Advances in Understanding Vector Behavioural Traits after Infection
Abstract
:1. Introduction
2. Behavioural Changes in Mosquitoes after Infection
2.1. Malaria and Behavioural Modulations in Mosquitoes
2.1.1. Changes in Fitness
2.1.2. Changes in Blood Feeding
2.1.3. Adaptation to Insecticide Treated Nets
2.2. Arbovirus and Behavioural Modulations in Mosquitoes
2.2.1. Changes in Fitness
2.2.2. Changes in Blood Feeding
2.3. Lymphatic Filariasis (LF) and Behavioural Modifications in Mosquitoes
2.3.1. Changes in Fitness
2.3.2. Changes in Blood Feeding
3. Behavioural Changes in Ticks after Infection
3.1. Borrelia Bacteria and Behavioural Modulations in Ticks
3.1.1. Changes in Fitness
3.1.2. Changes in Blood Feeding
3.2. Anaplasma and Behavioural Modification in Ticks
3.2.1. Changes in Fitness
3.2.2. Changes in Blood Feeding
3.3. Babesia and Behavioural Modification in Ticks
3.3.1. Changes in Fitness
3.3.2. Changes in Blood Feeding
3.4. Tick-Borne Encephalitis Virus (TBEV) and Behavioural Modulations in Ticks
Changes in Fitness
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Achee, N.L.; Grieco, J.P.; Vatandoost, H.; Seixas, G.; Pinto, J.; Ching-Ng, L.; Martins, A.J.; Juntarajumnong, W.; Corbel, V.; Gouagna, C. Alternative strategies for mosquito-borne arbovirus control. PLoS Negl. Trop. Dis. 2019, 13, e0006822. [Google Scholar]
- Ahmed, A.M.; Maingon, R.D.; Taylor, P.J.; Hurd, H. The effects of infection with Plasmodium yoelii nigeriensis on the reproductive fitness of the mosquito Anopheles gambiae. Invertebr. Reprod. Dev. 1999, 36, 217–222. [Google Scholar] [CrossRef]
- Alekseev, A.N.; Dubinina, H.V. Abiotic Parameters and Diel and Seasonal Activity of Borrelia—Infected and Uninfected Ixodes persulcatus (Acarina: Ixodidae). J. Med. Èntomol. 2000, 37, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Alekseev, A.N.; Jensen, P.M.; Dubinina, H.V.; Smirnova, L.A.; Makrouchina, N.A.; Zharkov, S.D. Peculiarities of behaviour of taiga (Ixodes persulcatus) and sheep (Ixodes ricinus) ticks (Acarina: Ixodidae) determined by different methods. Folia Parasitol. 2000, 47, 147–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, R.A.; Knols, B.G.J.; Koella, J.C. Plasmodium falciparum sporozoites increase feeding-associated mortality of their mosquito hosts Anopheles gambiae s.l. Parasitology 2000, 120, 329–333. [Google Scholar] [CrossRef]
- Anderson, R.A.; Koellaf, J.C.; Hurd, H. The effect of Plasmodium yoelii nigeriensis infection on the feeding persistence of Anopheles stephensi Liston throughout the sporogonic cycle. Proc. R. Soc. B Boil. Sci. 1999, 266, 1729–1733. [Google Scholar] [CrossRef] [Green Version]
- Annen, D.K.; Friedman, K.; Eshoa, C.; Horowitz, M.; Gottschall, J.; Straus, T. Two Cases of Transfusion-TransmittedAnaplasma phagocytophilum. Am. J. Clin. Pathol. 2012, 137, 562–565. [Google Scholar] [CrossRef] [Green Version]
- Athni, T.S.; Shocket, M.S.; Couper, L.I.; Nova, N.; Caldwell, I.R.; Caldwell, J.M.; Childress, J.N.; Childs, M.L.; de Leo, G.A.; Kirk, D.G. The influence of vector-borne disease on human history: Socio-ecological mechanisms. Ecol. Lett. 2021, 24, 829–846. [Google Scholar] [CrossRef] [PubMed]
- Ayllón, N.; Naranjo, V.; Hajdušek, O.; Villar, M.; Galindo, R.C.; Kocan, K.M.; Alberdi, P.; Šíma, R.; Cabezas-Cruz, A.; Rückert, C.; et al. Nuclease Tudor-SN Is Involved in Tick dsRNA-Mediated RNA Interference and Feeding but Not in Defense against Flaviviral or Anaplasma phagocytophilum Rickettsial Infection. PLoS ONE 2015, 10, e0133038. [Google Scholar] [CrossRef]
