Fracture Toughness and Fracture Surface Morphology of Concretes Modified with Selected Additives of Pozzolanic Properties
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dantu, P. Etude des Containtes dans les Milieux Hétérogénes, Application au Béton; Annales de L’Institut Technique du Batiment et des Travaux Publics: Paris, France, 1958. [Google Scholar]
- Mandelbrot, B.B. Fractals. Form, Chance and Dimension; Freeman: San Francisco, CA, USA, 1977. [Google Scholar]
- Yan, A.; Wu, K.; Zhang, X. A quantitative study on the surface crack pattern of concrete with high content of steel fiber. Cem. Concr. Res. 2002, 32, 1371–1375. [Google Scholar] [CrossRef]
- Prokopski, G.; Konkol, J. The fractal analysis of the fracture surface of concretes made from different coarse aggregates. Comput. Concr. 2005, 2, 239–248. [Google Scholar] [CrossRef]
- Ficker, T. Fractal strength of cement gels and universal dimension of fracture surfaces. Theor. Appl. Fract. Mech. 2008, 50, 167–171. [Google Scholar] [CrossRef]
- Saouma, V.E.; Barton, C.C. Fractals, fractures and size effects in concrete. J. Eng. Mech. 1994, 120, 835–854. [Google Scholar] [CrossRef]
- Issa, M.A.; Hammad, A.M.; Chudnovsky, A. Correlation between crack tortuosity and fracture toughness in cementitious material. Int. J. Fract. 1993, 60, 97–105. [Google Scholar] [CrossRef]
- Prokopski, G.; Langier, B. Effect of water/cement ratio and silica fume addition on the fracture toughness and morphology of fractured surfaces of gravel concretes. Cem. Concr. Res. 2000, 30, 1427–1433. [Google Scholar] [CrossRef]
- Zhou, X.J.; Gao, B.; Guo, J.G. Study on fractal effect of concrete damage induced by corrosion of reinforced bars subjected to externally applied direct current. In Proceedings of the 26th Conference on Our World in Concrete & Structures, Singapore, 27–28 August 2001; pp. 725–732. [Google Scholar]
- Yan, A.; Wu, K.-R.; Zhang, D.; Yao, W. Effect of fracture path on the fracture energy of high-strength concrete. Cem. Concr. Res. 2001, 31, 1601–1606. [Google Scholar] [CrossRef]
- Issa, M.A.; Issa, M.A.; Islam, M.S.; Chudnovsky, A. Fractal dimension—a measure of fracture roughness and toughness of concrete. Eng. Fract. Mech. 2003, 70, 125–137. [Google Scholar] [CrossRef]
- Zhang, H.; Wei, D.M. Fractal effect and anisotropic constitutive model for concrete. Theor. Appl. Fract. Mech. 2009, 51, 167–173. [Google Scholar] [CrossRef]
- Zhang, H.; Wei, D.M. Estimation of fracture toughness, driving force, and fracture energy for fractal cracks using the method of imaginary smooth crack. Eng. Fract. Mech. 2010, 77, 621–630. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Wei, D.M. Fracture and damage behaviors of concrete in the fractal space. J. Mod. Phys. 2010, 1, 48–58. [Google Scholar] [CrossRef]
- Erdem, S.; Blankson, M.A. Fractal-fracture analysis and characterization of impact-fractured surface in different types of concrete using digital image analysis and 3D nanomap laser profilometery. Constr. Build. Mater. 2013, 40, 70–76. [Google Scholar] [CrossRef]
- Winslow, D.N. The fractal nature of the surface of cement paste. Cem. Concr. Res. 1985, 15, 817–824. [Google Scholar] [CrossRef]
- Brandt, A.M.; Prokopski, G. On the fractal dimension of fracture surfaces of concrete elements. J. Mater. Sci. 1993, 28, 4762–4766. [Google Scholar] [CrossRef]
