From Waste to Roads: Improving Pavement Performance and Achieving Sustainability with Recycled Steel Slag and Low-Density Polyethylene
Abstract
:1. Introduction
2. Scope and Objectives of the Study
3. Materials and Methods
3.1. Material Selection
3.2. Testing Methods
4. Results and Discussion
4.1. Aggregate Testing
4.2. Bitumen Consistency Testing
4.3. Marshall Stability and Volumetric Properties
4.4. Dynamic Modulus Using SPT
4.4.1. Master Curve Development from Dynamic Modulus Dataset
4.4.2. Experimental Two-Level Factorial Design for SPT Dynamic Modulus
4.5. Evolutionary Algorithm for Dynamic Modulus Using CI
Multi-Expression Programming Model Validation
4.6. KENPAVE Damage Analysis
4.6.1. Reduction in Damage Ratios
4.6.2. Percentage Improvement in Design Life
5. Conclusions
- LDPE and steel slag (SS) modifications significantly improved the performance of hot-mix asphalt (HMA) for both bitumen grades (60–70 and 80–100), with notable upgrades in physical and mechanical properties and Performance Grade (PG).
- SS exhibited superior abrasion resistance and crushing strength compared to conventional aggregates.
- LDPE-modified bitumen improved penetration and softening point values, enhancing high-temperature performance and upgrading the PG.
- The 3% LDPE yielded optimal results by balancing stiffness, stability, and ductility.
- Specimens with 3% LDPE showed improvements in Marshall Stability by 15.57% for grade 60–70 and 13.18% for grade 80–100, with minimal reductions in air voids and unit weight.
- Dynamic modulus values were higher across all frequencies and temperatures, reducing fatigue cracking and permanent deformation by 14.94% to 16.34%.
- Combining SS with 3% LDPE improved Marshall Stability by over 31%, reduced damage ratio by up to 35.83%, and significantly enhanced the design life of HMA.
- The design life of grade 60–70 HMA increased by 65.14%, while grade 80–100 saw a 43.09% improvement.
- Damage ratio reductions were observed as 35.83% for grade 60–70 and 26.10% for grade 80–100.
- Dynamic modulus improvements were observed across all temperature ranges, especially at extremely low and high temperatures.
- These findings confirm the potential of SS and LDPE modifications for durable and sustainable flexible pavement solutions.
6. Recommendations
7. Limitations
- Waste Material Compatibility: The physical and chemical properties of LDPE and SS vary depending on the origin and nature of the materials and may be subject to volume expansion resulting from moisture and carbonation, causing volume instability that affects their bonding with the bitumen binder and may therefore cause cracks or deformation in the pavement.
- Cost Implications: Recycling materials may appear cost-effective, but the expenses of processing, shipping, transportation, and quality control might exceed the advantages in certain circumstances.
- Environmental Issues: SS may contain trace heavy metals, presenting possible leaching hazards. LDPE, being a plastic substance, may deteriorate into microplastics under certain circumstances, posing environmental concerns.
- Lab-Scale Testing: The findings are based on laboratory tests, and field validation under real-world conditions is needed for broader adoption.
8. Future Scope of Work
- More research and cooperation with bitumen plants and road agencies are required to conserve industrial resources by replacing aggregates with different waste materials to achieve sustainability and lower costs.
- Further testing on HMA mixes, such as four-point beam fatigue, semi-circular bending, fuel leakage, Hamburg wheel truck, skid resistance, abrasion, and other features, should be carried out.