- Bakken, J.S.; Dumler, S. Human granulocytic anaplasmosis. Infect. Dis. Clin. N. Am. 2008, 22, 433–448. [Google Scholar] [CrossRef] [Green Version]
- Balogh, Z.; Ferenczi, E.; Szeles, K.; Stefanoff, P.; Gut, W.; Szomor, K.N.; Takacs, M.; Berencsi, G. Tick-borne encephalitis outbreak in Hungary due to consumption of raw goat milk. J. Virol. Methods 2010, 163, 481–485. [Google Scholar] [CrossRef]
- Barker, S.C.; Walker, A.R. Ticks of Australia. The species that infest domestic animals and humans. Zootaxa 2014, 3816, 1–144. [Google Scholar] [CrossRef]
- Becker, N.; Petric, D.; Zgomba, M.; Boase, C.; Madon, M.; Dahl, C.; Kaiser, A. Mosquitoes and Their Control; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Belova, O.A.; Burenkova, L.A.; Karganova, G.G. Different tick-borne encephalitis virus (TBEV) prevalences in unfed versus partially engorged ixodid ticks—Evidence of virus replication and changes in tick behavior. Ticks Tick-Borne Dis. 2012, 3, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, S.; Gething, P.; Brady, O.; Messina, J.P.; Farlow, A.W.; Moyes, C.; Drake, J.; Brownstein, J.S.; Hoen, A.G.; Sankoh, O.; et al. The global distribution and burden of dengue. Nature 2013, 496, 504–507. [Google Scholar] [CrossRef] [PubMed]
- Bockarie, M.; Alexander, N.; Bockarie, F.; Ibam, E.; Barnish, G.; Alpers, M. The late biting habit of parous Anopheles mosquitoes and pre-bedtime exposure of humans to infective female mosquitoes. Trans. R. Soc. Trop. Med. Hyg. 1996, 90, 23–25. [Google Scholar] [CrossRef]
- Bockarie, M.J.; Dagoro, H. Are insecticide-treated bednets more protective against Plasmodium falciparum than Plasmodium vivax—Infected mosquitoes? Malar. J. 2006, 5, 15. [Google Scholar] [CrossRef] [Green Version]
- Bonizzoni, M.; Dunn, W.A.; Campbell, C.L.; Olson, K.E.; Dimon, M.T.; Marinotti, O.; James, A.A. RNA-seq analyses of blood-induced changes in gene expression in the mosquito vector species Aedes aegypti. BMC Genom. 2011, 12, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Briegel, H. Metabolic relationship between female body size, reserves, and fecundity of Aedes aegypti. J. Insect Physiol. 1990, 36, 165–172. [Google Scholar] [CrossRef]
- Busby, A.T.; Ayllón, N.; Kocan, K.M.; Blouin, E.F.; de la Fuente, G.; Galindo, R.C.; Villar, M.; de la Fuente, J. Expression of heat shock proteins and subolesin affects stress responses, Anaplasma phagocytophilum infection and questing behaviour in the tick, Ixodes scapularis. Med. Vet. Entomol. 2012, 26, 92–102. [Google Scholar] [CrossRef]
- Cator, L.J.; George, J.; Blanford, S.; Murdock, C.C.; Baker, T.C.; Read, A.F.; Thomas, M.B. ‘Manipulation’ without the parasite: Altered feeding behaviour of mosquitoes is not dependent on infection with malaria parasites. Proc. R. Soc. B Boil. Sci. 2013, 280, 20130711. [Google Scholar] [CrossRef]
- Cox, F.E. History of the discovery of the malaria parasites and their vectors. Parasites Vectors 2010, 3, 5–9. [Google Scholar] [CrossRef] [Green Version]
- Darriet, F.D.R.; Robert, V.; Vien, N.T.; Carnevale, P. Evaluation of the Efficacy of Permethrin Impregnated Intact and Perforated Mosquito Nets Against Vectors of Malaria; World Health Organization: Geneva, Switzerland, 1984. [Google Scholar]
- Davey, R.B. Effects of Babesia bovis on the Ovipositional Success of the Southern Cattle Tick, Boophilus microplus. Ann. Entomol. Soc. Am. 1981, 74, 331–333. [Google Scholar] [CrossRef]
- De Vos, A.J.; Stewart, N.P.; Dalgliesh, R.J. Effect of different methods of maintenance on the pathogenicity and infectivity of Babesia bigemina for the vector Boophilus microplus. Res. Vet. Sci. 1989, 46, 139–142. [Google Scholar] [CrossRef]
