Thermal Performance Evaluation of Common Exterior Residential Wall Types in Egypt
Abstract
:1. Introduction
2. Description of Testing Apparatus
2.1. Test Rig
2.2. Experimental Design
- (i)
- Plaster (2.5 cm) + Brick (20 cm) + Extruded polystyrene insulation (5 cm) + Plaster (2.5 cm) + Gypsum Wall Board (GWB) and Paint (1.3 cm) (noted as Wall System 1);
- (ii)
- Plaster (2.5 cm) + Brick (20 cm) + Plaster (2.5 cm) (noted as Wall System 2);
- (iii)
- Plaster (2.5 cm) + Brick (10 cm) + Plaster (2.5 cm) (noted as Wall System 3).
3. Research Framework
4. Uncertainty Analysis
5. Experimental Models and Calculations
- Qh—heat power generated from the heater, W;
- Qf—fan input power, W;
- Qmw—metering box wall heat loss, W;
- Qf—flanking heat loss, W.
- Tenv,h—set point environmental warm side (ID), °C;
- Tenv,c—set point environmental cold side (OD), °C;
- A—specimen metered area, m2.
- T1—area weighted average temperature of the wall hot surface, °C;
- T2—area weighted average temperature of the wall cold surface, °C.
6. Results and Discussion
6.1. Wall System 1
6.2. Wall System 2
6.3. Wall System 3
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- ASTM. C1363-11, Standard Test Method for Thermal Performance of Building Materials and Envelope Assemblies by Means of a Hot Box Apparatus; ASTM International: West Conshohocken, PA, USA, 2011; Available online: http://www.astm.org (accessed on 1 November 2018).
- Mumaw, J. Calibrated hot box: An effective means for measuring thermal conductance in large wall sections. In Heat Transmission Measurements in Thermal Insulations; ASTM International STP 544: Philadelphia, PA, USA, 1974. [Google Scholar]
- Perrine, E.L.; Linehan, P.W.; Howanski, J.W.; Shu, L.S. The Design and Construction of a Calibrated/Guarded Hot Box Facility. In Thermal Performance of the Exterior Envelopes of Buildings; ASHRAE SP28; American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc.: New York, NY, USA, 1981; pp. 299–307. [Google Scholar]
- Achenbach, P.R. Design of a calibrated hot-box for measuring the heat, air, and moisture transfer of composite building walls. In Thermal Performance of the Exterior Envelopes of Buildings; ASHRAE SP28; American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc.: New York, NY, USA, 1981; pp. 308–319. [Google Scholar]
- Miller, R.G.; Goss, W.P. Hot Box Instrumentation, Calibration and Error Estimation—A Survey, in Insulation Materials: Testing and Applications, 2nd ed.; ASTM International: Philadelphia, PA, USA, 1991. [Google Scholar]
- Giovanardi, A.; Baldracchi, P.; Lollini, R. A new test rig for the assessment of building envelope components integrating solar active systems. In Proceedings of the Eurosun-International Conference on Solar Heating, Cooling and Buildings, Graz, Austria, 28 September–1 October 2010. [Google Scholar] [CrossRef]
- Ghazi Wakili, K.; Tanner, C. U-value of a dried wall made of perforated porous clay bricks: Hot box measurement versus numerical analysis. Energy Build. 2003, 35, 675–680. [Google Scholar] [CrossRef]
- Asdrubali, F.; Baldinelli, G. Thermal transmittance measurements with the hot box method: Calibration, experimental procedures, and uncertainty analyses of three different approaches. Energy Build. 2011, 43, 1618–1626. [Google Scholar] [CrossRef]
- Luo, C.; Moghtaderi, B.; Hands, S.; Page, A. Determining the thermal capacitance, conductivity and the convective heat transfer coefficient of a brick wall by annually monitored temperatures and total heat fluxes. Energy Build. 2011, 43, 379–385. [Google Scholar] [CrossRef]
- Martin, K.; Erkorekab, A.; Floresb, I.; Odriozolaa, M.; Sala, J.M. Problems in the calculation of thermal bridges in dynamic conditions. Energy Build. 2011, 43, 529–535. [Google Scholar] [CrossRef]
- Saber, H. Investigation of thermal performance of reflective insulations for different applications. Build. Environ. 2012, 52, 32–44. [Google Scholar] [CrossRef] [Green Version]
- Martin, K.; Campos-Celador, A.; Escudero, C.; Gómez, I.; Sala, J.M. Analysis of a thermal bridge in a guarded hot box testing facility. Energy Build. 2012, 50, 139–149. [Google Scholar] [CrossRef]
- Bales, E.; Bass, L.B. Thermal Performance of the Exterior Envelopes of Buildings: Proceedings; American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.: New York, NY, USA; USDOE Assistant Secretary for Conservation and Solar Energy: Washington, DC, USA; Office of Buildings and Community Systems: Denton, MD, USA, 1981.