- Computational intelligence based on advanced computational methods and predictive models should be used to optimize pavement design further.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, H.; Zhu, Z.; Zhang, Z.; Yu, J.; Oeser, M.; Wang, D. Recycling waste packaging tape into bituminous mixtures towards enhanced mechanical properties and environmental benefits. J. Clean. Prod. 2019, 229, 22–31. [Google Scholar] [CrossRef]
- Al-Nawasir, R.I.; Al-Humeidawi, B.H. Qualitative Evaluation for Asphalt Binder Modified with SBS Polymer. Tikrit J. Eng. Sci. 2023, 30, 88–101. [Google Scholar] [CrossRef]
- Heydari, S.; Hajimohammadi, A.; Haji Seyed Javadi, N.; Khalili, N. The use of plastic waste in asphalt: A critical review on asphalt mix design and Marshall properties. Constr. Build. Mater. 2021, 309, 125185. [Google Scholar] [CrossRef]
- Yadykova, A.Y.; Ilyin, S.O. Nanocellulose-stabilized bitumen emulsions as a base for preparation of nanocomposite asphalt binders. Carbohydr. Polym. 2023, 313, 120896. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.; Zhu, H.; Guo, M.; Shao, S.; Zhang, S.; Zhang, Y. Modeling for predicting triaxial mechanical properties of recycled aggregate concrete considering the recycled aggregate replacement. Constr. Build. Mater. 2023, 368, 130447. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, S.; Wang, R.; Shen, L.; Wang, Q. Utilization of raw coal gangue as coarse aggregates in pavement concrete. Constr. Build. Mater. 2023, 378, 131062. [Google Scholar] [CrossRef]
- Aldagari, S.; Hung, A.M.; Shariati, S.; Faisal Kabir, S.K.; Ranka, M.; Bird, R.C.; Fini, E.H. Enhanced sustainability at the bitumen-aggregate interface using organosilane coating technology. Constr. Build. Mater. 2022, 359, 129500. [Google Scholar] [CrossRef]
- Al-Nawasir, R.; Al-Humeidawi, B.; Khan, M.I.; Khahro, S.H.; Memon, Z.A. Effect of glass waste powder and date palm seed ash based sustainable cementitious grouts on the performance of semi-flexible pavement. Case Stud. Constr. Mater. 2024, 21, e03453. [Google Scholar] [CrossRef]
- Quan, X.; Wang, S.; Li, J.; Luo, J.; Liu, K.; Xu, J.; Zhao, N.; Liu, Y. Utilization of molybdenum tailings as fine aggregate in recycled aggregate concrete. J. Clean. Prod. 2022, 372, 133649. [Google Scholar] [CrossRef]
- Caputo, P.; Algieri, V.; Maiuolo, L.; De Nino, A.; Sicilia, E.; Ponte, F.; Calandra, P.; Oliviero Rossi, C. Waste additives as biopolymers for the modification of bitumen: Mechanical performance and structural analysis characterization. Colloids Surf. A Physicochem. Eng. Asp. 2023, 663, 131079. [Google Scholar] [CrossRef]
- Asi, I.M.; Qasrawi, H.Y.; Shalabi, F.I. Use of steel slag aggregate in asphalt concrete mixes. Can. J. Civ. Eng. 2007, 34, 902–911. [Google Scholar] [CrossRef]
- Arisha, A.M.; Gabr, A.R.; El-Badawy, S.M.; Shwally, S.A. Performance Evaluation of Construction and Demolition Waste Materials for Pavement Construction in Egypt. J. Mater. Civ. Eng. 2018, 30, 04017270. [Google Scholar] [CrossRef]
- Khorshidi, M.; Goli, A.; Orešković, M.; Khayambashi, K.; Ameri, M. Performance Evaluation of Asphalt Mixtures Containing Different Proportions of Alternative Materials. Sustainability 2023, 15, 13314. [Google Scholar] [CrossRef]
- Kazmee, H.; Tutumluer, E.; Beshears, S. Using Accelerated Pavement Testing to Evaluate Reclaimed Asphalt Pavement Materials for Pavement Unbound Granular Layers. J. Mater. Civ. Eng. 2017, 29, 04016205. [Google Scholar] [CrossRef]
- Arulrajah, A.; Piratheepan, J.; Aatheesan, T.; Bo, M.W. Geotechnical Properties of Recycled Crushed Brick in Pavement Applications. J. Mater. Civ. Eng. 2011, 23, 1444–1452. [Google Scholar] [CrossRef]
- Vo, H.V.; Park, D.-W. Lightweight Treated Soil As a Potential Sustainable Pavement Material. J. Perform. Constr. Facil. 2016, 30, C4014009. [Google Scholar] [CrossRef]
- Suresh, M.; Pal, M. Effect of centrifuged latex on moisture damage of hot-mix asphalt with brick aggregate. Proc. Inst. Civ. Eng. Transp. 2021, 174, 99–109. [Google Scholar] [CrossRef]