- Edman, J.D.; Downe, A. Host-Blood Sources and Multiple-Feeding Habits of Mosquitoes in Kansas. Mosquito News 1964, 24, 154–160. [Google Scholar]
- Esch, K.J.; Petersen, C.A. Transmission and Epidemiology of Zoonotic Protozoal Diseases of Companion Animals. Clin. Microbiol. Rev. 2013, 26, 58–85. [Google Scholar] [CrossRef] [Green Version]
- Estrada-Peña, A.; Mihalca, A.D.; Petney, T.N. Ticks of Europe and North Africa: A Guide to Species Identification; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Faulde, M.K.; Robbins, R.G. Tick infestation risk and Borrelia burgdorferi s.l. infection-induced increase in host-finding efficacy of female Ixodes ricinus under natural conditions. Exp. Appl. Acarol. 2008, 44, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Velasco-Hernández, J.X. Competitive exclusion in a vector-host model for the dengue fever. J. Math. Biol. 1997, 35, 523–544. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, H.M.; Read, A.F. Mosquito appetite for blood is stimulated by Plasmodium chabaudi infections in themselves and their vertebrate hosts. Malar. J. 2004, 3, 12. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, H.M.; Rivero, A.; Read, A.F. The influence of malaria parasite genetic diversity and anaemia on mosquito feeding and fecundity. Parasitology 2003, 127, 9–19. [Google Scholar] [CrossRef] [Green Version]
- Flint, S.J.; Racaniello, V.R.; Rall, G.F.; Skalka, A.M.; Hatziioannou, T. Principles of Virology, Volume 2: Pathogenesis and Control; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Gaburro, J.; Bhatti, A.; Harper, J.; Jeanne, I.; Dearnley, M.; Green, D.; Nahavandi, S.; Paradkar, P.N.; Duchemin, J.B. Neurotropism and behavioral changes associated with Zika infection in the vector Aedes aegypti. Emerg. Microbes. Infect. 2018, 7, 68. [Google Scholar] [CrossRef] [Green Version]
- Gleave, K.; Cook, D.; Taylor, M.; Reimer, L.J. Filarial infection influences mosquito behaviour and fecundity. Sci. Rep. 2016, 6, 36319. [Google Scholar] [CrossRef]
- Gray, J. The effects of the piroplasm Babesia bigemina on the survival and reproduction of the blue tick, Boophilus decoloratus. J. Invertebr. Pathol. 1982, 39, 413–415. [Google Scholar] [CrossRef]
- Grimstad, P.R.; Ross, Q.E.; Craig, J.G.B. Aedes Triseriatus (Diptera: Culicidae) and La Crosse Virus: II. Modification of mosquito feeding behavior by virus infection. J. Med. Èntomol. 1980, 17, 1–7. [Google Scholar] [CrossRef]
- Günther, J.; Martínez-Muñoz, J.P.; Pérez-Ishiwara, D.G.; Salas-Benito, J. Evidence of Vertical Transmission of Dengue Virus in Two Endemic Localities in the State of Oaxaca, Mexico. Intervirology 2007, 50, 347–352. [Google Scholar] [CrossRef]
- Hacker, C.S. The differential effect of Plasmodium gallinaceum on the fecundity of several strains of Aedes aegypti. J. Invertebr. Pathol. 1971, 18, 373–377. [Google Scholar] [CrossRef]
- Hacker, C.S.; Kilama, W. The relationship between Plasmodium gallinaceum density and the fecundity of Aedes aegypti. J. Invertebr. Pathol. 1974, 23, 101–105. [Google Scholar] [CrossRef]
- Hardy, J.L.; Houk, E.J.; Kramer, L.D.; Reeves, W.C. Intrinsic Factors Affecting Vector Competence of Mosquitoes for Arboviruses. Annu. Rev. Èntomol. 1983, 28, 229–262. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, C.; Gern, L. Do the level of energy reserves, hydration status and Borrelia infection influence walking by Ixodes ricinus (Acari: Ixodidae) ticks? Parasitology 2012, 139, 330–337. [Google Scholar] [CrossRef] [Green Version]
