Retrofitting of Imperfect Halved Dovetail Carpentry Joints for Increased Seismic Resistance
Abstract
:1. Introduction
2. Experiments
2.1. Test Specimens
2.1.1. Material Characteristics
2.1.2. Geometrical Characteristics
2.2. Joint Retrofitting
2.2.1. Metal Nails around a Wooden Pin
2.2.2. Friction Joints
2.3. Test Arrangement
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Parisi, M.A.; Piazza, M. Seismic behavior and retrofitting of joints in traditional timber roof structures. Soil Dyn. Earthq. Eng. 2002, 22, 1183–1191. [Google Scholar] [CrossRef]
- Parisi, M.A.; Piazza, M. Dynamic modeling of friction joints in traditional timber structures. In Proceedings of the Eurodyn’99 Conference, Prague, Czech Republic, 7–10 June 1999. [Google Scholar]
- Parisi, M.A.; Cordié, C. Mechanical behavior of double-step timber joints. Constr. Build. Mater. 2010, 24, 1364–1371. [Google Scholar] [CrossRef]
- Branco, J.M.; Piazza, M.; Cruz, P.J.S. Experimental evaluation of different strengthening techniques of traditional timber connections. Eng. Struct. 2011, 33, 2259–2270. [Google Scholar] [CrossRef] [Green Version]
- Palma, P.; Garcia, H.; Ferreirac, J.; Appletond, J.; Cruz, H. Behaviour and repair of carpentry connections—rotational behaviour of the rafter and tie beam connection in timber roof Structures. J. Cult. Heritage 2012, 13S, S64–S73. [Google Scholar] [CrossRef]
- Poletti, E.; Vasconcelos, G.; Branco, J.M. Performance evaluation of traditional timber joints under cyclic loading and their influence on the seismic response of timber frame structures. Constr. Build. Mater. 2016, 127, 321–334. [Google Scholar] [CrossRef] [Green Version]
- Drdácký, M.; Wald, F.; Sokol, Z. Sensitivity of Historic Timber Structures to Joint Response. In Proceedings of the 40th Anniversary Congress of IASS Madrid, Madrid, Spain, 20–24 September 1999; Astudillo, R., Madrid, A.J., Eds.; 1999; Volume 2, pp. G1–G10. [Google Scholar]
- Parisi, M.A.; Chesi, C.; Tardini, Ch. Inferring Seismic Behavior from Morphology in Timber Roofs. Int. J. Archit. Heritage 2012, 6, 100–116. [Google Scholar] [CrossRef]
- Parisi, M.A.; Piazza, M. Seismic strengthening and seismic improvement of timber structures. Constr. Build. Mater. 2015, 97, 55–66. [Google Scholar] [CrossRef] [Green Version]
- Giuriani, E.; Marini, A. Wooden roof box structure for the anti-seismic strengthening of historic buildings. Int. J. Archit. Heritage 2008, 2, 226–246. [Google Scholar] [CrossRef]
- Aira, J.R.; Arriaga, G.; Íñiguez-González, G.; Crespo, J. Static and kinetic friction coefficients of Scots pine (Pinus sylvestris L.), parallel and perpendicular to grain direction. Materiales de Construcción 2014, 64, 1–9. [Google Scholar] [CrossRef]
- Available online: http://www.engineershandbook.com/Tables/frictioncoefficients.htm (accessed on 20 December 2018).
- Wald, F.; Mareš, J.; Sokol, Z.; Drdácký, M. Component method for historical timber joints. In The Paramount Role of Joints into the Reliable Response of Structures; NATO Science Series; Baniotopoulos, C.C., Wald, F., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000; pp. 417–424. [Google Scholar]
- Vergne, A. Testing and modelling of load carrying behaviour of timber joints. In Proceedings of the International Conference Control of Semi-Rigid Behaviour of Civil Engineering Structural Connections, Liege, Belgium, 17–19 September 1998; p. 4. [Google Scholar]
- Ceccotti, A. Structural Timber: Characteristics and Testing. Struct. Eng. Int. 1993, 3, 95–98. [Google Scholar] [CrossRef]
- Kasal, B.; Pospíšil, S.; Jirovský, I.; Heiduschke, A.; Drdácký, M.; Haller, P. Seismic performance of laminated timber frames with fiber-reinforced joints. J. Earthq. Eng. Struct. Dyn. 2004, 33, 633–646. [Google Scholar] [CrossRef]
- Stehn, L.; Börjes, K. The influence of nail ductility on the load capacity of a glulam truss structure. Eng. Struct. 2004, 26, 809–816. [Google Scholar] [CrossRef]
- D 6.4 (2010) Experimental Result on Structural Connections. Deliverable 6.4, EC FP7 Collaborative Project NIKER—New Integrated Knowledge Based Approaches to the Protection of Cultural Heritage from Earthquake Induced Risk (Grant Agreement No.: 244123). Available online: www.niker.eu/ (accessed on 20 December 2018).
- Drdácký, M.; Urushadze, S.; Wünsche, M. Retrofitting of imperfect carpentry joints for increased seismic resistance. In SAHC 2012 “Structural Analysis of Historic Constructions”; Jasienko, J., Ed.; Dolnoslaskie Wydawnictwo Edukacyjne: Wroclaw, Poland, 2012; pp. 1485–1492. [Google Scholar]
Mechanical Property | Spruce | Oak | Brake Plate |
---|---|---|---|
Density—ρ (kg/m3) | 340–450 | 700–750 | 1950 |
Compression parallel to grain—R (MPa) | 15.63 | -- | -- |
Compression perpendicular to grain—R (MPa) | 2.09 | -- | -- |
Modulus of elasticity—E (MPa) | -- | 12,000 | -- |
Strength in compression—f (MPa) | -- | -- | 180 |
Coefficient of friction—µ | -- | 0.41 * | 0.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drdácký, M.; Urushadze, S. Retrofitting of Imperfect Halved Dovetail Carpentry Joints for Increased Seismic Resistance. Buildings 2019, 9, 48. https://doi.org/10.3390/buildings9020048
Drdácký M, Urushadze S. Retrofitting of Imperfect Halved Dovetail Carpentry Joints for Increased Seismic Resistance. Buildings. 2019; 9(2):48. https://doi.org/10.3390/buildings9020048
Chicago/Turabian StyleDrdácký, Miloš, and Shota Urushadze. 2019. "Retrofitting of Imperfect Halved Dovetail Carpentry Joints for Increased Seismic Resistance" Buildings 9, no. 2: 48. https://doi.org/10.3390/buildings9020048
APA StyleDrdácký, M., & Urushadze, S. (2019). Retrofitting of Imperfect Halved Dovetail Carpentry Joints for Increased Seismic Resistance. Buildings, 9(2), 48. https://doi.org/10.3390/buildings9020048