The impact of Engineering, Procurement and Construction (EPC) Phases on Project Performance: A Case of Large-scale Residential Construction Project
Abstract
:1. Introduction
2. Literature Review
2.1. Management Practices in Construction Project Triangle Success
2.2. Factors Affecting Construction Project Triangle Success
2.3. Factors Affecting EPC Project Success
- Although several studies have highlighted the causes and effects of poor performance in the construction industry, only a limited number of them have focused on Iran’s construction industry, especially for residential buildings.
- Identification, prioritization, and interaction of factors causing poor construction performance with regard to engineering, procurement, and construction (EPC) in constructing residential buildings in Iran has been far from the researcher’s attention.
- There is a significant need for up-to-date data.
3. Theoretical Framework
4. Materials and Methods
4.1. Step 1: Identify Factors
4.2. Step 2: Collect Data and Evaluate EPC Contractors
4.3. Step 3: Develop a Group Decision-Making Model and Data Analysis
5. Results
6. Discussions
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mahmood, A.; Asghar, F.; Naoreen, B. “Success factors on research projects at university” an exploratory study. Procedia-Soc. Behav. Sci. 2014, 116, 2779–2783. [Google Scholar] [CrossRef]
- Martens, M.L.; Carvalho, M.M. Key factors of sustainability in project management context: A survey exploring the project managers’ perspective. Int. J. Proj. Manag. 2017, 35, 1084–1102. [Google Scholar] [CrossRef]
- Joslin, R.; Müller, R. The relationship between project governance and project success. Int. J. Proj. Manag. 2016, 34, 613–626. [Google Scholar] [CrossRef]
- Larson, E.W.; Gray, C.F. A Guide to the Project Management Body of Knowledge: Pmbok (®) Guide; Project Management Institute: Newtown Square, PA, USA, 2015. [Google Scholar]
- Kenny, C. Construction, Corruption and Developing Countries. Policy; Research Working Paper, No. WPS 4271; World Bank: Washington, DC, USA, 2007. [Google Scholar]
- Lopes, J.; Oliveira, R.; Abreu, M.I.J.P.E. The sustainability of the construction industry in sub-saharan africa: Some new evidence from recent data. Procedia Eng. 2017, 172, 657–664. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Vainiūnas, P.; Turskis, Z.; Tamošaitienė, J. Multiple criteria decision support system for assessment of projects managers in construction. Int. J. Inf. Technol. Decis. Mak. 2012, 11, 501–520. [Google Scholar] [CrossRef]
- Olanrewaju, A.L.; Abdul-Aziz, A.-R. Building maintenance processes, principles, procedures, practices and strategies; Springer: Singapore, 2015; Building Maintenance Processes and Practices; pp. 79–129. [Google Scholar] [CrossRef]
- Hussin, J.M.; Rahman, I.A.; Memon, A.H. The way forward in sustainable construction: Issues and challenges. Int. J. Adv. Appl. Sci. 2013, 2, 15–24. [Google Scholar] [CrossRef]
- Zavadskas, E.K.; Vilutienė, T.; Turskis, Z.; Šaparauskas, J. Multi-criteria analysis of projects’ performance in construction. Arch. Civ. Mech. Eng. 2014, 14, 114–121. [Google Scholar] [CrossRef]
- Neyestani, B.; Juanzon, J.B.P. Developing an Appropriate Performance Measurement Framework for Total Quality Management in Construction, and Other Industries; University Library of Munich: Munich, Germany, 2016. [Google Scholar]