- Herrmann, C.; Voordouw, M.; Gern, L. Ixodes ricinus ticks infected with the causative agent of Lyme disease, Borrelia burgdorferi sensu lato, have higher energy reserves. Int. J. Parasitol. 2013, 43, 477–483. [Google Scholar] [CrossRef]
- Hiscox, A.; Maire, N.; Kiche, I.; Silkey, M.; Homan, T.; Oria, P.; Mweresa, C.; Otieno, B.; Ayugi, M.; Bousema, T.; et al. The SolarMal Project: Innovative mosquito trapping technology for malaria control. Malar. J. 2012, 11, O45. [Google Scholar] [CrossRef] [Green Version]
- Hiscox, A.; Otieno, B.; Kibet, A.; Mweresa, C.K.; Omusula, P.; Geier, M.; Rose, A.; Mukabana, W.R.; Takken, W. Development and optimization of the Suna trap as a tool for mosquito monitoring and control. Malar. J. 2014, 13, 257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hockmeyer, W.T.; Schiefer, B.A.; Redington, B.C.; Eldridge, B.F. Brugia pahangi: Effects upon the flight capability of Aedes aegypti. Exp. Parasitol. 1975, 38, 1–5. [Google Scholar] [CrossRef]
- Hoel, D.; Kline, D.; Allan, S. Evaluation of Six Mosquito Traps for Collection of Aedes albopictus and Associated Mosquito Species in a Suburban Setting in North Central Florida1. J. Am. Mosq. Control. Assoc. 2009, 25, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Hogg, J.C.; Hurd, H. Malaria-induced reduction of fecundity during the first gonotrophic cycle of Anopheles Stephensi mosquitoes. Med. Vet. Èntomol. 1995, 9, 176–180. [Google Scholar] [CrossRef]
- Hogg, J.C.; Hurd, H. Plasmodium yoelii nigeriensis: The effect of high and low intensity of infection upon the egg production and bloodmeal size of Anopheles stephensi during three gonotrophic cycles. Parasitology 1995, 111, 555–562. [Google Scholar] [CrossRef]
- Hogg, J.C.; Hurd, H. The effects of natural Plasmodium falciparum infection on the fecundity and mortality of Anopheles gambiae s. l. in north east Tanzania. Parasitology 1997, 114, 325–331. [Google Scholar] [CrossRef]
- Hu, R.; Hyland, K.E.; Markowski, D. Effects of Babesia microti Infection on Feeding Pattern, Engorged Body Weight, and Molting Rate of Immature Ixodes scapularis (Acari: Ixodidae). J. Med. Èntomol. 1997, 34, 559–564. [Google Scholar] [CrossRef] [PubMed]
- Jahan, N.; Docherty, P.T.; Billingsley, P.F.; Hurd, H. Blood digestion in the mosquito, Anopheles stephensi: The effects of Plasmodium yoelii nigeriensis on midgut enzyme activities. Parasitology 1999, 119, 535–541. [Google Scholar] [CrossRef] [PubMed]
- Irvine, M.A.; Kazura, J.W.; Hollingsworth, T.D.; Reimer, L. Understanding heterogeneities in mosquito-bite exposure and infection distributions for the elimination of lymphatic filariasis. Proc. R. Soc. B Boil. Sci. 2018, 285, 20172253. [Google Scholar] [CrossRef]
- Isoe, J.; Koch, L.E.; Isoe, Y.E.; Rascón, A.A., Jr.; Brown, H.E.; Massani, B.B.; Miesfeld, R.L. Identification and characterization of a mosquito-specific eggshell organizing factor in Aedes aegypti mosquitoes. PLoS Biol. 2019, 17, e3000068. [Google Scholar] [CrossRef]
- Jackson, B.T.; Brewster, C.C.; Paulson, S.L. La Crosse Virus Infection Alters Blood Feeding Behavior in Aedes triseriatus and Aedes albopictus (Diptera: Culicidae). J. Med. Èntomol. 2012, 49, 1424–1429. [Google Scholar] [CrossRef]
- Koella, J.C.; Packer, M.J. Malaria parasites enhance blood-feeding of their naturally infected vector Anopheles punctulatus. Parasitology 1996, 113, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Koella, J.C.; Rieu, L.; Paul, R.E.L. Stage-specific manipulation of a mosquito’s host-seeking behavior by the malaria parasite Plasmodium gallinaceum. Behav. Ecol. 2002, 13, 816–820. [Google Scholar] [CrossRef] [Green Version]
