Energy Diagnosis of University Buildings: Renewable Energy Institute from UNAM
Abstract
:1. Introduction
Background
2. Methodology
- Asking the permission of REI authorities. In order to gain full cooperation from the REI staff and its users during the collection of technical data, permission and support was requested to Management.
- Reviewing a previously conducted ED at this institution: in this case, the CIE Energy Conservation Program [35].
- Performing analyses on the electric billing of 32 months (August 2013 to March 2016).
- Measurement of electrical parameters using a DM-III Multitest network analyzer for obtaining values on voltage, current, electrical consumption, etc. The equipment was connected to REI substation for one week (Monday to Friday).
- Collecting of data throughout the entire Institute, and its 36 different areas. According to the different sorts of activities conducted in each area, and in order to simplify the exercise of this step, there were categories of interest established for the diagnosis of each one. This meant designing a different set of questions aimed at obtaining the specifics as for the equipment’s electrical parameters: computers, air conditioners, laboratory equipment, lighting, workshop, chillers (water based), fans, pumps and miscellaneous. Information was collected on the electrical parameters of each equipment (power, voltage, current), in addition to the period of daily use and days per week on use. Finally, the thrown data allowed an estimation about the installed, daily and weekly consumption demand.
- The energy indicators, according to the ISO 50001, Electricity Consumption Indicators (ECI) were established to qualify the performance of REI buildings; the indexes selected to qualify the institution were: surface ECI or built per m2 (kWh/m2) and personal ECI or per capita (kWh/person).
- Suggesting of corrective measures with or without investment. Once the energy consumption patterns were characterized and the starting point was established, various corrective measures were proposed.
- Level one or basic: the ED is carried out with visual examination in which every piece of energy consuming equipment is recognized and reviewed in order to generate an idea of potential saving measures. These measures can go from suggestions of modification on operation habits, towards correction of waste disposal or incorporation of more efficient technologies. This analysis lacks actual measurement, then such energy saving potential measures are merely estimates and the savings may or may not be achieved. The main advantage of this approach is that it provides a general idea about the existence of possible energy savings (economical cost).
- Level two or fundamental: the ED provides information on energy consumption whether it is electric or thermal, at functional areas or in specific operation processes. This level of analysis is the most useful for determining potential savings in a facility due to its qualitative and quantitatively analysis on most of the energy consuming equipment. This level offers data on energy saving and costs reduction, thus stating goals for achieving greater energy efficiency. For this level it is important to have all equipment and instruments necessary for the evaluation of energy parameters.
- Level three or advanced: the ED generates precise and detailed information on each one of the relevant points of the industrial process diagram, or any installation to be evaluated; as well as the energy losses of all equipment involved. This level of analysis is characterized by the participation of specialists and the use of the extensive instrumentation related to data acquisition. Studies on engineering and actions suggested for achieving energy saving are the product of the reengineering process. In fact, the cost is much greater in the second level of analysis.
3. Results and Analyse
3.1. Electricity Billing
3.2. Electrical Parameters Measurement
3.3. Results of the REI-UNAM Survey
3.4. Indicators for REI
- Surface ECI: Monthly building consumption (kWh)/constructed area (m2).
- Personal ECI: Monthly building consumption (kWh)/building user or (kWh)/person.
4. Discussion
- Turning off and unplugging equipment that is not being used (for instance coffee machines, printers, fans, chargers, microwaves, projectors, etc.).
- Turning off lights and trying to take the most advantage as possible out of natural light.
- Disconnecting water dispensers during nighttime.
- Activating the “energy saving mode” in the devices that have integrated this function.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- International Energy Agency. Statistics: Global Energy Data at Your Fingertips, IEA 2015. Available online: http://www.iea.org/statistics (accessed on 10 September 2018).
