissivity Correction
2.2.4. Calculation of the Proportion of Vegetation
2.2.5. Calculation of Land Surface Emissivity
2.2.6. Retrieving the Land Surface Temperature
2.2.7. Estimation of SUHI
2.3. Numerical Simulation to Retrieve Canopy Urban Heat Island Considering Urban Geometry Modeling and the Simulation Period
2.3.1. Urban Heat Island Modeling with the Urban Weather Generator
2.3.2. Mean Radiant Temperature Calculation
2.3.3. Mean Radiant Temperature Validation
2.3.4. Measuring Outdoor Thermal Comfort (UTCI)
2.3.5. Modeling of Green Wall
2.4. Evaluating Carbon Emission Intensity in Energy System
3. Results
3.1. SUHI Detection and Site Selection
3.2. Impact of Green Walls on Outdoor Air Temperature for Current Condition and Future Projection
3.3. The Enhancement Effect of the Green Wall on Mean Radiant Temperature and Outdoor Comfort Under Current and Future Climate Projections (2050)
3.4. Mitigation Effect of Green Walls in the Condition of Maximum Direct Normal Radiation
3.5. Impact of Green Walls on Carbon Emission Intensity in 2050
4. Discussion
5. Limitation
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BT | Brightness Temperature |
cei | Carbon Emission Intensity |
CFD | Computational Fluid Dynamics |
CVRMSE | Cumulative Variation of Root Mean Squared Error |
EGR | Extensive Green Roof |
ERF | Effective Radiant Field |
GWs | Green Wall |
HS | Heavy Systems |
HVAC | Heating, Ventilation, and Air Conditioning |
LAI | Leaf Area Index |
LS | Light Systems |
LST | Last Surface Temperature |
MBE | Mean Bias Error |
MV | Mur Vegetal |
MWh | Megawatt Hour |
NDVI | Normalized Different Vegetation Index |
NIR | Near-infrared |
PET | Physiological Equivalent Temperature |
SL | Street Length |
SUHI | Surface Urban Heat Island |
SVF | Sky View Factor |
TIR | Thermal Infrared |
Tmrt | Mean Radiant Temperature |
TMY | Typical Meteorological Year |
UHI | Urban Heat Island |
UTCI | Universal Thermal Climate Index |
UWG | Urban Weather Generator |
VGSs | Vertical Greenery Systems |
Long wave absorptivity/emissivity (clothing) default 0.95 | |
The projection factor is determined through a look-up table available at ASHRAE and is determined by solar altitude, solar azimuth, and the body’s related angle. | |
Short wave absorptivity of the person (skin and clothing) default 0.7 | |
Fraction of body exposed to direct solar radiation | |
Fraction of the body that can radiate heat (related to posture) | |
Sky view factor | |
Radiant heat transfer coefficient | |
Diffuse radiation (W/m2) | |
Direct radiation (W/m2) | |
Global horizontal radiation (W/m2) | |
Ground reflectance | |
View factors to each surface | |
Proportion of Vegetation | |
Dry bulb temperature | |
Surface temperature | |
AL | Band-Specific Additive Rescaling Factor |
C | Stephan–Boltzmann constant |
σ | Stefan Boltzmann constant (5.667 × 10−8) |
H | Planck constant |
H/W | Aspect ratio |
Lλ | Total spectral radiance |
ML | Band-specific multiplicative rescaling factor |
Qcal | Band 10 |
TOA | Top of Atmospheric |
ε | Land surface emissivity |
λ | Emitted radiance |
Light velocity | |
εperson | The emissivity of the human (assumed to be 0.95) |
Appendix A
Wind Vane Anemometer DV20 | |
---|---|
Anodized aluminum weathervane/Long-life potentiometric transducer | |
Measuring range | 0°–360° |
Resolution | 0.35° for the system |
Precision | ±2.8° |
Operating temperature | 0 °C–+60 °C; −30–+60 °C with electric heater |
Dimensions | 561 × 406 (mm) |
Weight | 0.9 (kg) |