- Sala, J.; Urresti, A.; Martín, K.; Flores, I.; Apaolaza, A. Static and dynamic thermal characterization of a hollow brick wall: Tests and numerical analysis. Energy Build. 2008, 40, 1513–1520. [Google Scholar] [CrossRef]
- Vivancos, J.L.; Soto, J.; Perez, I.; Ros-Lis, J.V.; Martínez-Máñez, R. A new model based on experimental results for the thermal characterization of bricks. Build. Environ. 2009, 44, 1047–1052. [Google Scholar] [CrossRef]
- Martin, K.; Flores, I.; Escudero, C.; Apaolaza, A.; Sala, J.M. Methodology for the calculation of response factors through experimental tests and validation with simulation. Energy Build. 2010, 42, 461–467. [Google Scholar] [CrossRef]
- Chen, F.; Wittkopf, S.K. Summer condition thermal transmittance measurement of fenestration systems using calorimetric hot box. Energy Build. 2012, 53, 47–56. [Google Scholar] [CrossRef]
- Ferrari, S.; Zanotto, V. The thermal performance of walls under actual service conditions: Evaluating the results of climatic chamber tests. Constr. Build. Mater. 2013, 43, 309–316. [Google Scholar] [CrossRef]
- Lavine, A.; Rucker, J.; Wilkes, K. Flanking loss calibration for a calibrated hot box. In Thermal Insulation, Materials, and Systems for Energy Conservation in the’80s; ASTM International: Philadelphia, PA, USA, 1983. [Google Scholar]
- Tarabieh, K.; Aboulmagd, A. A Comparative Evaluation for Three Residential Wall Insulation Systems in a Hot-Arid Climate Using Simulation Tools and Experimental Testing; AEI: Oklahoma City, Ok, USA, 2017; pp. 204–224. [Google Scholar] [CrossRef]
- ISO/IEC Guide 98:1995. Guide to the Expression of Uncertainty in Measurement; ISO: Geneva, Switzerland, 1995. [Google Scholar]
Year | Author | Paper Title | Experimental Conditions | Hotbox Standards | Experiment Module | Hotbox Type | ||
---|---|---|---|---|---|---|---|---|
ASTM | EN ISO | Others | ||||||
2013 | Simone Ferrari, Valentina Zanotto | The thermal performance of walls under actual service conditions—evaluating the results of climatic chamber tests | Dynamic State | ASTM C1363 | _ | _ | Wall | Calibrated |
2012 | Martin, Campos-Celador, Escudero, Gómez, Sala | Analysis of a thermal bridge in a guarded hotbox testing facility | Dynamic State Steady State | _ | EN ISO 8990 EN ISO 1946 | _ | Wall (Thermal Bridge) | Guarded |
2011 | Altug, Saygılı, Gökhan, Baykal | A new method for improving the thermal insulation properties of fly ash | Steady State | ASTM C1363 | _ | _ | Wall Material (Fly Ash) | Guarded |
2011 | Asdrubali, Baldinelli | Thermal transmittance measurements with the hotbox method—calibration, experimental procedures, and uncertainty analyses of three different approaches | Steady State | ASTM C1363 ASTM C1199 | EN ISO 8990 EN ISO 12567 | GOST 26602.1 | Fenestration | Calibrated |
2010 | Baldinelli, Bianchi, Libbra, Muscio, Asdrubali | Comparative analysis of different methods to evaluate the thermal conductivity of homogenous materials | Steady State | _ | EN ISO 8990 EN ISO 12567 | _ | Wall (Plywood) | Calibrated |
2009 | Martin, Flores, Escudero, Apaolaza, Sala | Methodology for the calculation of response factors through experimental tests and validation with simulation | Dynamic State Steady State | _ | EN ISO 8990 | _ | Wall (Porous Brick) | Guarded |
2008 | Sala, Urresti, Martin, Flores, Apaolaza | Static and dynamic thermal characterization of a hollow brick wall—tests and numerical analysis | Dynamic State Steady State | ASTM C1363 | _ | _ | Wall (Hollow Brick) | Calibrated |