- Oakland, J.; Marosszeky, M. Total Construction Management: Lean Quality in Construction Project Delivery; Routledge: Abington, UK, 2017. [Google Scholar]
- Babalola, O.; Ibem, E.O.; Ezema, I.C. Implementation of lean practices in the construction industry: A systematic review. Build. Environ. 2018, 148, 34–43. [Google Scholar] [CrossRef]
- Peljhan, D.; Marc, M. Total quality management and performance management systems: Team players or lonely riders? Total Qual. Manag. Bus. Excell. 2018, 29, 920–940. [Google Scholar] [CrossRef]
- Akinade, O.O.; Oyedele, L.O.; Ajayi, S.O.; Bilal, M.; Alaka, H.A.; Owolabi, H.A.; Bello, S.A.; Jaiyeoba, B.E.; Kadiri, K.O. Design for deconstruction (dfd): Critical success factors for diverting end-of-life waste from landfills. Waste Manag. 2017, 60, 3–13. [Google Scholar] [CrossRef]
- Gudienė, N.; Banaitis, A.; Podvezko, V.; Banaitienė, N. Identification and evaluation of the critical success factors for construction projects in lithuania: Ahp approach. J. Civ. Eng. Manag. 2014, 20, 350–359. [Google Scholar] [CrossRef]
- Lin, G.; Shen, G.Q.; Sun, M.; Kelly, J. Identification of key performance indicators for measuring the performance of value management studies in construction. J. Construct. Eng. Manag. 2011, 137, 698–706. [Google Scholar] [CrossRef]
- Maghsoodi, A.I.; Khalilzadeh, M. Identification and evaluation of construction projects’ critical success factors employing fuzzy-topsis approach. KSCE J. Civ. Eng. 2018, 22, 1593–1605. [Google Scholar] [CrossRef]
- Tripathi, K.; Jha, K. An empirical study on performance measurement factors for construction organizations. KSCE J. Civ. Eng. 2018, 22, 1–15. [Google Scholar] [CrossRef]
- Love, P.E.D.; Teo, P.; Morrison, J.; Grove, M. Quality and safety in construction: Creating a no-harm environment. J. Construct. Eng. Manag. 2016, 142, 05016006. [Google Scholar] [CrossRef]
- Ramlee, N.; Tammy, N.J.; Raja Mohd Noor, R.N.H.; Ainun Musir, A.; Abdul Karim, N.; Chan, H.B.; Mohd Nasir, S.R. Critical success factors for construction project. In AIP Conference Proceedings; AIP Publishing: Penang, Malaysia, 2016. [Google Scholar]
- Sibiya, M.; Aigbavboa, C.; Thwala, W. Construction projects’ key performance indicators: A case of the South African construction industry. In Proceedings of the 2015 International Conference on Construction and Real Estate Management, Lulea, Sweden, 11–12 August 2015; pp. 954–960. [Google Scholar]
- Haslinda, A.N.; Xian, T.W.; Norfarahayu, K.; Hanafi, R.M.; Fikri, H.M. Investigation on the Factors Influencing Construction Time and Cost Overrun for High-Rise Building Projects in Penang. J. Phys. Conf. Ser. 2018, 995, 012043. [Google Scholar] [CrossRef]
- Tommelein, I.D. Journey toward lean construction: Pursuing a paradigm shift in the aec industry. J. Construct. Eng. Manag. 2015, 141, 04015005. [Google Scholar] [CrossRef]
- Dave, B.; Kubler, S.; Främling, K.; Koskela, L. Opportunities for enhanced lean construction management using internet of things standards. Autom. Construct. 2016, 61, 86–97. [Google Scholar] [CrossRef]
- Shabehpour, N. An Investigation of the Implementation of Lean Philosophy within a Specialty Trade. Master’s Thesis, University of British Columbia, Vancouver, BC, Canada, 2016. [Google Scholar]
- Chiarini, A.; Baccarani, C.; Mascherpa, V. Lean production, Toyota production system and kaizen philosophy: A conceptual analysis from the perspective of zen buddhism. TQM J. 2018, 30, 425–438. [Google Scholar] [CrossRef]