Tachometer Anemometer Vv20 | |
Three-blade polycarbonate reel/solid-state measuring transducer with frequency output | |
Safety field | 0–220 (km/h), 61 (m/s) |
Resolution | 0.06 (m/s), 0.2 (km/h) |
Sensitivity | less than 0.02 (m/s), threshold of 1.8 (km/h), 0.5 (m/s) |
Precision | ±0.25 (km/h), 0.07 (m/s) or 1% of reading |
Operating temperature | from −30 °C to +60 °C (with heater) |
Dimensions | 178 (Ø) × 281 (mm) |
Weight | 0.9 (kg) |
Support Arm BSA20 | |
Made entirely of stainless steel/Comes complete with cables and connectors for sensors | |
Dimensions | 1490 × 790 (mm) |
Weight | 6.5 (kg) (including sensors) |
Lightning rod made of stainless steel | 1700 (mm) long/10 (mm) in diameter |
Pyranometer HE20K | |
Measuring range | 0–1500 (W/m2) |
Spherical window | 305–2800 (nm) |
Non-linearity | ±1.5% in the range 0–1000 (W/m2) |
Operating temperature range | −40 + 60 °C |
Precision | 5% (daily total), 1st class WMO (ISO 9060) |
Influencing factors | sensitivity dependence on temperature < 2% in the range from −10 °C to +40 °C |
Dimensions | 150 (Ø) × 115 (mm) |
Weight | 1 (kg) (with shield) |
THS Thermo-Hygrometer | |
Hygrometer—Measurement range | 0 to 100% RH |
HYGROMETER—Temperature range | −50–+100 °C |
SHIELDED AIR THERMOMETER—Sensing element | PT100 1/3 Din Class A |
HYGROMETER—Accuracy | ±1.5% from 0 to 100% RH |
SHIELDED AIR THERMOMETER—Measurement range | −50–+100 °C |
SHIELDED AIR THERMOMETER—Accuracy at 23 °C | ±0.2 °C |
PG10 and PG10R | |
Connection with Data-logger | Interface RS-485 with SDI-12 protocol |
Measurement Range | up to 1000 (mm/h) |
Output Resolution | 0.1 (mm) |
Collecting Area | 1000 (cm2) |
Accuracy | Max 3% < 800 (mm/h), Max 5%, 800–1000 (mm/h) |
Temperature Range | PG10: 32 °F/140 °F, 0 °C/60 °C, PG10R: −22 °F/140 °F, −30 °C/60 °C |
Sensor Type | Tipping bucket rain gauge |
Appendix B
References
- United Nations, D. of E. and S.A.P.D. World Urbanization Prospects: The 2014 Revision; New York, 2015. 2015. Available online: https://population.un.org/wup/assets/WUP2014-Report.pdf (accessed on 20 December 2024).
- Ng, E.; Chen, L.; Wang, Y.; Yuan, C. A Study on the Cooling Effects of Greening in a High-Density City: An Experience from Hong Kong. Build. Environ. 2012, 47, 256–271. [Google Scholar] [CrossRef]
- De Groeve, M.; Kale, E.; Godts, S.; Orr, S.A.; De Kock, T. Impact of Vertical Greening on Urban Microclimate and Historic Building Materials: A Meta-Analysis. Build. Environ. 2024, 253, 111365. [Google Scholar] [CrossRef]
- Boccalatte, A.; Fossa, M.; Thebault, M.; Ramousse, J.; Ménézo, C. Mapping the Urban Heat Island at the Territory Scale: An Unsupervised Learning Approach for Urban Planning Applied to the Canton of Geneva. Sustain. Cities Soc. 2023, 96, 104677. [Google Scholar] [CrossRef]
- Cheval, S.; Amihăesei, V.-A.; Chitu, Z.; Dumitrescu, A.; Falcescu, V.; Irașoc, A.; Micu, D.M.; Mihulet, E.; Ontel, I.; Paraschiv, M.-G.; et al. A Systematic Review of Urban Heat Island and Heat Waves Research (1991–2022). Clim. Risk Manag. 2024, 44, 100603. [Google Scholar] [CrossRef]
- Schmidt, V. Urban Morphology as a Key Parameter for Mitigating Urban Heat?–A Literature Review. IOP Conf. Ser. Earth Environ. Sci. 2024, 1363, 012074. [Google Scholar] [CrossRef]
- Zheng, Y.; Ren, C.; Shi, Y.; Yim, S.H.L.; Lai, D.Y.F.; Xu, Y.; Fang, C.; Li, W. Mapping the Spatial Distribution of Nocturnal Urban Heat Island Based on Local Climate Zone Framework. Build. Environ. 2023, 234, 110197. [Google Scholar] [CrossRef]