- Shen, D.-H.; Wu, C.-M.; Du, J.-C. Laboratory investigation of basic oxygen furnace slag for substitution of aggregate in porous asphalt mixture. Constr. Build. Mater. 2009, 23, 453–461. [Google Scholar] [CrossRef]
- Chen, Z.; Wu, S.; Xiao, Y.; Zeng, W.; Yi, M.; Wan, J. Effect of hydration and silicone resin on Basic Oxygen Furnace slag and its asphalt mixture. J. Clean. Prod. 2016, 112, 392–400. [Google Scholar] [CrossRef]
- Paul, D.; Suresh, M.; Pal, M. Utilization of fly ash and glass powder as fillers in steel slag asphalt mixtures. Case Stud. Constr. Mater. 2021, 15, e00672. [Google Scholar] [CrossRef]
- Zhang, C.; Tan, Y.; Gao, Y.; Fu, Y.; Li, J.; Li, S.; Zhou, X. Resilience assessment of asphalt pavement rutting under climate change. Transp. Res. Part D Transp. Environ. 2022, 109, 103395. [Google Scholar] [CrossRef]
- Liu, S.; Qi, X.; Shan, L. Effect of molecular structure on low-temperature properties of bitumen based on molecular dynamics. Constr. Build. Mater. 2022, 319, 126029. [Google Scholar] [CrossRef]
- Alhaji, M.M.; Alhassan, M.; Adejumo, T.W.; Abdulkadir, H. Road pavement collapse from overloaded trucks due to traffic diversion: A case study of Minna-Kateregi-Bida Road, Nigeria. Eng. Fail. Anal. 2022, 131, 105829. [Google Scholar] [CrossRef]
- Zhao, W.; Yang, Q. Life cycle assessment and multi-index performance evaluation of semi-flexible pavement after composite modification by using fly ash, rubber particles, warm mixing asphalt and recycled asphalt pavement. Constr. Build. Mater. 2023, 364, 129945. [Google Scholar] [CrossRef]
- Hasan, A.; Hasan, U.; Whyte, A.; Al Jassmi, H. Lifecycle Analysis of Recycled Asphalt Pavements: Case Study Scenario Analyses of an Urban Highway Section. Civil Eng 2022, 3, 242–262. [Google Scholar] [CrossRef]
- Yang, J.; Liu, L.; Zhang, G.; Ding, Q.; Sun, X. The Preparation of Ground Blast Furnace Slag-Steel Slag Pavement Concrete Using Different Activators and Its Performance Investigation. Buildings 2023, 13, 1590. [Google Scholar] [CrossRef]
- Kakar, M.R.; Mikhailenko, P.; Piao, Z.; Bueno, M.; Poulikakos, L. Analysis of waste polyethylene (PE) and its by-products in asphalt binder. Constr. Build. Mater. 2021, 280, 122492. [Google Scholar] [CrossRef]
- Khan, M.I.; Sutanto, M.H.; Sunarjono, S.; Room, S.; Yusoff, N.I.M. Effect of Crumb Rubber, Epolene (EE-2), and Date Palm Ash as Modifiers on the Performance of Binders and Mixtures: A Sustainable Approach. Sustainability 2019, 11, 6484. [Google Scholar] [CrossRef]
- Khan, N.; Sutanto, M.H.; Mohammed, B.S.; Yousafzai, A.K.; Khan, M.I.; Memon, A.M.; Al-Nawasir, R.; Sciences, T. Thermal Performance Evaluation of PCM-Impregnated Aggregates in Hot Mix Asphalt: Mitigating Urban Heat Island Effects. J. Adv. Res. Fluid Mech. Therm. Sci. 2024, 124, 1–12. [Google Scholar] [CrossRef]
- Hossein Hamedi, G.; Ghalandari Shamami, K.; Mazhari Pakenari, M. Effect of ultra-high-molecular-weight polyethylene on the performance characteristics of hot mix asphalt. Constr. Build. Mater. 2020, 258, 119729. [Google Scholar] [CrossRef]
- Biswas, A.; Goel, A.; Potnis, S. Performance comparison of waste plastic modified versus conventional bituminous roads in Pune city: A case study. Case Stud. Constr. Mater. 2020, 13, e00411. [Google Scholar] [CrossRef]
- Ullah, S.; Raheel, M.; Khan, R.; Tariq Khan, M. Characterization of physical & mechanical properties of asphalt concrete containing low- & high-density polyethylene waste as aggregates. Constr. Build. Mater. 2021, 301, 124127. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, Q.; Lv, Q.; Wang, H. Influence of different polyethylene wax additives on the performance of modified asphalt binders and mixtures. Constr. Build. Mater. 2021, 302, 124115. [Google Scholar] [CrossRef]
- Zhong, H.; Huang, W.; Yan, C.; Zhang, Y.; Lv, Q.; Sun, L.; Liu, L. Investigating binder aging during hot in-place recycling (HIR) of asphalt pavement. Constr. Build. Mater. 2021, 276, 122188. [Google Scholar] [CrossRef]