- Kovalev, S.; Mukhacheva, T. Reconsidering the classification of tick-borne encephalitis virus within the Siberian subtype gives new insights into its evolutionary history. Infect. Genet. Evol. 2017, 55, 159–165. [Google Scholar] [CrossRef]
- Kurtenbach, K.; de Michelis, S.; Etti, S.; Schäfer, S.M.; Sewell, H.-S.; Brade, V.; Kraiczy, P. Host association of Borrelia burgdorferi sensu lato–the key role of host complement. Trends Microbiol. 2002, 10, 74–79. [Google Scholar] [CrossRef]
- Lefcort, H.; Durden, L.A. The effect of infection with Lyme disease spirochetes (Borrelia burgdorferi) on the phototaxis, activity, and questing height of the tick vector Ixodes scapularis. Parasitology 1996, 113, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Lefevre, T.; Ohm, J.; Dabiré, K.R.; Cohuet, A.; Choisy, M.; Thomas, M.B.; Cator, L. Transmission traits of malaria parasites within the mosquito: Genetic variation, phenotypic plasticity, and consequences for control. Evol. Appl. 2017, 11, 456–469. [Google Scholar] [CrossRef]
- Li, X.; Sina, B.; Rossignol, P.A. Probing behaviour and sporozoite delivery by Anopheles stephensi infected with Plasmodium berghei. Med. Vet. Èntomol. 1992, 6, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Lima-Camara, T.N.; Bruno, R.V.; Luz, P.; Castro, M.G.; Lourenço-De-Oliveira, R.; Sorgine, M.H.F.; Peixoto, A.A. Dengue Infection Increases the Locomotor Activity of Aedes aegypti Females. PLoS ONE 2011, 6, e17690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindsay, S.; Birley, M. Climate change and malaria transmission. Ann. Trop. Med. Parasitol. 1996, 90, 573–588. [Google Scholar] [CrossRef] [PubMed]
- Lines, J.D.; Myamba, J.; Curtis, C.F. Experimental hut trials of permethrin-impregnated mosquito nets and eave curtains against malaria vectors in Tanzania. Med. Vet. Èntomol. 1987, 1, 37–51. [Google Scholar] [CrossRef]
- Luz, P.M.; Lima-Camara, T.N.; Bruno, R.V.; De Castro, M.G.; Sorgine, M.H.F.; Lourenço-De-Oliveira, R.; Peixoto, A.A. Potential impact of a presumed increase in the biting activity of dengue-virus-infected Aedes aegypti (Diptera: Culicidae) females on virus transmission dynamics. Mem. Inst. Oswaldo Cruz 2011, 106, 755–758. [Google Scholar] [CrossRef] [Green Version]
- Macdonald, G. The Epidemiology and Control of Malaria; Oxford University Press: London, UK, 1957. [Google Scholar]
- Maciel-De-Freitas, R.; Sylvestre, G.; Gandini, M.; Koella, J.C. The Influence of Dengue Virus Serotype-2 Infection on Aedes aegypti (Diptera: Culicidae) Motivation and Avidity to Blood Feed. PLoS ONE 2013, 8, e65252. [Google Scholar] [CrossRef]
- Martin, E.; Moutailler, S.; Madec, Y.; Failloux, A.-B. Differential responses of the mosquito Aedes albopictus from the Indian Ocean region to two chikungunya isolates. BMC Ecol. 2010, 10, 8. [Google Scholar] [CrossRef] [Green Version]
- Mckenna, M.C. Glutamate dehydrogenase in brain mitochondria: Do lipid modifications and transient metabolon formation influence enzyme activity? Neurochem. Int. 2011, 59, 525–533. [Google Scholar] [CrossRef] [Green Version]
- Mel’Nikova, O.V.; Botvinkin, A.D.; Danchinova, G.A. Comparative data on the tick-borne encephalitis virus infectiousness of hungry and satiated taiga ticks (based on the results of an immunoenzyme analysis). Med. Parasitol. Parasit. Dis. 1997, 44–49. Available online: https://europepmc.org/article/med/9182196 (accessed on 28 November 2020).