- Eslamirad, N.; Sepúlveda, A.; De Luca, F.; Sakari Lylykangas, K.; Ben Yahia, S. Outdoor Thermal Comfort Optimization in a Cold Climate to Mitigate the Level of Urban Heat Island in an Urban Area. Energies 2023, 16, 4546. [Google Scholar] [CrossRef]
- Gholami, H.; Kamelnia, H.; Mahdavinejad, M.J.; Sangin, H. Optimizing Building Configuration and Orientation for Social Housing Projects in Iran. Iran. J. Energy Environ. 2025, 16, 289–308. [Google Scholar] [CrossRef]
- Rabie, S.; Sangin, H.; Zandieh, M. The Orientation of Village, the Most Important Factor in Rural Sustainability in Cold Climate (Case Study: Masuleh and Uramantakht). J. Sol. Energy Res. 2021, 6, 761–776. [Google Scholar] [CrossRef]
- Shao, L.; Liao, W.; Li, P.; Luo, M.; Xiong, X.; Liu, X. Drivers of Global Surface Urban Heat Islands: Surface Property, Climate Background, and 2D/3D Urban Morphologies. Build. Environ. 2023, 242, 110581. [Google Scholar] [CrossRef]
- Lin, T.-P.; Matzarakis, A.; Hwang, R.-L. Shading Effect on Long-Term Outdoor Thermal Comfort. Build. Environ. 2010, 45, 213–221. [Google Scholar] [CrossRef]
- Oke, T.R. Boundary Layer Climates; Routledge: London, UK, 2002; ISBN 0-203-71545-4. [Google Scholar]
- Güller, C.; Toy, S. The Impacts of Urban Morphology on Urban Heat Islands in Housing Areas: The Case of Erzurum, Turkey. Sustainability 2024, 16, 791. [Google Scholar] [CrossRef]
- Ahmadi Venhari, A.; Tenpierik, M.; Taleghani, M. The Role of Sky View Factor and Urban Street Greenery in Human Thermal Comfort and Heat Stress in a Desert Climate. J. Arid Environ. 2019, 166, 68–76. [Google Scholar] [CrossRef]
- Fang, Z.; He, H.; Mao, Y.; Feng, X.; Zheng, Z.; Guo, Z. Investigating an Accurate Method for Measuring the Outdoor Mean Radiation Temperature. Int. J. Therm. Sci. 2023, 188, 108219. [Google Scholar] [CrossRef]
- Azimi, Z.; Shafaat, A. Proposing Design Strategies for Contemporary Courtyards Based on Thermal Comfort in Cold and Semi-Arid Climate Zones. Build. Environ. 2024, 266, 112150. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.; Wong, N.H. Urban Micro-Climate Research in High Density Cities: Case Study in Nanjing. Procedia Eng. 2016, 169, 88–99. [Google Scholar] [CrossRef]
- Irfeey, A.M.M.; Chau, H.-W.; Sumaiya, M.M.F.; Wai, C.Y.; Muttil, N.; Jamei, E. Sustainable Mitigation Strategies for Urban Heat Island Effects in Urban Areas. Sustainability 2023, 15, 10767. [Google Scholar] [CrossRef]
- Lopez-Cabeza, V.P.; Alzate-Gaviria, S.; Diz-Mellado, E.; Rivera-Gomez, C.; Galan-Marin, C. Albedo Influence on the Microclimate and Thermal Comfort of Courtyards under Mediterranean Hot Summer Climate Conditions. Sustain. Cities Soc. 2022, 81, 103872. [Google Scholar] [CrossRef]
- Morakinyo, T.E.; Lam, Y.F. Simulation Study on the Impact of Tree-Configuration, Planting Pattern and Wind Condition on Street-Canyon’s Micro-Climate and Thermal Comfort. Build. Environ. 2016, 103, 262–275. [Google Scholar] [CrossRef]
- Cortês, A.S.B.; Almeida, J.A.S.; Kanoun-Boulé, M.; Tadeu, A. Green Facades and Living Walls: The Portuguese Experience. In INCREaSE; Springer International Publishing: Cham, Switzerland, 2018; pp. 562–570. ISBN 978-3-319-70271-1. [Google Scholar]
- Zaina, S.M.; Fadli, F.; Hosseini, S.M. Evaluation of Smart Irrigation Systems in Hot-Arid Climates for Green Roofs and Walls: Case of Doha, Qatar. Smart Sustain. Built Environ. 2022, 11, 346–367. [Google Scholar] [CrossRef]