- Ding, X.-H.; Luo, B.; Zhou, H.-T.; Chen, Y.-H. Generalized solutions for advection–dispersion transport equations subject to time-and space-dependent internal and boundary sources. Comput. Geotech. 2025, 178, 106944. [Google Scholar] [CrossRef]
- Su, Y.; Luo, B.; Luo, Z.; Xu, F.; Huang, H.; Long, Z.; Shen, C. Mechanical characteristics and solidification mechanism of slag/fly ash-based geopolymer and cement solidified organic clay: A comparative study. J. Build. Eng. 2023, 71, 106459. [Google Scholar] [CrossRef]
- Gan, Y.; Li, C.; Ke, W.; Deng, Q.; Yu, T. Study on pavement performance of steel slag asphalt mixture based on surface treatment. Case Stud. Constr. Mater. 2022, 16, e01131. [Google Scholar] [CrossRef]
- Rashed, A.M.; Al-Hadidy, A. Comparative performance of DG mixes and SMA mixes with waste crumb rubber as aggregate replacement. Case Stud. Constr. Mater. 2023, 19, e02615. [Google Scholar] [CrossRef]
- AL-Ghurabi, S.B.; Al-Humeidawi, B.H. Evaluation of performance of hot mix asphalt contained various sizes of Reclaim asphalt pavement and polymer modified Bitumen. Mater. Today Proc. 2023, 80, 2905–2910. [Google Scholar] [CrossRef]
- Kang, A.; Jiang, Y.; Kou, C.; Xiao, P.; Chen, J. Performance evaluation of hot mix asphalt containing recycled concrete aggregates treated by physical and chemical methods. Constr. Build. Mater. 2024, 432, 136649. [Google Scholar] [CrossRef]
- Silvestre, R.; Medel, E.; García, A.; Navas, J. Using ceramic wastes from tile industry as a partial substitute of natural aggregates in hot mix asphalt binder courses. Constr. Build. Mater. 2013, 45, 115–122. [Google Scholar] [CrossRef]
- Liu, Z.; Feng, T.; Zhu, X.; Gao, J.; Hu, K.; Guo, M.; Gu, F.; Li, F. Bird’s-eye view of recycled solid wastes in road engineering. J. Road Eng. 2024, 4, 93–150. [Google Scholar] [CrossRef]
- Ma, F.; Dai, J.; Fu, Z.; Liu, J.; Dong, W.; Huang, Z. A New type of crumb rubber asphalt mixture: A dry process design and performance evaluation. Appl. Sci. 2020, 10, 372. [Google Scholar] [CrossRef]
- Luo, L.; Yang, S.-H.; Oeser, M.; Liu, P. Moisture damage mechanism of asphalt mixtures containing reclaimed asphalt pavement binder: A novel molecular dynamics study. J. Clean. Prod. 2024, 475, 143711. [Google Scholar] [CrossRef]
- Rout, M.D.; Biswas, S.; Shubham, K.; Sinha, A.K. A systematic review on performance of reclaimed asphalt pavement (RAP) as sustainable material in rigid pavement construction: Current status to future perspective. J. Build. Eng. 2023, 76, 107253. [Google Scholar] [CrossRef]
- Ali, R.I.; Al-Humeidawi, B.H. A scientometric study and a bibliometric review of the literature on the design and construction of semi-flexible pavement. Al-Qadisiyah J. Eng. Sci. 2023, 16, 82–91. [Google Scholar] [CrossRef]
- Al-Nawasir, R.; Al-Humeidawi, B.; Shubbar, A. Influence of Sustainable Grout Material on the Moisture Damage of Semi-flexible Pavement. Period. Polytech. Civ. Eng. 2024, 68, 961–973. [Google Scholar] [CrossRef]
- Loureiro, C.D.; Moura, C.F.; Rodrigues, M.; Martinho, F.C.; Silva, H.M.; Oliveira, J.R. Steel slag and recycled concrete aggregates: Replacing quarries to supply sustainable materials for the asphalt paving industry. Sustainability 2022, 14, 5022. [Google Scholar] [CrossRef]
- Zalnezhad, M.; Hesami, E. Effect of steel slag aggregate and bitumen emulsion types on the performance of microsurfacing mixture. J. Traffic Transp. Eng. (Engl. Ed.) 2020, 7, 215–226. [Google Scholar] [CrossRef]
- Abendeh, R.; Alhorani, R.; Ahmad, H.; Baker, M.B. Effect of steel slag as fine and coarse aggregate on pore structure and freeze-thaw resistance of high-strength concrete. Jordan J. Civ. Eng. 2021, 15, 4. [Google Scholar]
- ASTM C-131; Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine. ASTM International West: Conshohocken, PA, USA, 2010.
- BS 812-112; Testing Aggregates. Method for Determination of Aggregate Impact Value. British Standards Institution: London, UK, 1990.
- BS 812-110; Methods for Determination of Aggregate Crushing Value. British Standards Institution: London, UK, 1990.