- Allouhi, A.; El Fouih, Y.; Kousksou, T.; Jamil, A.; Zeraouli, Y.; Mourad, Y. Energy consumption and efficiency in buildings: Current status and future trends. J. Clean. Prod. 2015, 109, 118–130. [Google Scholar] [CrossRef]
- Hinge, A.; Bertoldi, P.; Waide, P. Comparing commercial building energy use around the world. In Proceedings of the 2004 ACEEE Summer Study on Energy Efficiency in Buildings, Pacific Grove, CA, USA, 22–27 August 2004. [Google Scholar]
- Fumo, N. A review on the basics of building energy estimation. Renew. Sustain. Energy Rev. 2014, 31, 53–60. [Google Scholar] [CrossRef]
- Organisation for Economic Co-operation and Development; International Energy Agency. Transition to Sustainable Buildings: Strategies and Opportunities to 2050; OECD Publishing: Paris, France, 2013. [Google Scholar]
- International Energy Agency (IEA). Key World Energy Statistics; IEA: Paris, France, 2013. [Google Scholar]
- Morillón, D.; Escobedo, A.; García, I. Retos y Oportunidades Para la Sustentabilidad Energética en Edificios de México: Consumo y Uso Final de Energía en Edificios Residenciales, Comerciales y de Servicio; Serie Investigación y Desarrollo, Instituto de Ingeniería-UNAM: México City, Mexico, 2015; ISBN 978-607-02-6285-2. [Google Scholar]
- Valderrama, C.; Cohen, A.; Lagiere, P.; Puiggali, J.R. Análisis del comportamiento energético en un conjunto de edificios multifuncionales: Caso de estudio Campus Universitario. Rev. Constr. 2011, 10, 26–39. [Google Scholar] [CrossRef]
- Yuan, S.; Hiroto, T.; Fulin, W. Evaluation on energy consumption characteristics and effect of energy conservation measures in university campus buildings in Northern China. J. Environ. Eng. 2012, 77, 605–614. [Google Scholar]
- Zhang, J.; Xu, L. Energy consumption survey in a university campus with cogeneration system: End-use consumption of electricity part 2. J. Environ. Eng. 2012, 77, 185–192. [Google Scholar] [CrossRef]
- Hong, W.-H.; Kim, J.-Y.; Lee, C.-M.; Jeon, G.-Y. Energy consumption and the power saving potential of a university in Korea: Using a field survey. J. Asian Archit. Build. Eng. 2011, 10, 445–452. [Google Scholar] [CrossRef]
- Escrivá-Escrivá, G.; Álvarez-Bel, C.; Valencia-Salazar, I. Method for modeling space conditioning aggregated daily load curves: Application to a university building. Energy Build. 2010, 42, 1275–1282. [Google Scholar] [CrossRef]
- Aljami, A. Energy audit of an educational building in a hot summer climate. Energy Build. 2012, 47, 122–130. [Google Scholar] [CrossRef]
- Desideri, U.; Leonardi, D.; Arcioni, L.; Sdringola, P. European project Educa-RUE: An example of energy efficiency paths in educational buildings. Appl. Energy 2012, 97, 384–395. [Google Scholar] [CrossRef]
- Bellia, L.; Borrelli, M.; De Masi, R.F.; Ruggiero, S.; Vanoli, G.P. University building: Energy diagnosis and refurbishment design with cost-optimal approach. Discussion about the effect of numerical modelling assumptions. J. Build. Eng. 2018, 18, 1–18. [Google Scholar] [CrossRef]
- Bourdeau, M.; Guo, X.; Nefzaoui, E. Buildings energy consumption generation gap: A post-occupancy assessment in a case study of three higher education buildings. Energy Build. 2018, 159, 600–611. [Google Scholar] [CrossRef]
- Deshko, V.I.; Shevchenko, O.M. University campuses energy performance estimation in Ukraine based on measurable approach. Energy Build. 2013, 66, 582–590. [Google Scholar] [CrossRef]
- Agdas, D.; Srinivasan, R.S.; Frost, K.; Masters, F.J. Energy use assessment of educational buildings: Toward a campus-wide sustainable energy policy. Sustain. Cities Soc. 2015, 17, 15–21. [Google Scholar] [CrossRef]
- Allab, Y.; Pellegrino, M.; Guo, X.; Nefzaoui, E.; Kindinis, A. Energy and comfort assessment in educational building: Case study in a French university campus. Energy Build. 2017, 143, 202–219. [Google Scholar] [CrossRef] [Green Version]
- SENER, Mexico. Sistema de Información Energética; SENER: Getxo, Spain, 2018. [Google Scholar]
- Katipamula, S.; Brambley, M.R. Methods for fault detection, diagnostics, and prognostics for building systems—A review, part I. HVAC&R Res. 2005, 11, 3–25. [Google Scholar]