- Ramadhan, A.M.; Mahmoud, A.H. Evaluating the Efficiency of a Living Wall Facade as a Sustainable Energy-Saving Alternative in Hot Arid Regions. J. Eng. Appl. Sci. 2023, 70, 96. [Google Scholar] [CrossRef]
- Reynolds, H.L.; Brandt, L.; Fischer, B.C.; Hardiman, B.S.; Moxley, D.J.; Sandweiss, E.; Speer, J.H.; Fei, S. Implications of Climate Change for Managing Urban Green Infrastructure: An Indiana, US Case Study. Clim. Change 2020, 163, 1967–1984. [Google Scholar] [CrossRef]
- Sommese, F. Nature-Based Solutions to Enhance Urban Resilience in the Climate Change and Post-Pandemic Era: A Taxonomy for the Built Environment. Buildings 2024, 14, 2190. [Google Scholar] [CrossRef]
- Susca, T.; Zanghirella, F.; Del Fatto, V. Building Integrated Vegetation Effect on Micro-Climate Conditions for Urban Heat Island Adaptation. Lesson Learned from Turin and Rome Case Studies. Energy Build. 2023, 295, 113233. [Google Scholar] [CrossRef]
- Wang, P.; Wong, Y.H.; Tan, C.Y.; Li, S.; Chong, W.T. Vertical Greening Systems: Technological Benefits, Progresses and Prospects. Sustainability 2022, 14, 12997. [Google Scholar] [CrossRef]
- Zhang, L.; Deng, Z.; Liang, L.; Zhang, Y.; Meng, Q.; Wang, J.; Santamouris, M. Thermal Behavior of a Vertical Green Facade and Its Impact on the Indoor and Outdoor Thermal Environment. Energy Build. 2019, 204, 109502. [Google Scholar] [CrossRef]
- Larsen, S.F.; Filippín, C.; Lesino, G. Thermal Simulation of a Double Skin Façade with Plants. Energy Procedia 2014, 57, 1763–1772. [Google Scholar] [CrossRef]
- Herath, H.M.P.I.K.; Halwatura, R.U.; Jayasinghe, G.Y. Modeling a Tropical Urban Context with Green Walls and Green Roofs as an Urban Heat Island Adaptation Strategy. Procedia Eng. 2018, 212, 691–698. [Google Scholar] [CrossRef]
- Mutani, G.; Todeschi, V. The Effects of Green Roofs on Outdoor Thermal Comfort, Urban Heat Island Mitigation and Energy Savings. Atmosphere 2020, 11, 123. [Google Scholar] [CrossRef]
- Ciacci, C.; Banti, N.; Di Naso, V.; Bazzocchi, F. Green Strategies for Improving Urban Microclimate and Air Quality: A Case Study of an Italian Industrial District and Facility. Build. Environ. 2023, 244, 110762. [Google Scholar] [CrossRef]
- Kim, E.S.; Yun, S.H.; Lee, D.K.; Kim, N.Y.; Piao, Z.G.; Kim, S.H.; Park, S. Quantifying Outdoor Cooling Effects of Vertical Greening System on Mean Radiant Temperature. Dev. Built Environ. 2023, 15, 100211. [Google Scholar] [CrossRef]
- Djedjig, R.; Belarbi, R.; Bozonnet, E. Green Wall Impacts inside and Outside Buildings: Experimental Study. Energy Procedia 2017, 139, 578–583. [Google Scholar] [CrossRef]
- Zuckerman, N.; Shiloah, N.; Lensky, I.M. Quantifying the Impact of Vertical Greenery Systems (VGS) on Mediterranean Urban Microclimate during Heat Wave Events. Build. Environ. 2025, 267, 112151. [Google Scholar] [CrossRef]
- Taher, H.; Elsharkawy, H.; Rashed, H.F. Urban Green Systems for Improving Pedestrian Thermal Comfort and Walkability in Future Climate Scenarios in London. Buildings 2024, 14, 651. [Google Scholar] [CrossRef]
- Nashaat, B. Optimizing Parametric Green Facades for Daylighting and Thermal Comfort in Egypt’s Hot Climates. Port Said Eng. Res. J. 2024, 28, 72–83. [Google Scholar] [CrossRef]
- Wahba, S.; Kamil, B.; Nassar, K.; Abdelsalam, A. Green Envelop Impact on Reducing Air Temperature and Enhancing Outdoor Thermal Comfort in Arid Climates. Civil Eng. J. 2019, 5, 1124–1135. [Google Scholar] [CrossRef]
- U.S.G. Survey. Available online: https://earthexplorer.usgs.gov/ (accessed on 12 July 2024).