- Wang, Y.; Diamond, S. A fractal study of the fracture surfaces of cement pastes and mortars using a stereoscopic SEM method. Cem. Concr. Res. 2001, 31, 1385–1392. [Google Scholar] [CrossRef]
- Konkol, J.; Prokopski, G. The necessary number of profile lines for the analysis of concrete fracture surfaces. Struct. Eng. Mech. 2007, 25, 565–576. [Google Scholar] [CrossRef]
- Carpinteri, A.; Spagnoli, A.; Vantadori, S.; Viappiani, D. Influence of the crack morphology on fatigue crack growth rate: A continuously-kinked crack model based on fractals. Eng. Fract. Mech. 2008, 75, 579–589. [Google Scholar] [CrossRef]
- Carpinteri, A.; Spagnoli, A.; Vantadori, S. A multifractal analysis of fatigue crack growth and its application to concrete. Eng. Fract. Mech. 2010, 77, 974–984. [Google Scholar] [CrossRef]
- Konkol, J.; Prokopski, G. The use of fractal geometry for the assessment of the diversification of macro-pores in concrete. Image Anal. Stereol. 2011, 30, 89–100. [Google Scholar] [CrossRef]
- Ficker, T.; Martisek, D. Digital fracture surface and their roughness analysis: Applications to cement based materials. Cem. Concr. Res. 2012, 42, 827–833. [Google Scholar] [CrossRef]
- Ficker, T. Fracture surfaces and compressive strength of hydrated cement pastes. Constr. Build. Mater. 2012, 27, 197–205. [Google Scholar] [CrossRef]
- Stroeven, P. 2-D and 3-D concepts for roughness and tortuosity in cementitious composites. In Brittle Matrix Composites 6; Brandt, A.M., Li, V.C., Marshall, I.H., Eds.; ZTUREK RSI and Woodhead Publ.: Warsaw, Poland, 2000. [Google Scholar]
- Stroeven, P. A stereological approach to roughness of fracture surfaces and tortuosity of transport paths in concrete. Cem. Concr. Compos. 2000, 22, 331–341. [Google Scholar] [CrossRef]
- Czarnecki, L.; Garbacz, A.; Kurach, J. On the characterization on polymer concrete fracture surface. Cem. Concr. Compos. 2001, 23, 399–409. [Google Scholar] [CrossRef]
- Czarnecki, L.; Chmielewska, B. Fracture and fractography of silane modified resin mortars. Int. J. Restor. Build. Monum. 2003, 9, 603–618. [Google Scholar] [CrossRef]
- Konkol, J.; Prokopski, G. Analysis of the fracture surface morphology of concrete by the method of vertical section. Comput. Concr. 2004, 1, 389–400. [Google Scholar] [CrossRef]
- Siewczyńska, M. Method for determining the parameters of surface roughness by usage of a 3 D scanner. Arch. Civ. Mech. Eng. 2012, 12, 83–89. [Google Scholar] [CrossRef]
- Erdem, S.; Dawson, A.R.; Thom, N.H. Impact load-induced micro-structural damage and micro-structure associated mechanical response of concrete made with different surface roughness and porosity aggregates. Cem. Concr. Res. 2012, 42, 291–305. [Google Scholar] [CrossRef]
- Konkol, J.; Prokopski, G. Fracture toughness and fracture surfaces morphology of metakaolinite-modified concrete. Constr. Build. Mater. 2016, 123, 638–648. [Google Scholar] [CrossRef]
- Wild, S.; Khabit, J.M.; Jones, A. Relative strength pozzolanic activity and cement hydration in superplasticised metakaolin concrete. Cem. Concr. Res. 1996, 26, 1537–1544. [Google Scholar] [CrossRef]
- Sabir, B.B.; Wild, S.; Bai, J. Metakaolin and cacined clays as Pozzolans for concrete: A review. Cem. Concr. Compos. 2001, 23, 441–454. [Google Scholar] [CrossRef]
- Wong, H.S.; Razak, H.A. Efficiency of calcined kaolin and silica fume as cement replacement material for strength performance. Cem. Concr. Res. 2005, 35, 696–702. [Google Scholar] [CrossRef] [Green Version]