- Miorin, L.; Romero-Brey, I.; Maiuri, P.; Hoppe, S.; Krijnse-Locker, J.; Bartenschlager, R.; Marcello, A. Three-Dimensional Architecture of Tick-Borne Encephalitis Virus Replication Sites and Trafficking of the Replicated RNA. J. Virol. 2013, 87, 6469–6481. [Google Scholar] [CrossRef] [Green Version]
- Mitra, S.; Pinch, M.; Kandel, Y.; Li, Y.; Rodriguez, S.D.; Hansen, I.A. Olfaction-Related Gene Expression in the Antennae of Female Mosquitoes from Common Aedes aegypti Laboratory Strains. Front. Physiol. 2021, 12. [Google Scholar] [CrossRef]
- Murray, D.L. Cultivating Crisis: The Human Cost of Pesticides in Latin America; University of Texas Press: Austin, TX, USA, 1994. [Google Scholar]
- Neelakanta, G.; Sultana, H.; Fish, D.; Anderson, J.F.; Fikrig, E. Anaplasma phagocytophilum induces Ixodes scapularis ticks to express an antifreeze glycoprotein gene that enhances their survival in the cold. J. Clin. Investig. 2010, 120, 3179–3190. [Google Scholar] [CrossRef] [Green Version]
- Ngwa, G.; Shu, W. A mathematical model for endemic malaria with variable human and mosquito populations. Math. Comput. Model. 2000, 32, 747–763. [Google Scholar] [CrossRef]
- Ogden, N.; Maarouf, A.; Barker, I.; Bigras-Poulin, M.; Lindsay, R.; Morshed, M.; O’Callaghan, C.; Ramay, F.; Waltner-Toews, D.; Charron, D. Climate change and the potential for range expansion of the Lyme disease vector Ixodes scapularis in Canada. Int. J. Parasitol. 2006, 36, 63–70. [Google Scholar] [CrossRef]
- Otero, M.; Solari, H. Stochastic eco-epidemiological model of dengue disease transmission by Aedes aegypti mosquito. Math. Biosci. 2009, 223, 32–46. [Google Scholar] [CrossRef]
- Garnham, P.C.C. Malaria Parasites and Other Haemosporidia; Blackwell: Oxford, UK, 1966; p. 1132. [Google Scholar]
- Ottesen, E.A. Lymphatic Filariasis: Treatment, Control and Elimination. Adv. Parasitol. 2006, 61, 395–441. [Google Scholar] [CrossRef] [PubMed]
- Padilha, K.P.; Resck, M.E.B.; Da Cunha, O.A.T.; Teles-De-Freitas, R.; Campos, S.S.; Sorgine, M.H.F.; Lourenço-De-Oliveira, R.; Farnesi, L.C.; Bruno, R.V. Zika infection decreases Aedes aegypti locomotor activity but does not influence egg production or viability. Mem. Inst. Oswaldo Cruz 2018, 113, e180290. [Google Scholar] [CrossRef]
- Petersen, M.T.; Da Silveira, I.D.; Tátila-Ferreira, A.; David, M.R.; Chouin-Carneiro, T.; Wouwer, L.V.D.; Maes, L.; Maciel-De-Freitas, R. The impact of the age of first blood meal and Zika virus infection on Aedes aegypti egg production and longevity. PLoS ONE 2018, 13, e0200766. [Google Scholar] [CrossRef]
- Platt, K.B.; Lerdthusnee, K.; Linthicum, K.J.; Myint, K.S.A.; Vaughn, D.W.; Innis, B. Impact of Dengue Virus Infection on Feeding Behavior of Aedes aegypti. Am. J. Trop. Med. Hyg. 1997, 57, 119–125. [Google Scholar] [CrossRef]