- Katipamula, S.; Brambley, M.R. Methods for fault detection, diagnostics, and prognostics for building systems—A review, part II. HVAC&R Res. 2005, 11, 169–187. [Google Scholar]
- Zhao, H.; Magoulès, F. A review on the prediction of building energy consumption. Renew. Sustain. Energy Rev. 2012, 16, 3586–3592. [Google Scholar] [CrossRef]
- Chung, M.H.; Rhee, E.K. Potential opportunities for energy conservation in existing buildings on university campus: A field survey in Korea. Energy Build. 2014, 78, 176–182. [Google Scholar] [CrossRef]
- Ascione, F.; De Masi, R.F.; de Rossi, F.; Fistola, R.; Sasso, M.; Vanoli, G.P. Analysis and diagnosis of the energy performance of buildings and districts: Methodology, validation and development of Urban Energy Maps. Cities 2013, 35, 270–283. [Google Scholar] [CrossRef]
- Geng, Y.; Ji, W.; Lin, B.; Hong, J.; Zhu, Y. Building energy performance diagnosis using energy bills and weather data. Energy Build. 2018, 172, 181–191. [Google Scholar] [CrossRef]
- Ahmad, M.W.; Mourshed, M.; Mundow, D.; Sisinni, M.; Rezgui, Y. Building energy metering and environmental monitoring—A state-of-the-art review and directions for future research. Energy Build. 2016, 120, 85–102. [Google Scholar] [CrossRef]
- CONUEE. Comisión Nacional para el Uso Eficiente de la Energía. ACCIONES Y PROGRAMAS. 2016. Available online: http://goo.gl/W4mS89 (accessed on 24 October 2016).
- Nejat, P.; Jomehzadeh, F.; Taheri, M.M.; Gohari, M.; Majid, M.Z.A. A global review of energy consumption, CO2 emissions and policy in the residential sector (with an overview of the top ten CO2 emitting countries). Renew. Sustain. Energy Rev. 2015, 43, 843–862. [Google Scholar] [CrossRef]
- Xing, Y.; Hewitt, N.; Griffiths, P. Zero carbon buildings refurbishment—A hierarchical pathway. Renew. Sustain. Energy Rev. 2011, 15, 3229–3236. [Google Scholar] [CrossRef]
- Ibn-Mohammed, T.; Greenough, R.; Taylor, S.; Ozawa-Meida, L.; Acquaye, A. Operational vs. embodied emissions in buildings—A review of current trends. Energy Build. 2013, 66, 232–245. [Google Scholar] [CrossRef]
- Moss, K.J. Energy Management in Buildings; Routledge: Abingdon, UK, 2006. [Google Scholar]
- Síntesis, Morelos Dona Predio a la UNAM Para Energías Renovables. Available online: https://morelos.sintesis.mx/2018/08/24/morelos-predio-unam-energias-renovables/ (accessed on 26 August 2018).
- Climate-data.org. (s.f.). Available online: http://es.climatedata.org/location/31161 (accessed on 12 August 2018).
- Dorantes, R.; González, B. Programa de Conservación de Energía en el CIE; Centro de Investigación en Energía de la UNAM: México City, Mexico, 2006. [Google Scholar]
- Pérez-Lombard, L.; Ortiz, J.; Pout, C. A review on buildings energy consumption information. Energy Build. 2008, 40, 394–398. [Google Scholar] [CrossRef]
- Santamouris, M.; Papanikolaou, N.; Livada, I.; Koronakis, I.; Georgakis, C.; Argiriou, A.; Assimakopoulos, D.N. On the impact of urban climate on the energy consumption of buildings. Sol. Energy 2001, 70, 201–216. [Google Scholar] [CrossRef]
- Tornay, N.; Schoetter, R.; Bonhomme, M.; Faraut, S.; Masson, V. GENIUS: A methodology to define a detailed description of buildings for urban climate and building energy consumption simulations. Urban Clim. 2017, 20, 75–93. [Google Scholar] [CrossRef]
- Ben-Nakhi, A.E.; Mahmoud, M.A. Application of building-dynamics-based control strategies to improve air-conditioning performance in educational buildings. Adv. Build. Energy Res. 2017, 11, 153–179. [Google Scholar] [CrossRef]
- Numbi, B.P.; Malinga, S.J.; Chidzonga, R.F.; Mulangu, T.C. Energy cost saving potential in educational buildings-case study of MUT campus. In Proceedings of the International Conference on the IEEE Industrial and Commercial Use of Energy (ICUE), Cape Town, South Africa, 15–16 August 2017; pp. 1–5. [Google Scholar]
- Zhao, Z.; Yu, N. The application of advanced control technologies in air conditioning system—A review. Adv. Build. Energy Res. 2017, 11, 52–66. [Google Scholar] [CrossRef]
- SENER, AIE. Indicadores de Eficiencia Energética en México: 5 Sectores, 5 Retos. México, 2011. Available online: http://goo.gl/F9a8r8 (accessed on 11 August 2016).
