Practical Implementation of the Indoor Environmental Quality Model for the Assessment of Nearly Zero Energy Single-Family Building
Abstract
:1. Introduction
2. Materials and Methods
2.1. Objectives and Scope
- Definition of boundary conditions for analysis with measurement strategy, equipment selection, determination of uncertainty;
- Environmental measurements (including air pollution, concentrations of CO2, total volatile organic compounds (TVOC), formaldehyde (HCHO), thermal performance, acoustic measurements and intensity of daylight);
- Conversion of measured physical values to predicted user satisfaction levels based on sensory equations;
- Calculation of the IEQ index value for the entire building (based on sub-component values);
- Discussion of the method and obtained results;
- Comparison of IEQinsex results with other models of building environmental effectiveness (BEE).
2.2. IEQ Model and Sub-Components Used for a Building Assessment
2.3. The Case Study Building—Location, Weather and Technical Data
2.4. Location of Measuring Points
2.5. Equipment and Experimental Tests Methodology
3. Results
4. Discussion of Results
4.1. Evaluation of Results in the Context of Designated Comfort
4.2. Comparison of Results Obtained with the IEQ Model and the BEE Method
5. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Al Horr, Y.; Arif, M.; Katafygiotou, M.; Mazroei, A.; Kaushik, A.; Elsarrag, E. Impact of indoor environmental quality on occupant well-being and comfort: A review of the literature. Int. J. Sustain. Built Environ. 2016, 5, 1–11. [Google Scholar] [CrossRef]
- Heerwagen, J. Green buildings, organizational success and occupant productivity. Build. Res. Inf. 2000, 28, 353–367. [Google Scholar] [CrossRef]
- Al Horr, Y.; Arif, M.; Kaushik, A.; Mazroei, A.; Katafygiotou, M.; Elsarrag, E. Occupant productivity and office indoor environment quality: A review of the literature. Build. Environ. 2016, 105, 369–389. [Google Scholar] [CrossRef] [Green Version]
- Geng, Y.; Ji, W.; Lin, B.; Zhu, Y. The impact of thermal environment on occupant IEQ perception and productivity. Build. Environ. 2017, 121, 158–167. [Google Scholar] [CrossRef]
- Piasecki, M.; Kostyrko, K.; Pykacz, S. Indoor environmental quality assessment: Part 1: Choice of the indoor environmental quality sub-component models. J. Build. Phys. 2017, 41, 264–289. [Google Scholar] [CrossRef]
- Frontczak, M.; Schiavon, S.; Goins, J.; Arens, E.; Zhang, H.; Wargocki, P. Quantitative relationships between occupant satisfaction and satisfaction aspects of indoor environmental quality and building design. Indoor Air 2012, 22, 119–131. [Google Scholar] [CrossRef]
- Lee, Y.S.; Guerin, D.A. Indoor environmental quality related to occupant satisfaction and performance in LEED-certified buildings. Indoor Built Environ. 2009, 18, 293–300. [Google Scholar] [CrossRef]
- Mihai, T.; Iordache, V. Determining the indoor environment quality for an educational building. Energy Procedia 2016, 85, 566–574. [Google Scholar] [CrossRef]
- Ncube, M.; Riffat, S. Developing an indoor environment quality tool for assessment of mechanically ventilated office buildings in the UK—A preliminary study. Build. Environ. 2012, 53, 26–33. [Google Scholar] [CrossRef]