- Raji, J.I.; DeGennaro, M. Genetic analysis of mosquito detection of humans. Curr. Opin. Insect Sci. 2017, 20, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Randolph, S.E. The effect of Babesia microti on feeding and survival in its tick vector, Ixodes trianguliceps. Parasitology 1991, 102, 9–16. [Google Scholar] [CrossRef]
- Reiner, R.C.; Perkins, T.A.; Barker, C.; Niu, T.; Chaves, L.F.; Ellis, A.M.; George, D.B.; Le Menach, A.; Pulliam, J.; Bisanzio, D.; et al. A systematic review of mathematical models of mosquito-borne pathogen transmission: 1970–2010. J. R. Soc. Interface 2013, 10, 20120921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Resck, M.E.B.; Padilha, K.P.; Cupolillo, A.P.; Talyuli, O.A.C.; Ferreira-De-Brito, A.; Lourenço-De-Oliveira, R.; Farnesi, L.C.; Bruno, R.V. Unlike Zika, Chikungunya virus interferes in the viability of Aedes aegypti eggs, regardless of females’ age. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef]
- Robert, S.L.; Jeomhee, M.; Miguel, A.P.; Harrison, A.S. Host-seeking behavior of Ixodes pacificus (Acari: Ixodidae) nymphs in relation to environmental parameters in dense-woodland and woodland-grass habitats. J. Vector Ecol. 2007, 32, 342–357. [Google Scholar]
- Romashchenko, A.; Ratushnyak, A.; Zapara, T.; Tkachev, S.; Moshkin, M. The correlation between tick (Ixodes persulcatus Sch.) questing behaviour and synganglion neuronal responses to odours. J. Insect Physiol. 2012, 58, 903–910. [Google Scholar] [CrossRef]
- Ross, R.; Howard, L.O.; Gorgas, W.C. The Prevention of Malaria; John Murray: London, UK, 1911. [Google Scholar]
- Rossignol, P.A.; Spielman, A.; Ribeiro, J. Increased Intradermal Probing Time in Sporozoite-Infected Mosquitoes. Am. J. Trop. Med. Hyg. 1984, 33, 17–20. [Google Scholar] [CrossRef]
- Rossignol, P.A.; Ribeiro, J.; Spielman, A. Increased Biting Rate and Reduced Fertility in Sporozoite-Infected Mosquitoes. Am. J. Trop. Med. Hyg. 1986, 35, 277–279. [Google Scholar] [CrossRef] [PubMed]
- Rossignol, P.A.; Rossignol, A.M. Simulations of enhanced malaria transmission and host bias induced by modified vector blood location behaviour. Parasitology 1988, 97, 363–372. [Google Scholar] [CrossRef]
- Rowland, M.; Boersma, E. Changes in the spontaneous flight activity of the mosquito Anopheles stephensi by parasitization with the rodent malaria Plasmodium yoelii. Parasitology 1988, 97, 221–227. [Google Scholar]
- Schiefer, B.A.; Ward, R.A.; Eldridge, B.F. Plasmodium cynomolgi: Effects of malaria infection on laboratory flight performance of Anopheles stephensi mosquitoes. Exp. Parasitol. 1977, 41, 397–404. [Google Scholar] [CrossRef]
- Sim, S.; Ramirez, J.L.; Dimopoulos, G. Dengue Virus Infection of the Aedes aegypti Salivary Gland and Chemosensory Apparatus Induces Genes that Modulate Infection and Blood-Feeding Behavior. PLoS Pathog. 2012, 8, e1002631. [Google Scholar] [CrossRef] [Green Version]