- ASTM C-127; Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate. ASTM International West: Conshohocken, PA, USA, 2024.
- ASTM C-128; Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate. ASTM International West: Conshohocken, PA, USA, 2017.
- AASHTO T-133; Standard Method of Test for Density of Hydraulic Cement. Highway Transportation Officials: Washington, DC, USA, 2019.
- ASTM D-5; Standard Test Method for Penetration of Bituminous Materials. ASTM International West: Conshohocken, PA, USA, 2019.
- ASTM D-36; Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus). ASTM International West: Conshohocken, PA, USA, 2014.
- ASTM D-70; Standard Test Method for Density of Semi-Solid Asphalt Binder (Pycnometer Method). ASTM International West: Conshohocken, PA, USA, 2021.
- ASTM D-113; Standard Test Method for Ductility of Asphalt Materials. ASTM International West: Conshohocken, PA, USA, 2023.
- ASTM D-15; Standard Test Method for Preparation and Determination of the Relative Density of Asphalt Mix Specimens by Means of the Superpave Gyratory Compactor. ASTM International West: Conshohocken, PA, USA, 2015.
- AASHTO TP 62-07; Standard Method of Test for Determining Dynamic Modulus of Hot Mix Asphalt (HMA). Highway Transportation Officials: Washington, DC, USA, 2007.
Chemical Properties | |
Property | Value |
SiO2 (%) | 15.04 |
Al2O3 (%) | 4.12 |
Fe2O3 (%) | 22.55 |
CaO (%) | 41.53 |
MgO (%) | 6.17 |
K2O (%) | 0.05 |
Na2O (%) | 0.14 |
SO3 (%) | 0.08 |
LOI (%) | 0.25 |
Physical properties | |
Color | Light to dark brown |
Shape and Surface texture | Highly angular and rough |
Specific gravity (gm/cm3) | 3.25 |
Bulk density (Kg/m3) | 1911.11 |
Moisture content (%) | 0.54 |
Property | Value |
---|---|
Color | white |
Specific gravity (gm/cm3) | 0.921 |
Tensile strength (MN/m2) | 10.11 |
Flexural modulus (GN/m2) | 0.203 |
Melting point (°C) | 113.20 |
Thermal degradation temperature (°C) | 406 |
Chemical form | (−CH2 − CH2−)n |
Description of Test | Test Standard | Result | Limits | ||
---|---|---|---|---|---|
Natural Aggregates | Steel Slag | ||||
Abrasion Value | ASTM C-131 [51] | 26 | 25 | 45 (max) | |
Impact Value | BS 812-112 [52] | 15 | 18 | 30 (max) | |
Crushing Strength | BS 812-110 [53] | 27 | 26 | 30 (max) | |
Specific Gravity | Coarse | ASTM C-127 [54] | 2.73 | 3.25 | - |
Fine | ASTM C-128 [55] | 2.66 | - | - | |
Filler | AASHTO T-133 [56] | 2.63 | - | - | |
Water Absorbance | Coarse | ASTM C-127 [54] | 0.53 | 0.83 | 3% (max) |
Fine | ASTM C-128 [55] | 0.78 | - | 3% (max) |
Test Description | Test Standard | Bitumen Grade 60–70 | Bitumen Grade 80–100 | ||
---|---|---|---|---|---|
Result | Specification | Result | Specification | ||
Penetration, 25 °C, 0.1 mm | ASTM D-5 [57] | 65 | 60/70 | 96 | 80/100 |
Softening Point, °C | ASTM D-36 [58] | 47 | (46–57) °C | 45 | (43–54) °C |
Specific Gravity, 25 °C, cm | ASTM D-70 [59] | 0.99 | 0.99 (min) | 1.01 | 0.99 (min) |
Ductility, g/cm3 | ASTM D-113 [60] | >100 | 100 cm (min) | >100 | 100 cm (min) |
Descriptions | Measured Value (60–70) | Measured Value (80–100) | Standards |
---|---|---|---|
