Systemic Inflammatory Index Is a Novel Predictor of Intubation Requirement and Mortality after SARS-CoV-2 Infection
Abstract
:1. Introduction
2. Results
2.1. Patients Characteristics
2.2. Predicting Intubation and Outcome
3. Discussion
4. Material and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Asghari, A.; Naseri, M.; Safari, H.; Saboory, E.; Parsamanesh, N. The Novel Insight of SARS-CoV-2 Molecular Biology and Pathogenesis and Therapeutic Options. DNA Cell Biol. 2020, 39, 1741–1753. [Google Scholar] [CrossRef]
- Karlsen, A.P.H.; Wiberg, S.; Laigaard, J.; Pedersen, C.; Rokamp, K.Z.; Mathiesen, O. A Systematic Review of Trial Registry Entries for Randomized Clinical Trials Investigating COVID-19 Medical Prevention and Treatment. PLoS ONE 2020, 15, e0237903. [Google Scholar] [CrossRef]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. JAMA 2020, 323, 1061–1069. [Google Scholar] [CrossRef]
- Guan, W.; Ni, Z.; Hu, Y.; Liang, W.; Ou, C.; He, J.; Liu, L.; Shan, H.; Lei, C.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef]
- Lucas, C.; Wong, P.; Klein, J.; Castro, T.B.R.; Silva, J.; Sundaram, M.; Ellingson, M.K.; Mao, T.; Oh, J.E.; Israelow, B.; et al. Longitudinal Analyses Reveal Immunological Misfiring in Severe COVID-19. Nature 2020, 584, 463–469. [Google Scholar] [CrossRef]
- Chen, Z.; John Wherry, E. T Cell Responses in Patients with COVID-19. Nat. Rev. Immunol. 2020, 20, 529–536. [Google Scholar] [CrossRef]
- Chowdhury, M.A.; Hossain, N.; Kashem, M.A.; Shahid, M.A.; Alam, A. Immune Response in COVID-19: A Review. J. Infect. Public Health 2020, 13, 1619–1629. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Sun, Y.; Zhang, Q. Prognostic Value of the Systemic Immune-Inflammation Index in Patients with Breast Cancer: A Meta-Analysis. Cancer Cell Int. 2020, 20, 224. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.-H.; Zhai, E.-T.; Yuan, Y.-J.; Wu, K.-M.; Xu, J.-B.; Peng, J.-J.; Chen, C.-Q.; He, Y.-L.; Cai, S.-R. Systemic Immune-Inflammation Index for Predicting Prognosis of Colorectal Cancer. World J. Gastroenterol. 2017, 23, 6261–6272. [Google Scholar] [CrossRef] [PubMed]
- Topkan, E.; Besen, A.A.; Ozdemir, Y.; Kucuk, A.; Mertsoylu, H.; Pehlivan, B.; Selek, U. Prognostic Value of Pretreatment Systemic Immune-Inflammation Index in Glioblastoma Multiforme Patients Undergoing Postneurosurgical Radiotherapy Plus Concurrent and Adjuvant Temozolomide. Mediat. Inflamm 2020, 2020. [Google Scholar] [CrossRef]
- De Moura, D.T.H.; McCarty, T.R.; Ribeiro, I.B.; Funari, M.P.; de Oliveira, P.V.A.G.; de Miranda Neto, A.A.; do Monte Júnior, E.S.; Tustumi, F.; Bernardo, W.M.; de Moura, E.G.H.; et al. Diagnostic Characteristics of Serological-Based COVID-19 Testing: A Systematic Review and Meta-Analysis. Clinics 2020, 75, e2212. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, D.; Motta, A.; Strollo, M.; Banfi, G.; Locatelli, M. Routine Blood Tests as a Potential Diagnostic Tool for COVID-19. Clin. Chem. Lab. Med. 2020, 58, 1095–1099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, X.; Ning, M.; Huang, R.; Jia, B.; Yan, X.; Xiong, Y.; Wu, W.; Liu, J.; Chen, Y.; Wu, C. Surveillance of SARS-CoV-2 Infection among Frontline Health Care Workers in Wuhan during COVID-19 Outbreak. Immun. Inflamm. Dis. 2020, 8, 840–843. [Google Scholar] [CrossRef] [PubMed]
- Harahwa, T.A.; Yau, T.H.L.; Lim-Cooke, M.-S.; Al-Haddi, S.; Zeinah, M.; Harky, A. The Optimal Diagnostic Methods for COVID-19. Diagnosis 2020, 1. [Google Scholar] [CrossRef] [PubMed]