- Ladybug Tools EPW Map. Available online: https://www.ladybug.tools/epwmap/ (accessed on 8 March 2024).
- Agenzia Regionale per la Protezione Ambientale (ARPA) Piemonte di Torino Hourly Meteorological and Hydrological Data. Available online: https://www.arpa.piemonte.it/ (accessed on 2 May 2024).
- Machard, A.; Salvati, A.; Tootkaboni, P.M.; Gaur, A.; Zou, J.; Wang, L.L.; Baba, F.; Ge, H.; Bre, F.; Bozonnet, E.; et al. Typical and Extreme Weather Datasets for Studying the Resilience of Buildings to Climate Change and Heatwaves. Sci. Data 2024, 11, 531. [Google Scholar] [CrossRef]
- Heiranipour, M.; Favoino, F.; Juaristi Gutierrez, M.; Avesani, S. Typical and Extreme (Heatwave) Future Weather for Building Energy Simulations: Case for Turin and Bolzano, Italy, and De Bilt, Netherlands; Zenodo: Genève, Switzerland, 2024. [Google Scholar]
- Boccardo, P.; Giulio Tonolo, F. Remote Sensing Role in Emergency Mapping for Disaster Response. In Engineering Geology for Society and Territory; Springer International Publishing: Cham, Switzerland, 2015; Volume 5, pp. 17–24. [Google Scholar]
- Avdan, U.; Jovanovska, G. Algorithm for Automated Mapping of Land Surface Temperature Using LANDSAT 8 Satellite Data. J. Sens. 2016, 2016, 1–8. [Google Scholar] [CrossRef]
- Kasniza Jumari, N.A.S.; Ahmed, A.N.; Huang, Y.F.; Ng, J.L.; Koo, C.H.; Chong, K.L.; Sherif, M.; Elshafie, A. Analysis of Urban Heat Islands with Landsat Satellite Images and GIS in Kuala Lumpur Metropolitan City. Heliyon 2023, 9, e18424. [Google Scholar] [CrossRef]
- Rahman, M.N.; Rony, M.R.H.; Jannat, F.A.; Chandra Pal, S.; Islam, M.S.; Alam, E.; Islam, A.R.M.T. Impact of Urbanization on Urban Heat Island Intensity in Major Districts of Bangladesh Using Remote Sensing and Geo-Spatial Tools. Climate 2022, 10, 3. [Google Scholar] [CrossRef]
- Dabove, P.; Daud, M.; Olivotto, L. Revolutionizing Urban Mapping: Deep Learning and Data Fusion Strategies for Accurate Building Footprint Segmentation. Sci. Rep. 2024, 14, 13510. [Google Scholar] [CrossRef] [PubMed]
- Regione Piemonte Geo Piemonte. Available online: https://geoportale.igr.piemonte.it/cms/ (accessed on 31 March 2024).