- Ramos, G.; Fernández, C. Importancia del clima en la simulación energética de edificios. In Jornadas Internacionales de Investigación en Construcción: Vivienda: Pasado, Presente y Futuro: Resúmenes y Actas; Instituto Eduardo Torroja: Madrid, Spain, 2013. [Google Scholar]
- Martín-Consuegra, F.; Alonso, C.; Frutos, B.; Oteiza, I.; Cuerdo-Vilches, T. Analysis and Proposal for Energy Efficiency Measures for the Main Building of the Eduardo Torroja Institute—CSIC; Informes de la Construcción 66 (536); Instituto de Ciencias de la Construcción Eduardo Torroja (IETCC): Madrid, Spain, 2014. [Google Scholar]
- Ma, H.; Du, N.; Yu, S.; Lu, W.; Zhang, Z.; Deng, N.; Li, C. Analysis of typical public building energy consumption in northern China. Energy Build. 2017, 136, 139–150. [Google Scholar] [CrossRef]
- Jing, R.; Wang, M.; Zhang, R.; Li, N.; Zhao, Y. A study on energy performance of 30 commercial office buildings in Hong Kong. Energy Build. 2017, 144, 117–128. [Google Scholar] [CrossRef]
- Goudarzi, H.; Mostafaeipour, A. Energy saving evaluation of passive systems for residential buildings in hot and dry regions. Renew. Sustain. Energy Rev. 2017, 68, 432–446. [Google Scholar] [CrossRef]
- Erhorn, H.; Mroz, T.; Mørck, O.C.; Schmidt, F.; Schoff, L.; Thomsen, K.E. The energy concept adviser—A tool to improve energy efficiency in educational buildings. Energy Build. 2008, 40, 419–428. [Google Scholar] [CrossRef]
- Dascalaki, E.G.; Sermpetzoglou, V.G. Energy performance and indoor environmental quality in Hellenic schools. Energy Build. 2011, 43, 718–727. [Google Scholar] [CrossRef]
- Beusker, E.; Stoy, C.; Pollalis, S.N. Estimation model and benchmarks for heating energy consumption of schools and sport facilities in Germany. Build Environ. 2012, 49, 324–335. [Google Scholar] [CrossRef]
- Desideri, U.; Proietti, S. Analysis of energy consumption in the high schools of a province in central Italy. Energy Build. 2002, 34–10, 1003–1016. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Z.; Heng, L. Cost-effectiveness assessment of insulated exterior walls of residential buildings in cold climate. Int. J. Proj. Manag. 2007, 25, 143–149. [Google Scholar] [CrossRef]
- Ghrab-Morcos, N. CHEOPS: A simplified tool for thermal assessment of Mediterranean residential buildings in hot and cold seasons. Energy Build. 2005, 37, 651–662. [Google Scholar] [CrossRef]
- Mohsen, M.S.; Akash, B.A. Some prospects of energy savings in buildings. Energy Convers. Manag. 2001, 42, 1307–1315. [Google Scholar] [CrossRef]
- Farhanieh, B.; Sattari, S. Simulation of energy saving in Iranian buildings using integrative modelling for insulation. Renew. Energy 2006, 31, 417–425. [Google Scholar] [CrossRef]
- Al-Khawaja, M.J. Determination and selecting the optimum thickness of insulation for buildings in hot countries by accounting for solar radiation. Appl. Therm. Eng. 2004, 24, 2601–2610. [Google Scholar] [CrossRef]
- Daouas, N.; Hassen, Z.; Aissia, H.B. Analytical periodic solution for the study of thermal performance and optimum insulation thickness of building walls in Tunisia. Appl. Therm. Eng. 2010, 30, 319–326. [Google Scholar] [CrossRef]