- Sakellaris, I.A.; Saraga, D.; Mandin, C.; Roda, C.; Fossati, S.; De Kluizenaar, Y.; Carrer, P.; Dimitroulopoulou, S.; Mihucz, V.; Szigeti, T.; et al. Perceived indoor environment and occupants’ comfort in European ‘Modern’ office buildings: The OFFICAIR Study. Int. J. Environ. Res. Public Health 2016, 13, 444. [Google Scholar] [CrossRef]
- Sarbu, I.; Sebarchievici, C. Aspects of indoor environmental quality assessment in buildings. Energy Build. 2013, 60, 410–419. [Google Scholar] [CrossRef]
- Nimlyat, P.S. Indoor environmental quality performance and occupants’ satisfaction [IEQPOS] as assessment criteria for green healthcare building rating. Build. Environ. 2018, 144, 598–610. [Google Scholar] [CrossRef]
- Węglarz, A.; Pierzchalski, M. Comparing construction technologies of single family housing with regard of minimizing embodied energy and embodied carbon. E3S Web Conf. 2018, 49, 00126. [Google Scholar] [CrossRef] [Green Version]
- Piasecki, M.; Cisak, M.F.; Biskupski, J.; Furtak, M. Experimental confirmation of the reliability of Fanger’s thermal comfort model—Case study of a near-zero energy building (NZEB) office building. Sustainability 2019, 11, 2461. [Google Scholar] [CrossRef]
- Colclough, S.; Kinnane, O.; Hewitt, N.; Griffiths, P. Investigation of nZEB social housing built to the Passive House standard. Energy Build. 2018. [Google Scholar] [CrossRef]
- Attia, S. Occupants Well-Being and Indoor Environmental Quality. Net Zero Energy Build. 2018. [Google Scholar] [CrossRef]
- Bejan, A.S.; Catalina, T.; Munteanu, A.T. Indoor Environmental Quality Experimental Studies in an Energy-efficient Building. Case study: EFdeN Project. Energy Procedia 2017. [Google Scholar] [CrossRef]
- Ballarini, I.; De Luca, G.; Paragamyan, A.; Pellegrino, A.; Corrado, V. Transformation of an office building into a nearly zero energy building (NZEB): Implications for thermal and visual comfort and energy performance. Energies 2019, 12, 895. [Google Scholar] [CrossRef]
- Kunkel, S.; Kontonasiou, E. Indoor Air Quality, Thermal Comfort and Daylight Policies on the Way to nZEB—Status of Selected MS and Future Policy Recommendations; ECEEE: Brussels, Belgium, 2015. [Google Scholar]
- Ahmed, K.; Kuusk, K.; Heininen, H.; Arumägi, E.; Kalamees, T.; Hasu, T.; Kurnitski, J. Indoor climate and energy performance in nearly zero energy day care centers and school buildings. E3S Web Conf. 2019. [Google Scholar] [CrossRef]
- Fedorczak-Cisak, M.; Furtak, M.; Radziszewska-Zielina, E. Certification of “nearly Zero-Energy Buildings” as a Part of Sustainability; IOP Conference Series: Earth and Environmental Science; IOP Publishing Ltd.: Brno, Czech Republic, 2019. [Google Scholar] [CrossRef]
- Piasecki, M.; Kostyrko, K.B. Indoor environmental quality assessment, part 2: Model reliability analysis. J. Build. Phys. 2018, 5. [Google Scholar] [CrossRef]
- Piasecki, M.; Kozicki, M.; Firląg, S.; Goljan, A.; Kostyrko, K. The approach of including TVOCs concentration in the indoor environmental quality model (IEQ)—Case studies of BREEAM certified office buildings. Sustainability 2018, 10, 3902. [Google Scholar] [CrossRef]
- Zhu, C.; Li, N. Study on indoor air quality evaluation index based on comfort evaluation experiment. Procedia Eng. 2017, 205, 2246–2253. [Google Scholar] [CrossRef]