- Ding, J.T.; Li, Z. Effects of metakaolin and silica fume on properties of concrete. ACI Mater. J. 2002, 99, 393–398. [Google Scholar]
- Razak, H.A.; Wong, H.S. Strength estimation model for high-strength concrete incorporating metakaolin and silica fume. Cem. Concr. Res. 2005, 35, 688–695. [Google Scholar] [CrossRef] [Green Version]
- Poon, C.S.; Kou, S.C.; Lam, L. Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete. Constr. Build. Mater. 2006, 20, 858–865. [Google Scholar] [CrossRef]
- Love, C.A.; Richardson, I.G.; Brough, A.R. Composition and structure of C–S–H in white Portland cement–20% metakaolin pastes hydrated at 25°C. Cem. Concr. Res. 2007, 37, 109–117. [Google Scholar] [CrossRef]
- Siddique, R.; Klaus, J. Influence of metakaolin on the properties of mortar and concrete: A review. Appl. Clay Sci. 2009, 43, 392–400. [Google Scholar] [CrossRef]
- Ramezanianpour, A.A.; Jovein, H.B. Influence of metakaolin as supplementary cementing material on strength and durability of concretes. Constr. Build. Mater. 2012, 30, 470–479. [Google Scholar] [CrossRef]
- Güneyisi, E.; Gesoğlu, M.; Karaoğlu, S.; Mermerdas, K. Strength, permeability and shrinkage cracking of silica fume and metakaolin concretes. Constr. Build. Mater. 2012, 34, 120–130. [Google Scholar] [CrossRef]
- Madandoust, R.; Mousavi, S.Y. Fresh and hardened properties of self-compacting concrete containing metakaolin. Constr. Build. Mater. 2012, 35, 752–760. [Google Scholar] [CrossRef]
- Dvorkin, L.; Bezusyak, A.; Lushnikova, N.; Ribakov, Y. Using mathematical modeling for design of self compacting high strength concrete with metakaolin admixture. Constr. Build. Mater. 2012, 37, 851–864. [Google Scholar] [CrossRef]
- Rashad, A.M. Metakaolin as cementitious material: History, scours, production and composition—A comprehensive overview. Constr. Build. Mater. 2013, 41, 303–318. [Google Scholar] [CrossRef]
- Glinicki, M.A.; Zielinski, M. Air void system in concrete containing circulating fluidized bed combustion fly ash. Mater. Struct. 2008, 41, 681–687. [Google Scholar] [CrossRef]
- Łagosz, A.; Małolepszy, J.; Śliwiński, J.; Tracz, T. Utilization of fly-Ash from Fluidized Bed Boilers as a Mineral Additive for Concretes; Concrete Days: Wisła, Poland, 2008; pp. 553–566. (In Polish) [Google Scholar]
- Śliwiński, J.; Tracz, T. Water permeability of cement concrete with addition of fluidized bed combustion fly ash. In Proceedings of the 5th International Conference on Concrete and Concrete Structures, Žilina, Slovakia, 15–16 October 2009; pp. 69–76. [Google Scholar]
- Czarnecki, L.; Woyciechowski, P. Model of concrete. In Brittle Matrix Composites 9; Brandt, A.M., Olek, J., Marshall, I.H., Eds.; Woodhead Publishing Limited: Warsaw, Poland, 2009; pp. 183–194. [Google Scholar]
- Glinicki, M.A.; Zielinski, M. Frost salt scaling resistance of concrete containing CFBC fly ash. Mater. Struct. 2009, 42, 993–1002. [Google Scholar] [CrossRef]
- Brandt, A.M.; Jóźwiak-Niedźwiedzka, D.; Małolepszy, J.; Marks, M.; Śliwiński, J.; Kasperkiewicz, J. Application of CFBC Ely Ash in Structural Concretes. In Studies in Engineering 72; Brandt, A.M., Ed.; Institute of Fundamental Technological Research Polish Academy of Sciences: Warsaw, Poland, 2010. (In Polish) [Google Scholar]