- Rezaei, F.; Sangin, H.; Heiranipour, M.; Attia, S. A Multi-Objective Optimization of Window and Light Shelf Design in Office Buildings to Improve Occupants’ Thermal and Visual Comfort. J. Daylighting 2024, 11, 55–68. [Google Scholar] [CrossRef]
- Naboni, E.; Milella, A.; Vadalà, R.; Fiorito, F. On the Localised Climate Change Mitigation Potential of Building Facades. Energy Build. 2020, 224, 110284. [Google Scholar] [CrossRef]
- Mackey, C.; Galanos, T.; Norford, L.; Sadeghipour Roudsari, M. Wind, Sun, Surface Temperature, and Heat Island: Critical Variables for High-Resolution Outdoor Thermal Comfort. In Proceedings of the Building Simulation 2017: 15th Conference of IBPSA, 7 August 2017; IBPSA: San Francisco, CA, USA; pp. 985–993. [Google Scholar]
- Salvati, A.; Kolokotroni, M. Urban Microclimate and Climate Change Impact on the Thermal Performance and Ventilation of Multi-Family Residential Buildings. Energy Build. 2023, 294, 113224. [Google Scholar] [CrossRef]
- Dardir, M.; Berardi, U. Development of Microclimate Modeling for Enhancing Neighborhood Thermal Performance through Urban Greenery Cover. Energy Build. 2021, 252, 111428. [Google Scholar] [CrossRef]
- Naboni, E.; Meloni, M.; Mackey, C.; Kaempf, J. The Simulation of Mean Radiant Temperature in Outdoor Conditions: A Review of Software Tools Capabilities. In Proceedings of Building Simulation 2019: 16th Conference of IBPSA, Rome, Italy, 2–4 September 2019; pp. 3234–3241. [Google Scholar]
- Bueno, B.; Norford, L.; Hidalgo, J.; Pigeon, G. Prediction of the Urban Heat Island Effect to Be Used in Building Energy Analyses. In Proceedings of the SimBuild Conference 2012: 5th Conference of IBPSA USA, Madison, WI, USA, 1–3 August 2012; Volume 5, pp. 236–245. [Google Scholar]
- Arens, E.; Hoyt, T.; Zhou, X.; Huang, L.; Zhang, H.; Schiavon, S. Modeling the Comfort Effects of Short-Wave Solar Radiation Indoors. Build. Environ. 2015, 88, 3–9. [Google Scholar] [CrossRef]
- American Society of Heating, Refrigerating, and Air-Conditioning Engineers. Measurement of Energy, Demand, and Water Savings. In Ashrae Guideline 14-2014: Measurement of Energy, Demand and Water Savings; American Society of Heating, Refrigerating, and Air-Conditioning Engineers: Peachtree Corners, GA, USA, 2014. [Google Scholar]
- (NREL), N.R.E.L. EnergyPlusTM 2017.
- Arenghi, A.; Perra, C.; Caffi, M. Simulating and Comparing Different Vertical Greenery Systems Grouped into Categories Using EnergyPlus. Appl. Sci. 2021, 11, 4802. [Google Scholar] [CrossRef]
- Hosseini, S.M.; Heiranipour, M.; Wang, J.; Hinkle, L.E.; Triantafyllidis, G.; Attia, S. Enhancing Visual Comfort and Energy Efficiency in Office Lighting Using Parametric-Generative Design Approach for Interactive Kinetic Louvers. J. Daylighting 2024, 11, 69–96. [Google Scholar] [CrossRef]
- Stec, W.J.; Paassen, A.H.C. van Symbiosis of the Double Skin Façade with the HVAC System. Energy Build. 2005, 37, 461–469. [Google Scholar] [CrossRef]
- The International Energy Agency (IEA) Greenhouse Gas Emissions from Energy Data Explorer. Available online: https://www.iea.org (accessed on 16 December 2024).
Scenario and/or Goals | Year | Climate | Insite Measured Parameters (Sensor Based) | Methodology | Results | cei | Future |
---|---|---|---|---|---|---|---|
Study on albedo configurations for walls and floors: [20]
| 2022 | Csa | Ta; RH; Ws; Tmrt | Validated simulation | Ta; Tmrt; PET; Ts | × | × |
| 2023 | Zone C | The data that has been used is confidential | Validated simulation | EC; AP; Ta; Tmrt; LW | × | × |