Output | Measuring Equipment | Full-Range Uncertainty | Assumptions |
---|---|---|---|
Heater Voltage | Multi-meter | 0.35 Volt | 0.5% of full-scale value |
Heater Current | Multi-meter | 0.005 amps | 0.5% of full-scale value |
Fan voltage | Multi-meter | 0.006 amps | 0.5% of full-scale value |
Temperature | Thermocouple | 0.5 °C | -- |
Heater Power (Qh) | Calculated (Equation (2)) | 0.495 Watt | -- |
Fan Power (Qf) | Calculated (Equation (3)) | 0.090 Watt | -- |
Net Heat Flow (Q) | Calculated (Equation (4)) | 0.365 Watt | -- |
Parameter/Test | Test 1 | Test 2 | Test 3 | Test 4 |
---|---|---|---|---|
Tenv,h (Setpoint) (°C) | 40 | 50 | 50 | 32 |
Tenv,c (Setpoint) (°C) | 23 | 23 | 23 | 21 |
Tenv,h (°C) | 40.00 | 49.90 | 50.20 | 32.72 |
Tenv,c (°C) | 23.01 | 22.99 | 22.99 | 21.05 |
T1 (°C) | 36.37 | 42.51 | 44.00 | 29.85 |
T2 (°C) | 23.26 | 23.20 | 23.27 | 21.25 |
ΔT = T1 − T2 (°C) | 13.11 | 19.32 | 20.73 | 8.60 |
Tm (°C) | 29.81 | 32.86 | 33.63 | 25.55 |
Q (W) | 57.14 | 98.86 | 83.61 | 45.10 |
U (W/(m2 K)) | 3.39 | 3.66 | 3.10 | 3.77 |
hh (W/(m2 K)) | 16.40 | 13.21 | 13.94 | 14.34 |
hc (W/(m2 K)) | 232.49 | 477.29 | 301.71 | 220.32 |
C (W/(m2 K)) | 4.3596 | 5.12 | 4.03 | 5.24 |
Ru (m2 K/W) | 0.2947 | 0.27 | 0.32 | 0.27 |
R (m2 K/W) | 0.2294 | 0.20 | 0.25 | 0.19 |
Rh (m2 K/W) | 0.0610 | 0.08 | 0.07 | 0.07 |
Rc (m2 K/W) | 0.0043 | 0.00 | 0.00 | 0.00 |
Parameter/Test | Test 1 | Test 2 | Test 3 | Test 4 |
---|---|---|---|---|
Tenv,h (Setpoint) (°C) | 40 | 33 | 27 | 33 |
Tenv,c (Setpoint) (°C) | 23 | 21 | 19 | 21 |
Tenv,h (°C) | 39.90 | 32.92 | 26.98 | 32.92 |
Tenv,c (°C) | 22.99 | 21.00 | 18.99 | 21.00 |
T1 (°C) | 34.12 | 29.87 | 25.69 | 28.78 |
T2 (°C) | 23.18 | 21.92 | 20.01 | 21.11 |
ΔT = T1 − T2 (°C) | 10.94 | 7.95 | 5.68 | 7.68 |
Tm (°C) | 28.65 | 25.90 | 22.85 | 24.94 |
Q (W) | 72.54 | 46.26 | 17.86 | 58.40 |
U (W/(m2 K)) | 4.25 | 3.85 | 2.23 | 4.87 |
hh (W/(m2 K)) | 12.23 | 14.78 | 13.64 | 13.84 |
hc (W/(m2 K)) | 376.37 | 50.03 | 17.41 | 547.79 |
C (W/(m2 K)) | 6.63 | 5.82 | 3.15 | 7.61 |
Ru (m2 K/W) | 0.24 | 0.26 | 0.45 | 0.21 |
R (m2 K/W) | 0.15 | 0.17 | 0.32 | 0.13 |
Rh (m2 K/W) | 0.08 | 0.07 | 0.07 | 0.07 |
Rc (m2 K/W) | 0.00 | 0.02 | 0.06 | 0.00 |
Parameter/Test | Test 1 | Test 2 |
---|---|---|
Tenv,h (Setpoint) (°C) | 27 | 33 |
Tenv,c (Setpoint) (°C) | 19 | 21 |
Tenv,h (°C) | 26.78 | 32.92 |
Tenv,c (°C) | 19.01 | 20.99 |
T1 (°C) | 23.65 | 26.71 |
T2 (°C) | 19.81 | 21.49 |
ΔT = T1 − T2 (°C) | 3.84 | 5.22 |
Tm (°C) | 21.73 | 24.10 |
Q (W) | 45.10 | 59.29 |
U (W/(m2 K)) | 5.64 | 5.15 |
hh (W/(m2 K)) | 13.46 | 10.25 |
hc (W/(m2 K)) | 56.34 | 119.88 |
C (W/(m2 K)) | 11.73 | 11.35 |
Ru (m2 K/W) | 0.18 | 0.19 |
R (m2 K/W) | 0.09 | 0.09 |
Rh (m2 K/W) | 0.07 | 0.10 |
Rc (m2 K/W) | 0.02 | 0.01 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tarabieh, K.; Aboulmagd, A. Thermal Performance Evaluation of Common Exterior Residential Wall Types in Egypt. Buildings 2019, 9, 95. https://doi.org/10.3390/buildings9040095
Tarabieh K, Aboulmagd A. Thermal Performance Evaluation of Common Exterior Residential Wall Types in Egypt. Buildings. 2019; 9(4):95. https://doi.org/10.3390/buildings9040095
Chicago/Turabian StyleTarabieh, Khaled, and Ahmed Aboulmagd. 2019. "Thermal Performance Evaluation of Common Exterior Residential Wall Types in Egypt" Buildings 9, no. 4: 95. https://doi.org/10.3390/buildings9040095
APA StyleTarabieh, K., & Aboulmagd, A. (2019). Thermal Performance Evaluation of Common Exterior Residential Wall Types in Egypt. Buildings, 9(4), 95. https://doi.org/10.3390/buildings9040095