- AS. AS/NZS 2107:2000 Acoustics—Recommended Design Sound Levels and Reverberation Times for Building Interiors; Joint Australian/New Zealand Standard: Sydney, Australia, 2000. [Google Scholar]
- Hunt, D.R.G. Predicting artificial lighting use—A method based upon observed patterns of behaviour. Lighting Res. Technol. 1980, 12, 7–14. [Google Scholar] [CrossRef]
- Ozarisoy, B.; Altan, H. Low Energy Design Strategies for Retrofitting Existing Residential Buildings in Cyprus. In Proceedings of the Institution of Civil Engineers (ICE); ICE Publishing: London, UK, 2018; Volume 171, pp. 1–15. [Google Scholar] [CrossRef]
- CEN. Ergonomics of the Thermal Environment—Instruments for Measuring Physical Quantities; EN 7726; Comité Européen de Normalisation: Brussels, Belgium, 2002. [Google Scholar]
- CEN. Ergonomics of the Thermal Environment—Analytical Determination and Interpretation of Thermal Comfort Using Calculation of the PMV and PPD Indices and Local Thermal Comfort Criteria; EN 7730; Comité Européen de Normalisation: Brussels, Belgium, 2005. [Google Scholar]
- ISO. ISO 16000-6: 2011 Indoor Air—Part 6: Determination of Volcanic Organic Compounds in Tenax TA Sorbent, Thermal Desorption and Gas Chromatography Using MS or MS/FID; ISO: Geneva, Switzerland, 2011. [Google Scholar]
- ISO. ISO 16000-3: 2011 Indoor Air—Part 3: Determination of Formaldehyde and other Carbonyl Compounds–Active Sampling Method; ISO: Geneva, Switzerland, 2011. [Google Scholar]
- PKN. PN-B-02151-2:2018-01 Akustyka Budowlana—Ochrona Przed Hałasem w Budynkach–Część 2: Wymagania Dotyczące Dopuszczalnego Poziomu Dźwięku w Pomieszczeniach; PKN: Warsaw, Poland, 2018. (In Polish) [Google Scholar]
- Kostyrko, K.B.; Wargocki, P. Pomiary Zapachów i Odczuwalnej Jakości Powietrza w Pomieszczeniach; Monography ITB: Warsaw, Poland, 2012. [Google Scholar]
- Kim, J.; de Dear, R. Thermal comfort expectations and adaptive behavioural characteristics of primary and secondary school students. Build. Environ. 2018, 127, 13–22. [Google Scholar] [CrossRef]
- CASBEE. Available online: http://www.ibec.or.jp/CASBEE/english/ (accessed on 10 August 2019).
- Piasecki, M. Chosen Assessment Criteria of Building Sustainable Development Compliance. Ph.D. Thesis, Building Research Institute ITB, Warsaw, Poland, 2008. (In Polish). [Google Scholar]
- Czarnecki, L. Innovation in construction materials engineering versus sustainable development. Bull. Pol. Acad. Sci. Tech. Sci. 2017, 65, 765–771. [Google Scholar] [CrossRef] [Green Version]
- Kisilewicz, T. On the role of external walls in the reduction of energy demand and the mitigation of human thermal discomfort. Sustainability 2019, 11, 1061. [Google Scholar] [CrossRef]
- Nowoświat, A.; Ślusarek, J.; Żuchowski, R.; Pudełko, B. The impact of noise in the environment on the acoustic assessment of green houses. Int. J. Acoust. Vib. 2018, 23, 392–401. [Google Scholar] [CrossRef]
- Czarnecki, D.L. Van Gemert Civil Engineering–Ongoing Technical Research. Part I. Bull. Pol. Acad. Sci. Tech. Sci. 2016, 64, 661–663. [Google Scholar]
- Orlik-Kożdoń, B.; Nowoświat, A. Modelling and testing of a granular insulating material. J. Build. Phys. 2018. [Google Scholar] [CrossRef]