- Forbes, L.H.; Ahmed, S.M. Modern Construction: Lean Project Delivery and Integrated Practices; Crc Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Goetsch, D.L.; Davis, S.B. Quality Management for Organizational Excellence; Pearson: Upper Saddle River, NJ, USA, 2014. [Google Scholar]
- Hanseth, O.; Lyytinen, K. Design theory for dynamic complexity in information infrastructures: The case of building internet. In Enacting Research Methods in Information Systems; Springer: Berlin/Heidelberg, Germany, 2016; pp. 104–142. [Google Scholar]
- Bonham, D.R.; Goodrum, P.M.; Littlejohn, R.; Albattah, M.A. Application of data mining techniques to quantify the relative influence of design and installation characteristics on labor productivity. J. Construct. Eng. Manag. 2017, 143, 04017052. [Google Scholar] [CrossRef]
- Bianchi, C.; Cosenz, F.; Marinković, M. Designing dynamic performance management systems to foster sme competitiveness according to a sustainable development perspective: Empirical evidences from a case-study. Int. J. Bus. Perform. Manag. 2015, 16, 84–108. [Google Scholar] [CrossRef]
- Ogunde, A.; Joshua, O.; Amusan, L.M.; Akuete, E. Project management a panacea to improving the performance of construction project. Int. J. Civ. Eng. Technol. 2017, 8, 1234–1242. [Google Scholar]
- Sears, S.K.; Sears, G.A.; Clough, R.H.; Rounds, J.L.; Segner, R.O. Construction Project Management; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Albliwi, S.A.; Antony, J.; Arshed, N.; Ghadge, A. Implementation of lean six sigma in Saudi Arabian organisations: Findings from a survey. Int. J. Qual. Reliab. Manag. 2017, 34, 508–529. [Google Scholar] [CrossRef]
- Mir, F.A.; Pinnington, A.H. Exploring the value of project management: Linking project management performance and project success. Int. J. Proj. Manag. 2014, 32, 202–217. [Google Scholar] [CrossRef]
- González, P.; González, V.; Molenaar, K.; Orozco, F. Analysis of causes of delay and time performance in construction projects. J. Construct. Eng. Manag. 2013, 140, 04013027. [Google Scholar] [CrossRef]
- Ahmad Zaini, A.; Adnan, H.; Che Haron, R. Contractors’ Approaches to Risk Management at the Construction Phase in Malaysia. In Proceedings of the International Conference on Construction Project Management (ICCPM), Chengdu, China, 1 December 2010. [Google Scholar]
- Chou, J.-S.; Irawan, N.; Pham, A.-D. Project management knowledge of construction professionals: Cross-country study of effects on project success. J. Construct. Eng. Manag. 2013, 139, 04013015. [Google Scholar] [CrossRef]
- Demirkesen, S.; Ozorhon, B. Impact of integration management on construction project management performance. Int. J. Proj. Manag. 2017, 35, 1639–1654. [Google Scholar] [CrossRef]
- Meng, X. The effect of relationship management on project performance in construction. Int. J. Proj. Manag. 2012, 30, 188–198. [Google Scholar] [CrossRef]
- Ngacho, C.; Das, D. A performance evaluation framework of development projects: An empirical study of constituency development fund (cdf) construction projects in Kenya. Int. J. Proj. Manag. 2014, 32, 492–507. [Google Scholar] [CrossRef]
- Lo, T.Y.; Fung, I.W.; Tung, K.C. Construction delays in Hong Kong civil engineering projects. J. Construct. Eng. Manag. 2006, 132, 636–649. [Google Scholar] [CrossRef]
- Zeng, S.; Ma, H.; Lin, H.; Zeng, R.; Tam, V.W. Social responsibility of major infrastructure projects in china. Int. J. Proj. Manag. 2015, 33, 537–548. [Google Scholar] [CrossRef]