- Ahmad, E.H. Cost analysis and thickness optimization of thermal insulation materials used in residential buildings in Saudi Arabia. In Proceedings of the 6th Saudi Engineering Conference, Dhahran, Saudi Arabia, 14–17 December 2002; Volume 1, pp. 21–32. [Google Scholar]
- Kossecka, E.; Kosny, J. Influence of insulation configuration on heating and cooling loads in a continuously used building. Energy Build. 2002, 34, 321–331. [Google Scholar] [CrossRef]
- Kaynakli, O. A study on residential heating energy requirement and optimum insulation thickness. Renew. Energy 2008, 33, 1164–1172. [Google Scholar] [CrossRef]
- Al-Sanea, S.A.; Zedan, M.F.; Al-Ajlan, S.A. Effect of electricity tariff on the optimum insulation-thickness in building walls as determined by a dynamic heat-transfer model. Appl. Energy 2005, 82, 313–330. [Google Scholar] [CrossRef]
- Ucar, A.; Balo, F. Effect of fuel type on the optimum thickness of selected insulation materials for the four different climatic regions of Turkey. Appl. Energy 2009, 86, 730–736. [Google Scholar] [CrossRef]
- Comakli, K.; Yuksel, B. Optimum insulation thickness of external walls for energy saving. Appl. Therm. Eng. 2003, 23, 473–479. [Google Scholar] [CrossRef]
- Bojic, M.; Yik, F.; Leung, W. Thermal insulation on cooling spaces in high rise residential buildings in Hong Kong. Energy Convers. Manag. 2002, 43, 165–183. [Google Scholar] [CrossRef]
- Bojic, M.; Yik, F.; Sat, P. Influence of thermal insulation position in building envelope on the space cooling of high-rise residential buildings in Hong Kong. Energy Build. 2001, 33, 569–581. [Google Scholar] [CrossRef]
- Ecolight. Catálogo de productos. México, 2016. Available online: http://goo.gl/SAbclU (accessed on 11 September 2016).
- OSRAM. Lumilux T8. 2016. Available online: http://goo.gl/zxa0pE (accessed on 11 September 2016).
- Schneider Electric. Guía de Diseño de Instalaciones Eléctricas; Capítulo M; Schneider Electric: Rueil-Malmaison, France, 2008. [Google Scholar]
- Aldecoa, J. Desarrollan Sistema de Refrigeración Solar. CONACYT-Agencia Informativa. 2016. Available online: http://www.conacytprensa.mx/ (accessed on 17 September 2018).
- Siem, G.; Griffin, M.E.S. Auditoría Energética de una Edificación Universitaria Patrimonial. Caso de Estudio: Facultad de Arquitectura y Urbanismo de la Universidad Central de Venezuela; Ambiente y Sostenibilidad; Trienal de Investigación, Facultad de Arquitectura y Urbanismo, Universidad Central de Venezuela; Universidad Central de Venezuela: Caracas, Venezuela, 2017. [Google Scholar]
- Svenfelt, Å.; Engström, R.; Svane, Ö. Decreasing energy use in buildings by 50% by 2050—A backcasting study using stakeholder groups. Technol. Forecast. Soc. Chang. 2011, 78, 785–796. [Google Scholar] [CrossRef]
Weather Conditions | J | F | M | A | M | J | J | A | S | O | N | D |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Maximum temperature (°C) | 29.1 | 30.8 | 33.3 | 34.8 | 34.1 | 31.6 | 30.3 | 30.1 | 29.5 | 29.7 | 29.7 | 28.9 |