- Grau, C.M.; Bofill, C.B.; Picó-Plana, E.; Comí, G.R.; Terrón-Puig, M.; Paz, N.B.; Mateu, M.S.; Fornés, C.G. Use of Predictive Tools in the Management of COVID-19 Patients: A Key Role of Clinical Laboratories. Adv. Lab. Med. Av. Med. Lab. 2020, 1. [Google Scholar] [CrossRef]
- Mohamed-Hussein, A.; Galal, I.; Mohamed, M.M.A.R.; Elaal, H.A.; Aly, K.M. Is There a Correlation between Pulmonary Inflammation Index with COVID-19 Disease Severity and Outcome? medRxiv 2020. [Google Scholar] [CrossRef]
- Wan, S.; Yi, Q.; Fan, S.; Lv, J.; Zhang, X.; Guo, L.; Lang, C.; Xiao, Q.; Xiao, K.; Yi, Z.; et al. Relationships among Lymphocyte Subsets, Cytokines, and the Pulmonary Inflammation Index in Coronavirus (COVID-19) Infected Patients. Br. J. Haematol. 2020, 189, 428–437. [Google Scholar] [CrossRef]
- Del Valle, D.M.; Kim-Schulze, S.; Huang, H.-H.; Beckmann, N.D.; Nirenberg, S.; Wang, B.; Lavin, Y.; Swartz, T.H.; Madduri, D.; Stock, A.; et al. An Inflammatory Cytokine Signature Predicts COVID-19 Severity and Survival. Nat. Med. 2020, 26, 1636–1643. [Google Scholar] [CrossRef]
- Angioni, R.; Sánchez-Rodríguez, R.; Munari, F.; Bertoldi, N.; Arcidiacono, D.; Cavinato, S.; Marturano, D.; Zaramella, A.; Realdon, S.; Cattelan, A.; et al. Age-Severity Matched Cytokine Profiling Reveals Specific Signatures in Covid-19 Patients. Cell Death Dis. 2020, 11, 957. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Manson, J.J.; Crooks, C.; Naja, M.; Ledlie, A.; Goulden, B.; Liddle, T.; Khan, E.; Mehta, P.; Martin-Gutierrez, L.; Waddington, K.E.; et al. COVID-19-Associated Hyperinflammation and Escalation of Patient Care: A Retrospective Longitudinal Cohort Study. Lancet Rheumatol. 2020, 2, e594–e602. [Google Scholar] [CrossRef]
- Gustine, J.N.; Jones, D. Immunopathology of Hyperinflammation in COVID-19. Am. J. Pathol. 2021, 191, 4–17. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Guo, Y.; Luo, Q.; Huang, Z.; Zhao, R.; Liu, S.; Le, A.; Li, J.; Wan, L. T-Cell Subset Counts in Peripheral Blood Can Be Used as Discriminatory Biomarkers for Diagnosis and Severity Prediction of Coronavirus Disease 2019. J. Infect. Dis. 2020, 222, 198–202. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, L.; Liu, J.; Chen, L.; Zhou, F.; Jin, T.; Jiang, L.; Li, X.; Yang, M.; Wang, H. The Characteristics and Predictive Role of Lymphocyte Subsets in COVID-19 Patients. Int. J. Infect. Dis. 2020, 99, 92–99. [Google Scholar] [CrossRef]
- Deng, Z.; Zhang, M.; Zhu, T.; Zhili, N.; Liu, Z.; Xiang, R.; Zhang, W.; Xu, Y. Dynamic Changes in Peripheral Blood Lymphocyte Subsets in Adult Patients with COVID-19. Int. J. Infect. Dis. 2020, 98, 353–358. [Google Scholar] [CrossRef]
- Calder, P.C. Nutrition, Immunity and COVID-19. BMJ Nutr. Prev. Health 2020, 3. [Google Scholar] [CrossRef]
- Fois, A.G.; Paliogiannis, P.; Scano, V.; Cau, S.; Babudieri, S.; Perra, R.; Ruzzittu, G.; Zinellu, E.; Pirina, P.; Carru, C.; et al. The Systemic Inflammation Index on Admission Predicts In-Hospital Mortality in COVID-19 Patients. Molecules 2020, 25, 5725. [Google Scholar] [CrossRef]
- Feng, Z.; Yu, Q.; Yao, S.; Luo, L.; Zhou, W.; Mao, X.; Li, J.; Duan, J.; Yan, Z.; Yang, M.; et al. Early Prediction of Disease Progression in COVID-19 Pneumonia Patients with Chest CT and Clinical Characteristics. Nat. Commun. 2020, 11, 4968. [Google Scholar] [CrossRef]