- Davis, K. A method to measure success dimensions relating to individual stakeholder groups. Int. J. Proj. Manag. 2016, 34, 480–493. [Google Scholar] [CrossRef]
- Oppong, G.D.; Chan, A.P.; Dansoh, A. A review of stakeholder management performance attributes in construction projects. Int. J. Proj. Manag. 2017, 35, 1037–1051. [Google Scholar] [CrossRef]
- Ogunlana, S.O. Beyond the ‘iron triangle’: Stakeholder perception of key performance indicators (kpis) for large-scale public sector development projects. Int. J. Proj. Manag. 2010, 28, 228–236. [Google Scholar]
- Arditi, D.; Nayak, S.; Damci, A. Effect of organizational culture on delay in construction. Int. J. Proj. Manag. 2017, 35, 136–147. [Google Scholar] [CrossRef]
- Cheng, Y.-M. An exploration into cost-influencing factors on construction projects. Int. J. Proj. Manag. 2014, 32, 850–860. [Google Scholar] [CrossRef]
- Olawale, Y.A.; Sun, M. Cost and time control of construction projects: Inhibiting factors and mitigating measures in practice. Construct. Manag. Econ. 2010, 28, 509–526. [Google Scholar] [CrossRef]
- Mubarak, S.A. Construction Project Scheduling and Control; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Kerzner, H.; Kerzner, H.R. Project Management: A Systems Approach to Planning, Scheduling, and Controlling; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Tonchia, S. Industrial Project Management; Springer: Berlin, Germany, 2018; Available online: https://link.springer.com/book/10.1007%2F978-3-662-56328-1#authorsandaffiliationsbook (accessed on 30 December 2018).
- Nicholas, J.M.; Steyn, H. Project Management for Engineering, Business and Technology; Routledge: Abington, UK, 2017. [Google Scholar]
- Zareei, S. Project scheduling for constructing biogas plant using critical path method. Renew. Sustain. Energy Rev. 2018, 81, 756–759. [Google Scholar] [CrossRef]
- Darvik, L.; Larsson, J. The Impact of Material Delivery-Deviations on Costs and Performance in Construction Projects. Master’s Thesis, Chalmers University of Technology, Göteborg, Sweden, 2010. [Google Scholar]
- Jollands, S.; Akroyd, C.; Sawabe, N. Core values as a management control in the construction of “sustainable development”. Qual. Res. Account. Manag. 2015, 12, 127–152. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Lin, P.; Qiang, M.; Fan, Q. A labor consumption measurement system based on real-time tracking technology for dam construction site. Autom. Construct. 2015, 52, 1–15. [Google Scholar] [CrossRef]
- Gamil, Y.; Rahman, I.A. Identification of causes and effects of poor communication in construction industry: A theoretical review. Emerg. Sci. J. 2018, 1. [Google Scholar] [CrossRef]
- Subramani, T.; Sruthi, P.; Kavitha, M. Causes of cost overrun in construction. IOSR J. Eng. 2014, 4, 1–7. [Google Scholar] [CrossRef]
- Enshassi, A.; Arain, F.; Al-Raee, S. Causes of variation orders in construction projects in the gaza strip. J. Civ. Eng. Manag. 2010, 16, 540–551. [Google Scholar] [CrossRef]
- Fallahnejad, M.H. Delay causes in iran gas pipeline projects. Int. J. Proj. Manag. 2013, 31, 136–146. [Google Scholar] [CrossRef]
- Kazaz, A.; Ulubeyli, S.; Tuncbilekli, N.A. Causes of delays in construction projects in turkey. J. Civ. Eng. Manag. 2012, 18, 426–435. [Google Scholar] [CrossRef]
- Gunduz, M.; Nielsen, Y.; Ozdemir, M. Fuzzy assessment model to estimate the probability of delay in turkish construction projects. J. Manag. Eng. 2013, 31, 04014055. [Google Scholar] [CrossRef]