Optimum Asphalt Contents (%) | 4.0 | 4.0 | 4% voids—air |
Unit Weight (g/cm3) | 2.290 | 2.275 | n/a |
Voids in Mineral Aggregate (%) | 13.25 | 13.75 | 13 (Minimum) |
Voids filled with Asphalt (%) | 70.5 | 72 | 65 to 75 |
Stability (kN) | 11.38 | 11.07 | 8.0 (Minimum) |
Flow(mm) | 3.50 | 3.00 | 2.0 to 3.5 |
Sieve Size | NHA-B Specification Range (% Passing) | Selection (% Passing) |
---|---|---|
(mm) | ||
19 | 100 | 100 |
12.5 | 75–90 | 82.5 |
9.5 | 60–80 | 70 |
4.75 | 40–60 | 50 |
2.38 | 20–40 | 30 |
1.18 | 5–15 | 10 |
0.075 | 3–8 | 5.5 |
Description of Test | Bitumen Grade 60–70 | Bitumen Grade 80–100 | ||||||
---|---|---|---|---|---|---|---|---|
0% | 3% | 5% | 7% | 0% | 3% | 5% | 7% | |
Penetration Value | 65 | 52 | 38 | 32 | 96 | 61 | 49 | 33 |
Softening Point | 47 | 56 | 62.25 | 68.4 | 45 | 53 | 57.35 | 67.1 |
Ductility Value | 104 | 101 | 41 | 31 | 106 | 102 | 47 | 36 |
Specific Gravity | 0.989 | 0.968 | 0.974 | 0.961 | 1.011 | 1.000 | 0.977 | 0.969 |
Samples No. | Description | Air Voids (%) | VFA (%) | Unit Weight of Mix (g/cc) | Stability (KN) | Flow (mm) | VMA (%) |
---|---|---|---|---|---|---|---|
Bitumen Grade 60–70 | |||||||
1 | Control Sample | 3.963 | 70.469 | 2.280 | 11.37 | 3.5 | 13.420 |
2 | 3% LDPE Modifier | 3.952 | 70.970 | 2.242 | 13.14 | 3 | 13.614 |
3 | 5% LDPE Modifier | 3.837 | 71.332 | 2.213 | 10.84 | 3.25 | 13.385 |
4 | 7% LDPE Modifier | 3.795 | 71.732 | 2.215 | 11.04 | 3.25 | 13.427 |
5 | 3% LDPE Modifier with SS | 4.143 | 70.199 | 2.236 | 14.96 | 3.5 | 13.903 |
Bitumen Grade 80–100 | |||||||
1 | Control Sample | 4.040 | 70.067 | 2.274 | 11.08 | 3 | 13.496 |
2 | 3% LDPE Modifier | 3.910 | 70.693 | 2.238 | 12.54 | 3.5 | 13.340 |
3 | 5% LDPE Modifier | 3.430 | 73.279 | 2.216 | 11.12 | 3.25 | 12.835 |
4 | 7% LDPE Modifier | 3.192 | 74.656 | 2.207 | 11.24 | 3.5 | 12.593 |
5 | 3% LDPE Modifier with SS | 4.263 | 69.349 | 2.245 | 14.60 | 3.5 | 13.907 |
Description of a Modifier | R2 | Se/Sy |
---|---|---|
Bitumen Grade 60/70 | ||
0% LDPE | 0.9522 | 0.15 |
3% LDPE | 0.9209 | 0.20 |
5% LDPE | 0.9540 | 0.15 |
7% LDPE | 0.9802 | 0.10 |
3% LDPE with SS | 0.9538 | 0.15 |
Bitumen Grade 80/100 | ||
0% LDPE | 0.9899 | 0.07 |
3% LDPE | 0.9190 | 0.20 |
5% LDPE | 0.7460 | 0.36 |
7% LDPE | 0.8490 | 0.27 |
3% LDPE with SS | 0.9028 | 0.22 |
Factors | Measured Units | Low-Level Factors | High-Level Factors | ||
---|---|---|---|---|---|
Grade 60/70 | Grade 80/100 | Grade 60/70 | Grade 80/100 | ||
Temperature | Centigrade | 4.4 | 4.4 | 54.4 | 54.4 |
SS-LDPE | % | 0 | 0 | 3 | 3 |
Frequency | Hertz | 0.1 | 0.1 | 25.0 | 25.0 |
Main | Interactions | ||||||
---|---|---|---|---|---|---|---|
A: Temp | B: Freq | C: LDPE | AB | BC | AC | ABC | |
Avg. High | 1077 | 5355.75 | 3919 | 2059.25 | 3670.25 | 2832 | 3048.25 |
Avg. Low | 5387.5 | 1108.75 | 2545.5 | 4405.25 | 2794.25 | 3632.5 | 3416.25 |
Effect | −4310.5 | 4247 | 1373.5 | −2346 | 876 | −800.5 | −368 |
Coefficients | −2155.25 | 2123.5 | 686.75 | −1173 | 438 | −400.25 | −184 |
p-Value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.003 |
Main | Interactions | ||||||
---|---|---|---|---|---|---|---|