- Zastawna-Rumin, A.; Nowak, K. Experimental thermal performance analysis of building components containing phase change material (PCM). Procedia Eng. 2015, 108, 428–435. [Google Scholar] [CrossRef]
- Göçer, Ö.; Candido, C.; Thomas, L.; Göçer, K. Differences in Occupants’ Satisfaction and Perceived Productivity in High- and Low-Performance Offices. Buildings 2019, 9, 199. [Google Scholar] [CrossRef]
- Park, J.; Loftness, V.; Aziz, A. Post-Occupancy Evaluation and IEQ Measurements from 64 Office Buildings: Critical Factors and Thresholds for User Satisfaction on Thermal Quality. Buildings 2018, 8, 156. [Google Scholar] [CrossRef]
Month | Dry Bulb Temperature (°C) | Mean Total Precipitation (mm) | Mean No. of Precipitation (Days) | |
---|---|---|---|---|
Daily Max. | Daily Min. | |||
Jan | 8.0 | –20.0 | 28.7 | 17.0 |
Feb | 5.0 | –13.5 | 22.5 | 14.7 |
Mar | 20.0 | –10.0 | 27.9 | 14.7 |
Apr | 20.0 | –4.0 | 31.2 | 12.2 |
May | 28.9 | 0.0 | 54.8 | 12.8 |
Jun | 30.0 | 7.2 | 68.0 | 14.4 |
Jul | 30.1 | 10.0 | 68.4 | 13.0 |
Aug | 30.0 | 8.0 | 69.2 | 13.9 |
Sep | 24.0 | 0.0 | 63.9 | 13.2 |
Oct | 20.0 | –4.0 | 49.3 | 15.0 |
Nov | 12.8 | -3.9 | 46.4 | 17.0 |
Dec | 9.0 | –17.0 | 38.8 | 18.1 |
No | Type | Construction Material | Uc (W/m2K) | Standard (W/m2K) |
---|---|---|---|---|
1 | External walls | Silicate blocs 18cm + rock wool; λ = 0.036, 20 cm | 0.1 | 0.2 |
2 | Roof | Rafter-collar beam system with rock wool λ = 0.030, 20 cm | 0.1 | 0.15 |
3 | Ground floor | Concrete slab reinforced with mesh, waterproofing layer and Styrofoam λ = 0.040, 12 cm | 0.15 | 0.3 |
4 | Windows | Three-pane package | 0.8 | 0.9 |
5 | Roof windows | Three-pane package | 1.0 | 1.1 |
Heat Systems | End Use Energy QK, H (kWh/year) | Primary Energy QP, H (kWh/year) |
---|---|---|
Heat and ventilation (heat pump) | 1378 | 8072 |
Hot water (heat pump) | 1257 | 3969 |
Element | Construction Product | Thickness | Location |
---|---|---|---|
Internal walls living rooms | Cement-lime plaster and eco-acrylic paint | 0.015 m | Rooms, corridor, kitchen |
“Wet” utility rooms | Cement-lime plaster and eco-ceramic tiles | 0.015 m | Bathrooms, WC, garage |
Floors | Semi-dry cement screed with a pipe heat system, insulation mat, exotic wood panels and ceramic tiles (kitchen) | 0.12 m | Rooms |
Ceilings, suspended ceilings | Cement-lime plaster, and eco-acrylic paint, acoustic gypsum cardboard plates, paint | 0.015 m 0.03 m | On the floor slab in the attic (slants) |
Type of Sensor | Range | Scale | Accuracy |
---|---|---|---|
Temperature FHAD46 | –20 °C–50 °C | 0.01 °C | ±0.5 °C |
Humidity FHAD46 | 0–100% | 0.1% | ±1% |
Air speed FVAD15 | 0–10m/s | 0.01 m/s | ±2% |
Radiant temperature FIAD43 | 0–50 °C | 0.01 °C | ±2% |
Carbon dioxide FYAD00 | 0–5000 | 1 ppm | ±0.6% |
Parameter | Real Accuracy (%) | Reference |
---|---|---|
Air temperature ta °C | ±0.5°C ⇒ ±0.08 predicted mean vote indicator (PMV) ⇒ ±0.6% percentage of dissatisfied residents (PD) | ISO 7726 |
Radiant temperature tmr °C | ±2°C ⇒ ±0.28 PMV ⇒ ±3% PD | ISO 7726 |
Relative humidity (RH, %) | ±5 RH ⇒ ±0.07 PMV ⇒ ±0.5% PD | ISO 7726 |
Relative air speed va m/s | ±|0.01+0.01va|m/s ⇒ ±0.03 PMV ⇒ ±0.2% PD | ISO 7726 |
Table errors | ±0.1 PMV ⇒ ±0.73% PD | ISO 7730 |