- Gündüz, M.; Nielsen, Y.; Özdemir, M. Quantification of delay factors using the relative importance index method for construction projects in turkey. J. Manag. Eng. 2012, 29, 133–139. [Google Scholar] [CrossRef]
- Keane, P.J.; Caletka, A.F. Delay Analysis in Construction Contracts; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Naoum, S.G.; Alyousif, A.-R.T.; Atkinson, A.R. Impact of national culture on the management practices of construction projects in the united arab emirates. J. Manag. Eng. 2013, 31, 04014057. [Google Scholar] [CrossRef]
- Zou, P.X.; Zhang, G. Managing risks in construction projects: Life cycle and stakeholder perspectives. Int. J. Construct. Manag. 2009, 9, 61–77. [Google Scholar] [CrossRef]
- Aziz, R.F.; Abdel-Hakam, A.A. Exploring delay causes of road construction projects in egypt. Alex. Eng. J. 2016, 55, 1515–1539. [Google Scholar] [CrossRef]
- Jarkas, A.M.; Haupt, T.C. Major construction risk factors considered by general contractors in qatar. J. Eng. Des. Technol. 2015, 13, 165–194. [Google Scholar] [CrossRef]
- Oshodi Olalekan, S.; Rimaka, I. A comparative study on causes and effects of delay in nigerian and iranian construction projects. Asian J. Bus. Manag. Sci. 2013, 3, 29–36. [Google Scholar]
- Minaie, H. Identifying Success Factor in Mass Buildings Construction; Tehran University: Tehran, Iran, 2013. [Google Scholar]
- Shokouhinia, M. Analysis of Success Factor in Aria-Petro-Gas Company; Tehran University: Tehran, Iran, 2010. [Google Scholar]
- Piran, M. Identifying Success Factor in Oil and Gas Project; Tehran University: Tehran, Iran, 2010. [Google Scholar]
- Abolhasani, A. Assessment of Success Factor in Construction Project; Tehran University: Tehran, Iran, 2012. [Google Scholar]
- Dalirpour, A. Analysis of Success Factor on the Project-Based Organization; Tehran University: Tehran, Iran, 2012. [Google Scholar]
- Doulabi, R.Z.; Asnaashari, E. Identifying success factors of healthcare facility construction projects in Iran. Proc. Eng. 2016, 164, 409–415. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Hadikusumo, B. Impacts of human resource development on engineering, procurement, and construction project success. Built Environ. Proj. Asset Manag. 2017, 7, 73–85. [Google Scholar] [CrossRef]
- Habibi, M.; Kermanshachi, S.; Safapour, E. Engineering, procurement and construction cost and schedule performance leading indicators: State-of-the-art review. In Proceedings of the Construction Research Congress, ASCE, New Orleans, LA, USA, 2–4 April 2018. [Google Scholar]
- Pal, R.; Wang, P.; Liang, X. The critical factors in managing relationships in international engineering, procurement, and construction (iepc) projects of chinese organizations. Int. J. Proj. Manag. 2017, 35, 1225–1237. [Google Scholar] [CrossRef]
- Jahantigh, F.F.; Malmir, B.; Avilaq, B.A. Engineering, S. Economic risk assessment of epc projects using fuzzy topsis approach. Int. J. Ind. Syst. Eng. 2017, 27, 161–179. [Google Scholar]
- Jang, W.; Hong, H.-U.; Han, S.H.; Baek, S.W. Optimal supply vendor selection model for lng plant projects using fuzzy-topsis theory. J. Manag. Eng. 2016, 33, 04016035. [Google Scholar] [CrossRef]
- Abbaspour, M.; Toutounchian, S.; Dana, T.; Abedi, Z.; Toutounchian, S. Environmental parametric cost model in oil and gas epc contracts. Sustainability 2018, 10, 195. [Google Scholar] [CrossRef]