- Małolepszy, J. Utilization of fluidal-bed combustion ash for building materials production. In Proceedings of the VI Scientific and Technical Conference on Material Issues in Civil Engineering—MATBUD’2011, Cracow, Poland, 20–22 June 2011; pp. 17–48. (In Polish). [Google Scholar]
- Garbacz, A.; Sokołowska, J.J. Concrete-like polymer composites with fly ashes—Comparative study. Constr. Build. Mater. 2013, 38, 689–699. [Google Scholar] [CrossRef]
- Shah, S.P. Determination of fracture parameters (KSIc and CTODc) of plain concrete using three-point bend test. RILEM Draft Recommendations, TC 89-FMT Fracture Mechanics of Concrete Test Methods. Mater. Struct. 1990, 23, 457–460. [Google Scholar] [CrossRef]
- Konkol, J.; Prokopski, G. Fracture surface morphology and fracture toughness of fluidal ash or metakaolinite modified concrete. Sci. J. Rzeszow Univ. Tech. Ser. Build. Environ. Eng. 2011, 58, 321–330. (In Polish) [Google Scholar]
Series no. | Variable | Concrete Mix Composition in kg After the Adopted Plan | ||||||
---|---|---|---|---|---|---|---|---|
w/b | FA/b or MK/b (SF/b)1 | Binder | Cement 1 | FA or MK (SF)1 | Water | Sand | Basalt | |
1 | 0.380 | 0.04 (0.03) | 454 | 435.8 (440.4) | 18.2 (13.6) | 172.5 | 739.3 | 1212.5 |
2 | 0.380 | 0.13 (0.09) | 395.0 (413.1) | 59.0 (40.9) | 172.5 | |||
3 | 0.510 | 0.04 (0.03) | 435.8 (440.4) | 18.2 13.6) | 231.5 | |||
4 | 0.510 | 0.13 (0.09) | 395.0 (413.1) | 59.0 (40.9) | 231.5 | |||
5 | 0.353 | 0.085 (0.06) | 415.4 (426.8) | 38.6 (27.2) | 160.3 | |||
6 | 0.537 | 0.085 (0.06) | 415.4 (426.8) | 38.6 (27.2) | 243.8 | |||
7 | 0.445 | 0.02 (0.02) | 444.3 (446.0) | 9.7 (8.0) | 202.0 | |||
8 | 0.445 | 0.15 (0.10) | 386.5 (407.5) | 67.5 (46.5) | 202.0 | |||
9, 10 | 0.445 | 0.085 (0.06) | 415.4 (426.8) | 38.6 (27.2) | 202.0 |
Series No. | Mechanical Properties of Modified Concrete | |||||
---|---|---|---|---|---|---|
Activated Fluidal Ash (FA) | Metakaolinite (MK) | Silica Fume (SF) | ||||
fc ± Stand. Error MPa | KIcS ± Stand. Error MN/m3/2 | fc ± Stand. Error MPa | KIcS ± Stand. Error MN/m3/2 | fc ± Stand. Error MPa | KIcS ± Stand. Error MN/m3/2 | |
1 | 58.3 ± 1.2 | 1.49 ± 0.03 | 53.7 ± 0.5 | 1.44 ± 0.04 | 54.8 ± 1.1 | 1.25 ± 0.04 |
2 | 61.0 ± 1.1 | 1.58 ± 0.03 | 61.0 ± 1.2 | 1.57 ± 0.02 | 65.3 ± 1.1 | 1.53 ± 0.05 |
3 | 40.0 ± 0.9 | 0.90 ± 0.05 | 40.8 ± 1.2 | 0.94 ± 0.03 | 39.2 ± 0.7 | 0.92 ± 0.02 |
4 | 40.9 ± 0.6 | 1.17 ± 0.03 | 41.3 ± 0.4 | 1.02 ± 0.06 | 40.2 ± 1.3 | 0.97 ± 0.03 |
5 | 63.8 ± 0.4 | 1.47 ± 0.05 | 63.7 ± 0.6 | 1.52 ± 0.03 | 66.1 ± 0.7 | 1.58 ± 0.01 |
6 | 41.5 ± 1.4 | 1.06 ± 0.05 | 37.2 ± 0.8 | 0.97 ± 0.01 | 38.6 ± 0.5 | 0.93 ± 0.03 |
7 | 45.2 ± 0.8 | 1.23 ± 0.04 | 46.7 ± 0.5 | 1.25 ± 0.05 | 46.7 ± 1.0 | 1.24 ± 0.06 |
8 | 47.3 ± 0.9 | 1.34 ± 0.10 | 51.5 ± 0.9 | 1.32 ± 0.02 | 54.8 ± 1.1 | 1.34 ± 0.04 |
9 | 45.5 ± 1.0 | 1.27 ± 0.04 | 47.8 ± 1.0 | 1.25 ± 0.06 | 48.8 ± 0.7 | 1.21 ± 0.03 |
10 | 45.9 ± 1.1 | 1.25 ± 0.12 | 48.0 ± 1.0 | 1.20 ± 0.04 | 49.2 ± 0.5 | 1.22 ± 0.01 |
Series No. | Fractal and Stereological Parameters of Modified Concrete | |||||
---|---|---|---|---|---|---|
Activated Fluidal Ash (FA) | Metakaolinite (MK) | Silica Fume (SF) | ||||
DBC ± Stand. Error - | SVP ± Stand. Error cm2/cm3 | DBC ± Stand. Error - | SVP ± Stand. Error cm2/cm3 | DBC ± Stand. Error - | SVP ± Stand. Error cm2/cm3 | |
1 | 1.047 ± 0.001 | 2.69 ± 0.09 | 1.051 ± 0.001 | 2.36 ± 0.08 | 1.046 ± 0.001 | 2.75 ± 0.08 |
2 | 1.044 ± 0.001 | 2.38 ± 0.11 | 1.045 ± 0.001 | 2.32 ± 0.08 | 1.047 ± 0.001 | 2.56 ± 0.08 |
3 | 1.054 ± 0.001 | 2.35 ± 0.20 | 1.053 ± 0.001 | 1.68 ± 0.08 | 1.051 ± 0.001 | 2.73 ± 0.10 |