±SD = (0.36 + 9 + 0.25 + 0.04 + 0.54)0.5 = 3.2% |
Point | IAQquality | TCindex | ACcindex | Lindex | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
cCO2 [ppm] | cTVOC [µg/m3] | cHCHO [µg/m3] | ta [°C] | tmr [°C] | RH [%] | va [m/s] | Iclo [clo] | M [met] | LAeq [dB] | Design [dB] | E [lux] | |
P1 | 451 ± 3 | 127 ± 2 | 10.2 ± 1 | 24.1 ± 0.5 | 23.4 ± 2 | 38.2 ± 1.4 | 0.15 ± 0.05 | 0.7 | 1.1 | 42 ± 3 | 40 | 460 ± 25 |
P2 | 412 ± 3 | 62 ± 2 | 11.4 ± 1 | 23.8 ± 0.5 | 22.9 ± 2 | 38.5 ± 1.4 | 0.14 ± 0.05 | 0.7 | 1.1 | 34 ± 3 | 40 | 325 ± 25 |
P3 | 371 ± 3 | 56 ± 2 | 11.2 ± 1 | 24.5 ± 0.5 | 24.8 ± 2 | 37.7 ± 1.4 | 0.13 ± 0.05 | 0.6 | 1.0 | 28 ± 3 | 30 | 620 ± 25 |
P4 | 383 ± 3 | 78 ± 2 | 10.4 ± 1 | 24.9 ± 0.5 | 24.9 ± 2 | 38.6 ± 1.4 | 0.15 ± 0.05 | 0.6 | 1.0 | 29 ±3 | 30 | 540 ± 25 |
Pavg | 416 ± 3 | 95 ± 2 | 10.3 ± 1 | 24.3 ± 0.5 | 23.8 ± 2 | 38.4 ± 1.4 | 0.14 ± 0.05 | 0.7 | 1.1 | 36 ± 3 | 35 | 480 ± 25 |
Point | IAQCO2 | IAQTVOC | IAQHCHO | IAQindex | TCindex | ACcindex | Lindex | IEQindex |
---|---|---|---|---|---|---|---|---|
[%] | [%] | [%] | [%] | [%] | [%] | [%] | [%] | |
P1 | 97 | 86 | 95 | 92 | 92 | 96 | 96 | 94 |
P2 | 98 | 93 | 95 | 96 | 89 | 100 | 93 | 94 |
P3 | 99 | 93 | 95 | 96 | 88 | 100 | 99 | 96 |
P4 | 99 | 91 | 95 | 95 | 90 | 100 | 98 | 96 |
Component | PD(SIi) Model | Measures | Index (Satisfied) ± SD |
---|---|---|---|
TCindex | PMV (Fanger-ISO 7730) PDTC = f(PMV) Equation (4) | Icl 0.7 clo | 91.0% ± 3.2% |
ta 24.3 °C | |||
tr 23.8 °C | |||
va 0.14 m/s | |||
RH 28.4% | |||
M 1.05 met | |||
ΣIAQindex Sub-indices | PDCO2 = 395·exp(−15.15·CCO2−0.25) | c = 416 ppm | 98.0% ± 0.6% |
PD(VOC) = 405·exp(−11.3·CTVOC−0.25) PDHCHO = 100 − 95·exp(−0.03353·PMV4 − 0.2179·PMV2) | C = 95 μg/m3 c = 0.01 mg/m3 | 89.2% ± 13.8% 95.0% ± 10.7% | |
ΣIAQindex | IAQVOC = 0.9·IAQ(TVOC) + 0.1·IAQ(HCHO) ΣIAQ index = 0.5·IAQ(CO2) + 0.5·IAQ(TVOC) | 90.0% ± 17.3% 93.9% ± 9.1% | |
ACc index | PDACc = 2(ActualSound_Level– DesignSound_Level) Actual (background) sound level Sound level—required by design | 36 dB(A) 35 dB(A) | 99.9% ± 6.7% |
Lindex | PDL = −0.018 + 1.036/{1 + exp(+4.08 (log10(Emin) − 1.82))} | 480 lux | 96.0% ± 9.0% |
IEQindex | IEQindex ± SD = 0.25⋅TCindex + 0.25⋅ΣIAQindex + 0.25⋅ACcindex + 0.25⋅Lindex ± uoverall(IEQ) = [Σ (SDreal(PD(SIi))2+Σ (SDvotePD(SIi))2]1/2 | 95% ± 16% |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piasecki, M. Practical Implementation of the Indoor Environmental Quality Model for the Assessment of Nearly Zero Energy Single-Family Building. Buildings 2019, 9, 214. https://doi.org/10.3390/buildings9100214
Piasecki M. Practical Implementation of the Indoor Environmental Quality Model for the Assessment of Nearly Zero Energy Single-Family Building. Buildings. 2019; 9(10):214. https://doi.org/10.3390/buildings9100214
Chicago/Turabian StylePiasecki, Michał. 2019. "Practical Implementation of the Indoor Environmental Quality Model for the Assessment of Nearly Zero Energy Single-Family Building" Buildings 9, no. 10: 214. https://doi.org/10.3390/buildings9100214
APA StylePiasecki, M. (2019). Practical Implementation of the Indoor Environmental Quality Model for the Assessment of Nearly Zero Energy Single-Family Building. Buildings, 9(10), 214. https://doi.org/10.3390/buildings9100214