- Safa, M.; Shahi, A.; Haas, C.T.; Hipel, K.W. Supplier selection process in an integrated construction materials management model. Autom. Construct. 2014, 48, 64–73. [Google Scholar] [CrossRef]
- Jato-Espino, D.; Castillo-Lopez, E.; Rodriguez-Hernandez, J.; Canteras-Jordana, J.C. A review of application of multi-criteria decision making methods in construction. Autom. Construct. 2014, 45, 151–162. [Google Scholar] [CrossRef] [Green Version]
- Zavadskas, E.K.; Turskis, Z.; Kildienė, S. State of art surveys of overviews on mcdm/madm methods. Technol. Econ. Dev. Econ. 2014, 20, 165–179. [Google Scholar] [CrossRef]
- Chen, C.-T. Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets Syst. 2000, 114, 1–9. [Google Scholar] [CrossRef]
- Pournader, M.; Tabassi, A.A.; Baloh, P. A three-step design science approach to develop a novel human resource-planning framework in projects: The cases of construction projects in USA, Europe, and Iran. Int. J. Proj. Manag. 2015, 33, 419–434. [Google Scholar] [CrossRef]
- Vahdani, B.; Mousavi, S.M.; Mousakhani, M.; Hashemi, H. Time prediction using a neuro-fuzzy model for projects in the construction industry. J. Optim. Ind. Eng. 2016, 9, 97–103. [Google Scholar]
- Banihashemi, S.; Hosseini, M.R.; Golizadeh, H.; Sankaran, S. Critical success factors (csfs) for integration of sustainability into construction project management practices in developing countries. Int. J. Proj. Manag. 2017, 35, 1103–1119. [Google Scholar] [CrossRef]
- Zarei, B.; Sharifi, H.; Chaghouee, Y. Delay causes analysis in complex construction projects: A semantic network analysis approach. Prod. Plan. Control 2018, 29, 29–40. [Google Scholar] [CrossRef]
- Ghoddousi, P.; Hosseini, M.R. A survey of the factors affecting the productivity of construction projects in Iran. Technol. Econ. Dev. Econ. 2012, 18, 99–116. [Google Scholar] [CrossRef]
- De Carvalho, M.M.; Patah, L.A.; de Souza Bido, D. Project management and its effects on project success: Cross-country and cross-industry comparisons. Int. J. Construct. Manag. 2015, 33, 1509–1522. [Google Scholar] [CrossRef]
- Sha’ar, K.; Assaf, S.; Bambang, T.; Babsail, M.; Fattah, A.A.E. Design–construction interface problems in large building construction projects. Int. J. Construct. Manag. 2017, 17, 238–250. [Google Scholar] [CrossRef]
- Yousefi, V.; Yakhchali, S.H.; Khanzadi, M.; Mehrabanfar, E.; Šaparauskas, J. Proposing a neural network model to predict time and cost claims in construction projects. J. Civ. Eng. Manag. 2016, 22, 967–978. [Google Scholar] [CrossRef]
- AlNasseri, H.; Aulin, R. Assessing understanding of planning and scheduling theory and practice on construction projects. Eng. Manag. J. 2015, 27, 58–72. [Google Scholar] [CrossRef]
Factors | |
---|---|
1. Manageable | 1.1 Flows (Resources and information inadequacy) 1.2 Conversion (Poor planning, poor design, improper implementation and execution, insufficient quality) 1.3 Management (Ineffective control, poor allocation, poor dispensation) |
2. Non-Manageable | 2.1 Failure in external methods 2.2 Environmental issues |
Project Phase | Indicator | EPC Project Performance Attributes | Reference |
---|---|---|---|
Engineering (X1) | X11 | 1. Poor design | [33,38,45,46] |
X12 | 2. Poor project planning | ||
X13 | 3. Poor estimation | ||
X14 | 4. Design incompletion | ||
Procurement (X2) | X21 | 5. Insufficient stakeholder engagement | [56,57,58,62] |