A: Temp | B: Freq | C: LDPE | AB | BC | AC | ABC | |
Avg. High | 1052.75 | 6608.5 | 4137 | 2089 | 3916.25 | 3768.5 | 3950.75 |
Avg. Low | 6722.5 | 1166.75 | 3638.25 | 5686.25 | 3859 | 4006.75 | 3824.5 |
Effect | −5669.75 | 5441.75 | 498.75 | −3597.25 | 57.25 | −238.25 | 126.25 |
Coefficients | −2834.87 | 2720.875 | 249.375 | −1798.62 | 28.625 | −119.12 | 63.125 |
p-Value | 0.000 | 0.000 | 0.000 | 0.000 | 0.040 | 0.593 | 0.250 |
Source Description | DF | Adjusted SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|
Given Model | 9 | 274,123,233 | 30,458,137 | 472.4 | 0 |
Linear | 3 | 231,009,162 | 77,003,054 | 1194.29 | 0 |
Temperature | 1 | 111,473,841 | 111,473,841 | 1728.92 | 0 |
Frequency | 1 | 108,213,560 | 108,213,560 | 1678.35 | 0 |
SS-LDPE | 1 | 11,321,761 | 11,321,761 | 175.6 | 0 |
2-Way Interactions | 3 | 41,458,467 | 13,819,489 | 214.34 | 0 |
Temperature*Frequency | 1 | 33,012,913 | 33,012,913 | 512.02 | 0 |
Temperature*SS-LDPE | 1 | 3,844,801 | 3,844,801 | 59.63 | 0 |
Frequency*SS-LDPE | 1 | 4,600,753 | 4,600,753 | 71.36 | 0 |
3-Way Interactions | 1 | 813,280 | 813,280 | 12.61 | 0.003 |
Temperature*Frequency*SS-LDPE | 1 | 813,280 | 813,280 | 12.61 | 0.003 |
Error | 14 | 902,664 | 64,476 | ||
Total | 23 | 275,025,896 |
Source Description | DF | Adjusted-SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|
Given Model | 7 | 450,194,120 | 64,313,446 | 984.24 | 0 |
Linear | 3 | 372,044,758 | 124,014,919 | 1897.9 | 0 |
Temperature | 1 | 192,876,390 | 192,876,390 | 2951.75 | 0 |
Frequency | 1 | 177,675,858 | 177,675,858 | 2719.12 | 0 |
SS-LDPE | 1 | 1,492,509 | 1,492,509 | 22.84 | 0 |
2-Way Interactions | 2 | 77,982,777 | 38,991,389 | 596.72 | 0 |
Temperature*Frequency | 1 | 77,641,245 | 77,641,245 | 1188.21 | 0 |
Temperature*SS-LDPE | 1 | 341,532 | 341,532 | 5.23 | 0.036 |
Error | 16 | 1,045,490 | 65,343 | ||
Total | 23 | 451,239,610 |
MAPE Score (%) | Model Accuracy (%) | Interpretation of Score |
---|---|---|
<10 | >90 | Excellent Model |
10–20 | 80–90 | Good Model |
20–50 | 50–80 | Relatively Good Model |
>50 | <50 | Poor Model |
Period of Year | Description | Percent of Modifier in Bitumen Grade 60–70 | Percent of Modifier in Bitumen Grade 80–100 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 3 | 5 | 7 | 3-SS | 0 | 3 | 5 | 7 | 3-SS | ||
Number 1 (Temp: 4.4 °C; Freq: 5 Hz) | Dynamic Modulus (ksi) | 729 | 1023 | 1027 | 1157 | 1113 | 1090 | 993 | 996 | 1105 | 1257 |
Allowable Load at Asphalt Bottom (Nf) | 1,498,000 | 2,154,000 | 2,163,000 | 2,487,000 | 2,375,000 | 2,318,000 | 2,082,000 | 2,089,000 | 2,355,000 | 2,750,000 | |
Damage Ratio | 0.03337 | 0.02322 | 0.02311 | 0.0201 | 0.02105 | 0.02157 | 0.02402 | 0.02393 | 0.02123 | 0.01818 | |
Allowable Load Repetition at Subgrade Top (Nd) | 645,200 | 1,119,000 | 1,127,000 | 1,387,000 | 1,296,000 | 1,249,000 | 1,064,000 | 1,069,000 | 1,279,000 | 1,611,000 | |
Damage Ratio | 0.07749 | 0.04467 | 0.04438 | 0.03604 | 0.03859 | 0.04003 | 0.047 | 0.04676 | 0.03908 | 0.03104 | |
Number 2 (Temp: 21.1 °C; Freq: 5 Hz) | Dynamic Modulus (ksi) | 417 | 494 | 504 | 651 | 598 | 574 | 575 | 543 | 714 | 601 |