- Stallard, N.; Todd, S.; Parashar, D.; Kimani, P.K.; Renfro, L.A. On the Need to Adjust for Multiplicity in Confirmatory Clinical Trials with Master Protocols. Ann. Oncol. 2019, 30, 506–509. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Zhang, H.-T.; Goncalves, J.; Xiao, Y.; Wang, M.; Guo, Y.; Sun, C.; Tang, X.; Jin, L.; Zhang, M.; et al. A Machine Learning-Based Model for Survival Prediction in Patients with Severe COVID-19 Infection. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Morales-Narváez, E.; Dincer, C. The Impact of Biosensing in a Pandemic Outbreak: COVID-19. Biosens. Bioelectron. 2020, 163, 112274. [Google Scholar] [CrossRef] [PubMed]
- Broughton, J.P.; Deng, X.; Yu, G.; Fasching, C.L.; Servellita, V.; Singh, J.; Miao, X.; Streithorst, J.A.; Granados, A.; Sotomayor-Gonzalez, A.; et al. CRISPR–Cas12-Based Detection of SARS-CoV-2. Nat. Biotechnol. 2020, 38, 870–874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mardani, A.; Nakhoda, M.; Noruzi, A.; Shamsi Gooshki, E. Ethical Considerations in the Biomedical Research: Analysis of National Biomedical Research Ethics Guidelines in Iran. J. Med. Ethics Hist. Med. 2019, 12, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
At Admission | At Intubation | |||
---|---|---|---|---|
Lab | Mean | SD | Mean | SD |
Platlets | 187,000 | 89,633 | 178,316 | 97,356 |
WBC | 9076 | 5639 | 9968 | 7134 |
Neutrophils (%) | 75.9 | 12.7 | 83.2 | 8.4 |
Lymphocytes (%) | 18.6 | 11.5 | 15.2 | 27.9 |
Monocytes (%) | 4.33 | 3.91 | 7.5 | 8.3 |
Neutrophils (/µL) | 7941 | 6228 | 10,894 | 6003 |
Lymphocytes (/µL) | 1165 | 629 | 1093 | 673 |
Monocytes (/µL) | 503 | 431 | 1626 | 2377 |
Creatining | 1.76 | 1.63 | 3.82 | 2.34 |
SGOT | 46.1 | 39.5 | 65.8 | 30.8 |
SGPT | 35.2 | 35.3 | ||
Alkaline Phospathase | 212.8 | 232.5 | 278 | 122 |
Bilirubin | 0.90 | 0.43 | 2.21 | 1.00 |
AST | 56.9 | 29.1 | ||
SII | 1,769,543 | 1,610,378 | 2,087,603 | 1,592,935 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muhammad, S.; Fischer, I.; Naderi, S.; Faghih Jouibari, M.; Abdolreza, S.; Karimialavijeh, E.; Aslzadeh, S.; Mashayekhi, M.; Zojaji, M.; Kahlert, U.D.; et al. Systemic Inflammatory Index Is a Novel Predictor of Intubation Requirement and Mortality after SARS-CoV-2 Infection. Pathogens 2021, 10, 58. https://doi.org/10.3390/pathogens10010058
Muhammad S, Fischer I, Naderi S, Faghih Jouibari M, Abdolreza S, Karimialavijeh E, Aslzadeh S, Mashayekhi M, Zojaji M, Kahlert UD, et al. Systemic Inflammatory Index Is a Novel Predictor of Intubation Requirement and Mortality after SARS-CoV-2 Infection. Pathogens. 2021; 10(1):58. https://doi.org/10.3390/pathogens10010058
Chicago/Turabian StyleMuhammad, Sajjad, Igor Fischer, Soheil Naderi, Morteza Faghih Jouibari, Sheikhrezaei Abdolreza, Ehsan Karimialavijeh, Sara Aslzadeh, Mahsa Mashayekhi, Mohaddeseh Zojaji, Ulf Dietrich Kahlert, and et al. 2021. "Systemic Inflammatory Index Is a Novel Predictor of Intubation Requirement and Mortality after SARS-CoV-2 Infection" Pathogens 10, no. 1: 58. https://doi.org/10.3390/pathogens10010058
APA StyleMuhammad, S., Fischer, I., Naderi, S., Faghih Jouibari, M., Abdolreza, S., Karimialavijeh, E., Aslzadeh, S., Mashayekhi, M., Zojaji, M., Kahlert, U. D., & Hänggi, D. (2021). Systemic Inflammatory Index Is a Novel Predictor of Intubation Requirement and Mortality after SARS-CoV-2 Infection. Pathogens, 10(1), 58. https://doi.org/10.3390/pathogens10010058