X22 | 6. Dispute | ||
X23 | 7. Reputation loss | ||
X24 | 8. Long-lead item delivery | ||
Construction (X3) | X31 | 9. Poor site supervision | [60,61,63,64,66,67,69] |
X32 | 10. Poor project control | ||
X33 | 11. Changes in project execution | ||
X34 | 12. Late delivery of onsite construction materials (late or on time) | ||
X35 | 13. Poor quality of construction materials | ||
X36 | 14. Redo of deficient tasks | ||
X37 | 15. Inadequate or inefficient equipment or machinery | ||
X38 | 16. Sub-contractor’s poor conditions | ||
X39 | 17. Skilled workforce | ||
X40 | 18. Changes in workforce | ||
X41 | 19. Accidents or incidents | ||
X42 | 20. Excessive bureaucracy | ||
X43 | 21. Inclement weather |
Indicator | ID | EPC Performance Related Indicators | NC | ND | NCD | RANK |
---|---|---|---|---|---|---|
X11 | FR1 | Poor design | 0.82 | 0.75 | 0.79 | 3 |
X12 | FR2 | Poor project planning | 0.91 | 0.92 | 0.92 | 1 |
X13 | FR3 | Poor estimation | 0.41 | 0.32 | 0.37 | 20 |
X14 | FR4 | Design incompletion | 0.54 | 0.42 | 0.48 | 14 |
X21 | FR5 | Insufficient stakeholder engagement | 0.76 | 0.54 | 0.65 | 6 |
X22 | FR6 | Dispute | 0.5 | 0.33 | 0.42 | 15 |
X23 | FR7 | Reputation loss | 0.31 | 0.44 | 0.38 | 18 |
X24 | FR8 | Long-lead item delivery | 0.6 | 0.15 | 0.38 | 18 |
X31 | FR9 | Poor site supervision | 0.34 | 0.75 | 0.55 | 11 |
X32 | FR10 | Poor project control | 0.89 | 0.78 | 0.84 | 2 |
X33 | FR11 | Changes in project execution | 0.37 | 0.45 | 0.41 | 16 |
X34 | FR12 | Late delivery of onsite construction materials | 0.5 | 0.55 | 0.53 | 12 |
X35 | FR13 | Poor quality of construction materials | 0.75 | 0.82 | 0.79 | 3 |
X36 | FR14 | Redo of deficient tasks | 0.46 | 0.52 | 0.49 | 13 |
X37 | FR15 | Inadequate or inefficient equipment or machinery | 0.35 | 0.45 | 0.4 | 17 |
X38 | FR16 | Sub-contractor’s poor conditions | 0.46 | 0.66 | 0.56 | 10 |
X39 | FR17 | Skilled workforce | 0.55 | 0.58 | 0.57 | 9 |
X40 | FR18 | Changes in workforce | 0.79 | 0.35 | 0.57 | 8 |
X41 | FR19 | Accidents or incidents | 0.66 | 0.89 | 0.78 | 5 |
X42 | FR20 | Excessive bureaucracy | 0.55 | 0.69 | 0.62 | 7 |
X43 | FR21 | Inclement weather | 0.48 | 0.24 | 0.36 | 21 |
EPC Phase | NC | ND | NCD | RANK |
---|---|---|---|---|
Engineering | 0.670 | 0.603 | 0.636 | 1 |
Procurement | 0.655 | 0.550 | 0.454 | 3 |
Construction | 0.553 | 0.403 | 0.572 | 2 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kabirifar, K.; Mojtahedi, M. The impact of Engineering, Procurement and Construction (EPC) Phases on Project Performance: A Case of Large-scale Residential Construction Project. Buildings 2019, 9, 15. https://doi.org/10.3390/buildings9010015
Kabirifar K, Mojtahedi M. The impact of Engineering, Procurement and Construction (EPC) Phases on Project Performance: A Case of Large-scale Residential Construction Project. Buildings. 2019; 9(1):15. https://doi.org/10.3390/buildings9010015
Chicago/Turabian StyleKabirifar, Kamyar, and Mohammad Mojtahedi. 2019. "The impact of Engineering, Procurement and Construction (EPC) Phases on Project Performance: A Case of Large-scale Residential Construction Project" Buildings 9, no. 1: 15. https://doi.org/10.3390/buildings9010015
APA StyleKabirifar, K., & Mojtahedi, M. (2019). The impact of Engineering, Procurement and Construction (EPC) Phases on Project Performance: A Case of Large-scale Residential Construction Project. Buildings, 9(1), 15. https://doi.org/10.3390/buildings9010015