Varying greenery coverage: [31]
| 2018 | Af | Ta; RH; Ws | Validated simulation | Ta averaged | × | × |
Analyzing two VGSs: [34]
| 2023 | Dwa | Ta; Ts; Tmrt; RH; Ws | Experimental study | SW; LW; Tmrt; Ts | × | × |
Vegetated green façade on reduced-scale buildings [35] | 2017 | Cfb | Ts Inside; Ta Inside | Experimental study | Ta; Ta Inside; Ts Inside; To | × | × |
Two VGSs technologies: [36]
| 2025 | Csa | Ta; RH; Ws; Wd; SW; LW; Ts | Validated simulation | Tmrt; PET; UTCI | × | × |
Configurations of:
| 2023 | Cfa Csa | Ta; RH; Wd; Ws | Validated simulation | Ta | × | × |
Thermal impact of urban green systems on UHI [37]:
| 2024 | Cfb | Not specified | Validated simulation | RH; Ts; Ta; Tmrt; PET | × | ✓ |
Thermal performance of 4 parametric green façade systems [38] | 2024 | BSk | Not specified | Validated simulation | EC; ILP | ✓ | × |
Effect of GWs on urban microclimate [39] | 2019 | BWh | Ta; Wd; Ws; RH | Validated simulation | Ta; Ta Inside; PMV; RH | × | × |
Thermal balance of vegetation canopy [29] | 2019 | Cfa | SW; LW; Tf; Ta; Ts; Ws; RH | Experimental Study | LW; SW; Ta; Ws; HBvc; Ts; EC; To; Twbgt | × | × |
Data Type | Time | Cloud Cover | Band Number | Resolution |
---|---|---|---|---|
Landsat 9 satellite imagery “OLI_TIRS” | 11 July 2023, 11:16:53.4756430Z | 3.34% | Band 4—Red Band 5—Near-infrared (NIR) Band 10—Thermal infrared 1 (TIRS1) | 30.00 (m) 30.00 (m) 30.00 (m) |
Parameters | Values |
---|---|
Emitted radiance (λ) | 10.800 (nm) |
Stefan–Boltzmann constant (σ) | 5.667 × 10−8 (W/m2k4) |
) | 2.998 × 104 (m/s) |
Planck constant (h) | 6.626 × 10−34 (J) |
Typical Weeks | Selected Data |
---|---|
Extreme Cold Week (13 January–19 January) | 12 January |
Typical Spring Week (29 March–4 April) | 29 March |
Extreme Hot Week (27 July–2 August) | 29 July |
Typical Autumn Week (13 October–19 October) | 15 October |
Model Parameters and Buildings Construction Set | |
---|---|
Climate Zone | Koppen Classification [3]/Cfa |
Building Vintage | Pre–1980 |
Construction Type | Mass |
Program | Medium Office [50], Conditioned |
Terrain Properties | |
Albedo (Reflectivity) | 0.25 [56] |
Thickness | 0.5 (m) |
Conductivity (Typical of Asphalt) | 1 (W/mK) |
Volumetric Heat Capacity (Typical of Asphalt) | 1.6E6 (J/m3K) |
Traffic Parameters | |
Maximum Sensible Anthropogenic Heat | 20 (W/m2) |
Albedo | 0.25 [57] |
Fraction of the Absorbed Solar Energy by Trees | 0.7 |
Fraction of the Absorbed Solar Energy by Grass | 0.5 |
EPW Site Parameters | |
Obstacles Height | 0.01 (m) |
Vegetation Coverage | 0.9 |
Temperature Height | 17 |
Wind Height | 10 |
Boundary Layer Parameters | |
Day Height | 1000 (m) |
Night Height | 80 (m) |
Inversion Height | 150 (m) |
Circulation Coefficient | 1.2 |
Exchange Coefficient | 0.2 [54] |
Model Geometric Variables | |
Average Height | 15.7 (m) |
Footprint Density | 0.41 |
Facade to Site | 1.4 |
Green Façade Characteristics | |
Air Gap | 0.05 (m) [27] |
Plant Height | 0.1 (m) |
Leaf Area Index (LAI) | 3 [27] |
Substrate | 0.05 (m) |
Leaf Reflection | 0.22 |
Leaf Emission | 0.95 |
Soil Reflection | 0.3 |
Soil Emission | 0.9 |
Stomata Resistance | 180 (s/m) |
Soil Thickness | 0.22 (m) |
Soil Conductivity | 0.35 (W/mK) |
Soil Density | 1100 (kg/m3) |
Soil-Specific Heat | 1200 (J/kg K) |
Date | MBE | CVRMSE |
---|---|---|
12 January | −8.96% | 22.12% |
29 March | −8.35% | 17.56% |
15 October | −1.97% | 20.15% |
29 July | 5.22% | 14.98% |
Stress Category | Range °C |