4 | 1.050 ± 0.001 | 2.49 ± 0.17 | 1.047 ± 0.001 | 1.97 ± 0.09 | 1.054 ± 0.001 | 2.64 ± 0.07 |
5 | 1.047 ± 0.001 | 2.62 ± 0.12 | 1.045 ± 0.001 | 2.17 ± 0.12 | 1.042 ± 0.001 | 2.49 ± 0.09 |
6 | 1.051 ± 0.001 | 2.09 ± 0.08 | 1.050 ± 0.001 | 1.91 ± 0.10 | 1.052 ± 0.001 | 1.65 ± 0.05 |
7 | 1.050 ± 0.001 | 2.27 ± 0.09 | 1.051 ± 0.001 | 2.48 ± 0.11 | 1.049 ± 0.001 | 2.46 ± 0.09 |
8 | 1.047 ± 0.001 | 2.75 ± 0.10 | 1.047 ± 0.001 | 1.80 ± 0.07 | 1.050 ± 0.001 | 2.46 ± 0.08 |
9 | 1.050 ± 0.001 | 2.59 ± 0.14 | 1.049 ± 0.001 | 2.13 ± 0.09 | 1.048 ± 0.001 | 2.42 ± 0.08 |
10 | 1.047 ± 0.002 | 2.16 ± 0.12 | 1.050 ± 0.001 | 1.95 ± 0.16 | 1.048 ± 0.001 | 2.46 ± 0.17 |
Concrete Type | Equality Test for Average Values | |||
---|---|---|---|---|
in the Case of Compressive Strength fc | in the Case of the Critical Stress Intensity Factor KIcS | |||
The Value of the F Test | Limit Level of Significance of the Test | The Value of the F Test | Limit Level of Significance of the Test | |
no additives | 205.6 | close to 0 | 152.5 | close to 0 |
with MK | 436.3 | close to 0 | 60.2 | close to 0 |
with FA | 176.7 | close to 0 | 21.9 | 0.0003 |
with SF | 388.6 | close to 0 | 66.7 | close to 0 |
Water/binder ratio w/b | The value of the F test | Limit level of significance of the test | The value of the F test | Limit level of significance of the test |
all concretes | ||||
0.353 | 27.1 | close to 0 | 5.21 | 0.0156 |
0.445 | 6.64 | 0.0018 | 0.56 | 0.6486 |
0.537 | 6.57 | 0.0019 | 5.35 | 0.0142 |
only concretes with additives | ||||
0.353 | 5.41 | 0.0127 | 2.51 | 0.1364 |
0.445 | 1.28 | 0.3023 | 0.07 | 0.9328 |
0.537 | 5.11 | 0.0175 | 3.63 | 0.0698 |
N = 30 | Summary Regression of the Dependent Variable KIcS R = 0.960, R2 = 0.922 F (2.27) = 159.68, p < 0.00000, Std. Error Estimation: 0.0625 | |||||
---|---|---|---|---|---|---|
b* | Stand. Error b* | b | Stand. Error b | t(27) | p | |
Absolute term | 20.161 | 6.3245 | 3.188 | 0.0036 | ||
w/b | −0.7854 | 0.0802 | −2.869 | 0.2929 | −9.797 | 0.0000 |
DBC | −0.2202 | 0.0802 | −16.813 | 6.1224 | −2.746 | 0.0106 |
N = 30 | Summary Regression of the Dependent Variable DBC R = 0.811, R2 = 0.657 F (2.27) = 25.870, p < 0.00000, Std. Error Estimation: 0.0017 | |||||
---|---|---|---|---|---|---|
b* | Stand. Error b* | b | Stand. Error b | t(27) | p | |
Absolute term | 1.088 | 0.0063 | 159.25 | 0.0000 | ||
AD/b | −0.3567 | 0.1129 | −0.026 | 0.0082 | −3.161 | 0.0039 |
VPaste | 0.7470 | 0.1129 | 0.123 | 0.0185 | 6.620 | 0.0000 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konkol, J. Fracture Toughness and Fracture Surface Morphology of Concretes Modified with Selected Additives of Pozzolanic Properties. Buildings 2019, 9, 174. https://doi.org/10.3390/buildings9080174
Konkol J. Fracture Toughness and Fracture Surface Morphology of Concretes Modified with Selected Additives of Pozzolanic Properties. Buildings. 2019; 9(8):174. https://doi.org/10.3390/buildings9080174
Chicago/Turabian StyleKonkol, Janusz. 2019. "Fracture Toughness and Fracture Surface Morphology of Concretes Modified with Selected Additives of Pozzolanic Properties" Buildings 9, no. 8: 174. https://doi.org/10.3390/buildings9080174
APA StyleKonkol, J. (2019). Fracture Toughness and Fracture Surface Morphology of Concretes Modified with Selected Additives of Pozzolanic Properties. Buildings, 9(8), 174. https://doi.org/10.3390/buildings9080174