Minimum temperature (°C) | 12.1 | 13.1 | 15.2 | 16.9 | 17.8 | 17.6 | 16.7 | 16.4 | 16.5 | 15.2 | 13.4 | 12.2 |
Average temperature (°C) | 20.6 | 21.9 | 24.2 | 25.8 | 25.9 | 24.6 | 23.5 | 23.2 | 23 | 22.4 | 21.5 | 20.5 |
Precipitation (mm) | 14 | 4 | 4 | 12 | 61 | 198 | 169 | 177 | 185 | 73 | 18 | 5 |
Categories | Daily Energy (kWh) | Weekly Energy (kWh) | Installed Demand (kW) |
---|---|---|---|
Air conditioners | 839.20 | 4884.04 | 240.67 |
Pumps | 60.03 | 327.51 | 17.29 |
Computers | 688.28 | 3758.93 | 107.91 |
Chillers (water) | 187.26 | 1007.59 | 18.51 |
Laboratory equipment | 694.99 | 1929.09 | 116.46 |
Miscellaneous | 398.90 | 2336.45 | 64.55 |
Workshop | 23.68 | 71.03 | 23.68 |
Fans | 11.23 | 52.40 | 2.94 |
Lighting | 851.94 | 4202.60 | 117.17 |
Buildings of REI-UNAM | Surface ECI (kWh/Constructed Area (m2)) | Personal ECI (kWh/Building User) |
---|---|---|
Administration | 71.87 | 47.23 |
Library | 280.42 | 470.71 |
Cafeteria | 136.45 | 52.53 |
Courts | 11.63 | 58.18 |
Filters test house | 1.06 | 2.82 |
Vigilance stand | 652.55 | 469.83 |
CEMIE | 118.25 | 170.72 |
Cubicles A | 77.82 | 60.45 |
Cubicles B | 61.26 | 52.21 |
Cubicles C | 54.47 | 47.66 |
Cubicles D | 71.00 | 63.14 |
Cubicles E | 172.31 | 161.54 |
Management office | 114.05 | 184.23 |
Building 3.1 | 1697.43 | 112.19 |
Outsides | 0.39 | 1205.73 |
Solar oven | 9.79 | 58.75 |
Lab. Photovoltaic I | 752.73 | 376.36 |
Lab. Photovoltaic II | 542.88 | 232.66 |
Lab. Hydrogen | 64.56 | 69.94 |
Lab. Instrumentation | 4424.41 | 557.48 |
Lab. Nanostructures | 52.83 | 66.04 |
Lab. Metallic oxides | 28.47 | 21.35 |
Lab. Plasma | 22.80 | 20.90 |
Lab. Chemical I | 51.79 | 274.47 |
Lab. Refrigeration and heat pump | 83.53 | 71.60 |
Lab. Pyrolytic dew | 74.65 | 74.65 |
Lab. Sputtering | 622.72 | 259.47 |
Lab. Thermoscience | 941.60 | 1279.64 |
Lab. LIER | 8.17 | 26.95 |
Lobby | 46.84 | 312.27 |
Pilot plant | 1082.61 | 582.94 |
Solar platform | 7.83 | 262.07 |
Postgrad | 348.98 | 23.06 |
STUNAM | 89.93 | 214.03 |
Garage | 20.70 | 117.26 |
Tonatiuh | 4.37 | 9.91 |
AVERAGE | 560.93 | 224.19 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Galvez, O.; Morales, M.; Seefoó, C.; Morillón, D.; Valdés, H. Energy Diagnosis of University Buildings: Renewable Energy Institute from UNAM. Buildings 2018, 8, 136. https://doi.org/10.3390/buildings8100136
González-Galvez O, Morales M, Seefoó C, Morillón D, Valdés H. Energy Diagnosis of University Buildings: Renewable Energy Institute from UNAM. Buildings. 2018; 8(10):136. https://doi.org/10.3390/buildings8100136
Chicago/Turabian StyleGonzález-Galvez, Oscar, Miguel Morales, Carla Seefoó, David Morillón, and Hugo Valdés. 2018. "Energy Diagnosis of University Buildings: Renewable Energy Institute from UNAM" Buildings 8, no. 10: 136. https://doi.org/10.3390/buildings8100136
APA StyleGonzález-Galvez, O., Morales, M., Seefoó, C., Morillón, D., & Valdés, H. (2018). Energy Diagnosis of University Buildings: Renewable Energy Institute from UNAM. Buildings, 8(10), 136. https://doi.org/10.3390/buildings8100136