Allowable Load at Asphalt Bottom (Nf) | 931,000 | 1,057,000 | 1,074,000 | 1,343,000 | 1,242,000 | 1,198,000 | 1,200,000 | 1,142,000 | 1,468,000 | 1,249,000 | |
Damage Ratio | 0.0537 | 0.04731 | 0.04655 | 0.03723 | 0.04024 | 0.04173 | 0.04167 | 0.04377 | 0.03406 | 0.04003 | |
Allowable Load Repetition at Subgrade Top (Nd) | 295,300 | 368,400 | 378,500 | 543,900 | 480,500 | 453,200 | 454,300 | 419,200 | 625,000 | 484,600 | |
Damage Ratio | 0.1693 | 0.1357 | 0.1321 | 0.09193 | 0.1041 | 0.1103 | 0.1101 | 0.1193 | 0.08 | 0.1032 | |
Number 3 (Temp: 54.4 °C; Freq: 5 Hz) | Dynamic Modulus (ksi) | 105 | 123 | 146 | 227 | 184 | 107 | 151 | 169 | 267 | 175 |
Allowable Load at Asphalt Bottom (Nf) | 593,200 | 583,300 | 586,100 | 656,700 | 611,400 | 591,400 | 588,200 | 599,200 | 708,000 | 603,600 | |
Damage Ratio | 0.08429 | 0.08572 | 0.08531 | 0.07613 | 0.08177 | 0.08455 | 0.085 | 0.08344 | 0.07062 | 0.08284 | |
Allowable Load Repetition at Subgrade Top (Nd) | 74,330 | 84,560 | 97,870 | 148,200 | 120,700 | 75,460 | 100,800 | 111,600 | 175,500 | 115,000 | |
Damage Ratio | 0.6727 | 0.5913 | 0.5109 | 0.3374 | 0.4142 | 0.6626 | 0.496 | 0.4482 | 0.2848 | 0.4347 | |
Summary | Sum of Damage Ratio (Fatigue) | 0.17136 | 0.15625 | 0.15497 | 0.13346 | 0.14306 | 0.14785 | 0.15069 | 0.15114 | 0.12591 | 0.14105 |
Sum of Damage Ratio (Deformation) | 0.91949 | 0.77167 | 0.68738 | 0.46537 | 0.55689 | 0.81293 | 0.6531 | 0.61426 | 0.40388 | 0.56894 | |
Summative Damage (F.C + P.D) | 1.09085 | 0.92792 | 0.84235 | 0.59883 | 0.69995 | 0.96078 | 0.80379 | 0.7654 | 0.52979 | 0.70999 | |
Percentage Reduction in Damage Ratio | 0 | 14.94 | 22.78 | 45.10 | 35.83 | 0 | 16.34 | 20.34 | 44.86 | 26.10 | |
Design Life (Years) | 1.09 | 1.3 | 1.45 | 2.15 | 1.8 | 1.23 | 1.53 | 1.63 | 2.48 | 1.76 | |
Percentage Improvement | 0 | 19.27 | 33.03 | 97.25 | 65.14 | 0 | 24.39 | 32.52 | 101.63 | 43.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehmood, S.A.; Khan, M.I.; Ahmed, S.; Al-Nawasir, R.; Choudhry, R.M. From Waste to Roads: Improving Pavement Performance and Achieving Sustainability with Recycled Steel Slag and Low-Density Polyethylene. Buildings 2025, 15, 476. https://doi.org/10.3390/buildings15030476
Mehmood SA, Khan MI, Ahmed S, Al-Nawasir R, Choudhry RM. From Waste to Roads: Improving Pavement Performance and Achieving Sustainability with Recycled Steel Slag and Low-Density Polyethylene. Buildings. 2025; 15(3):476. https://doi.org/10.3390/buildings15030476
Chicago/Turabian StyleMehmood, Syed Amir, Muhammad Imran Khan, Sarfraz Ahmed, Rania Al-Nawasir, and Rafiq M. Choudhry. 2025. "From Waste to Roads: Improving Pavement Performance and Achieving Sustainability with Recycled Steel Slag and Low-Density Polyethylene" Buildings 15, no. 3: 476. https://doi.org/10.3390/buildings15030476
APA StyleMehmood, S. A., Khan, M. I., Ahmed, S., Al-Nawasir, R., & Choudhry, R. M. (2025). From Waste to Roads: Improving Pavement Performance and Achieving Sustainability with Recycled Steel Slag and Low-Density Polyethylene. Buildings, 15(3), 476. https://doi.org/10.3390/buildings15030476