---|---|
Extreme Cold Stress | UTCI < −40 |
Very Strong Cold Stress | −40 ≤ UTCI < −27 |
Strong Cold Stress | −27 ≤ UTCI < −13 |
Moderate Cold Stress | −12 ≤ UTCI < 0 |
Slight Cold Stress | 0 ≤ UTCI < 9 |
No Thermal Stress | 9 ≤ UTCI < 26 |
Slight Heat Stress | 26 ≤ UTCI < 28 |
Moderate Heat Stress | 28 ≤ UTCI < 32 |
Strong Heat Stress | 32 ≤ UTCI < 38 |
Very Strong Heat Stress | 38 ≤ UTCI < 46 |
Extreme Heat Stress | 46 < UTCI |
Current Weather Condition | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Date | Hour | ||||||||||
8:00 | 9:00 | 10:00 | 11:00 | 12:00 | 13:00 | 14:00 | 15:00 | 16:00 | 17:00 | 18:00 | |
12 January | 0.6 | 1.3 | −0.2 | −0.2 | −0.2 | −0.2 | −0.3 | −0.2 | −0.3 | −0.2 | 0.6 |
29 March | 1.1 | 0.1 | 0 | 0 | 0 | −0.1 | −0.1 | 0 | 1.2 | 0.3 | −1.3 |
29 July | 0.2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.4 |
15 October | 0 | 0 | 0 | 0.1 | 0 | 0 | −0.1 | 0 | −0.4 | −0.6 | −0.6 |
Future Projection 2050 (RCP8.5) | |||||||||||
Date | Hour | ||||||||||
8:00 | 9:00 | 10:00 | 11:00 | 12:00 | 13:00 | 14:00 | 15:00 | 16:00 | 17:00 | 18:00 | |
12 January | −0.3 | −0.3 | −0.3 | −1.6 | −0.3 | −0.3 | −0.2 | −0.3 | −0.3 | −0.4 | 0.1 |
29 March | −0.2 | −0.1 | 0 | 0 | 0 | −0.1 | 0.3 | 0.2 | 0.3 | 0.7 | 0.5 |
29 July | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −0.1 | −0.1 | −0.1 | 0.2 |
15 October | 0 | 0.1 | 0 | 0 | 0 | 0 | 0 | 0 | −0.1 | −0.1 | −0.1 |
Date | End Uses | Before Installing the Green Wall | After Installing the Green Wall | |
---|---|---|---|---|
12 January | Heating | 0.495 | 0.518 | |
Interior Lighting | 0.011 | 0.011 | ||
Electric Equipment | 0.018 | 0.017 | ||
Pumps | 0 | 0 | ||
Water Systems | 0.003 | 0.003 | ||
cei | 0.527 | 0.549 | ||
29 March | Heating | 0.025 | 0.041 | |
Cooling | 0.028 | 0.002 | ||
Interior Lighting | 0.019 | 0.019 | ||
Electric Equipment | 0.031 | 0.031 | ||
Water Systems | 0.005 | 0.005 | ||
cei | 0.108 | 0.098 | ||
29 July | Cooling | 0.085 | 0.054 | |
Interior Lighting | 0.003 | 0.003 | ||
Electric Equipment | 0.010 | 0.010 | ||
Water Systems | 0.002 | 0.002 | ||
cei | 0.100 | 0.069 | ||
15 October | Heating | 0.012 | 0.022 | |
Interior Lighting | 0.001 | 0.001 | ||
Electric Equipment | 0.008 | 0.008 | ||
Water Systems | 0.001 | 0.001 | ||
cooling | 0 | 0 | ||
cei | 0.022 | 0.032 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dehghan Lotfabad, A.; Hosseini, S.M.; Dabove, P.; Heiranipour, M.; Sommese, F. Impacts of Vertical Greenery on Outdoor Thermal Comfort and Carbon Emission Reduction at the Urban Scale in Turin, Italy. Buildings 2025, 15, 450. https://doi.org/10.3390/buildings15030450
Dehghan Lotfabad A, Hosseini SM, Dabove P, Heiranipour M, Sommese F. Impacts of Vertical Greenery on Outdoor Thermal Comfort and Carbon Emission Reduction at the Urban Scale in Turin, Italy. Buildings. 2025; 15(3):450. https://doi.org/10.3390/buildings15030450
Chicago/Turabian StyleDehghan Lotfabad, Amir, Seyed Morteza Hosseini, Paolo Dabove, Milad Heiranipour, and Francesco Sommese. 2025. "Impacts of Vertical Greenery on Outdoor Thermal Comfort and Carbon Emission Reduction at the Urban Scale in Turin, Italy" Buildings 15, no. 3: 450. https://doi.org/10.3390/buildings15030450
APA StyleDehghan Lotfabad, A., Hosseini, S. M., Dabove, P., Heiranipour, M., & Sommese, F. (2025). Impacts of Vertical Greenery on Outdoor Thermal Comfort and Carbon Emission Reduction at the Urban Scale in Turin, Italy. Buildings, 15(3), 450. https://doi.org/10.3390/buildings15030450