- Smallegange, R.C.; van Gemert, G.J.; van de Vegte-Bolmer, M.; Gezan, S.; Takken, W.; Sauerwein, R.W.; Logan, J.G. Malaria infected mosquitoes express enhanced attraction to human odor. PLoS ONE 2013, 8, e63602. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.L.; Dushoff, J.; McKenzie, F.E. The Risk of a Mosquito-Borne Infectionin a Heterogeneous Environment. PLoS Biol. 2004, 2, e368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smithburn, K.; Hughes, T.; Burke, A.W.; Paul, J.H. A neurotropic virus isolated from the blood of a native of uganda. Am. J. Trop. Med. 1940, 20, 471–497. [Google Scholar] [CrossRef]
- Sokhna, C.; Ndiath, M.O.; Rogier, C. The changes in mosquito vector behaviour and the emerging resistance to insecticides will challenge the decline of malaria. Clin. Microbiol. Infect. 2013, 19, 902–907. [Google Scholar] [CrossRef] [Green Version]
- Somerville, A.G.T.; Gleave, K.; Jones, C.; Reimer, L.J. The consequences of Brugia malayi infection on the flight and energy resources of Aedes aegypti mosquitoes. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef]
- Stanczyk, N.M.; Brugman, V.; Austin, V.; Teran, F.S.-R.; Gezan, S.A.; Emery, M.; Visser, T.; Dessens, J.; Stevens, W.; Smallegange, R.C.; et al. Species-specific alterations in Anopheles mosquito olfactory responses caused by Plasmodium infection. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef]
- Stuen, S. Anaplasma Phagocytophilum—The Most Widespread Tick-Borne Infection in Animals in Europe. Vet. Res. Commun. 2007, 31, 79–84. [Google Scholar] [CrossRef]
- Styer, L.M.; Meola, M.A.; Kramer, L.D. West Nile Virus Infection Decreases Fecundity of Culex tarsalis Females. J. Med. Entomol. 2007, 44, 1074–1085. [Google Scholar] [CrossRef] [Green Version]
- Sylvestre, G.; Gandini, M.; Maciel-De-Freitas, R. Age-Dependent Effects of Oral Infection with Dengue Virus on Aedes aegypti (Diptera: Culicidae) Feeding Behavior, Survival, Oviposition Success and Fecundity. PLoS ONE 2013, 8, e59933. [Google Scholar] [CrossRef]
- Tallon, A.K.; Lorenzo, M.G.; Moreira, L.A.; Villegas, L.E.M.; Hill, S.R.; Ignell, R. Dengue infection modulates locomotion and host seeking in Aedes aegypti. PLoS Negl. Trop. Dis. 2020, 14, e0008531. [Google Scholar] [CrossRef]
- Townson, H. The effect of infection with Brugia pahangi on the flight of Aedes aegypti. Ann. Trop. Med. Parasitol. 1970, 64, 411–420. [Google Scholar] [CrossRef]
- Trigg, P.I.; Kondrachine, A.V. Commentary: Malaria control in the 1990s. Bull. World Health Organ. 1998, 76, 11–16. [Google Scholar]
- Tsetsarkin, K.A.; VanLandingham, D.L.; McGee, C.E.; Higgs, S. A Single Mutation in Chikungunya Virus Affects Vector Specificity and Epidemic Potential. PLoS Pathog. 2007, 3, e201. [Google Scholar] [CrossRef]
- Uilenberg, G. Babesia—A historical overview. Vet. Parasitol. 2006, 138, 3–10. [Google Scholar] [CrossRef]
- Valarcher, J.; Hagglund, S.; Juremalm, M.; Blomqvist, G.; Renstrom, L.; Zohari, S.; Leijon, M.; Chirico, J. Tick-borne encephalitis. Rev. Sci. Tech. 2015, 34, 453–466. [Google Scholar] [CrossRef] [Green Version]
- Valle, D.; Pimenta, D.N.; Cunha, R.V.D. Dengue: Teorias e Práticas; SciELO—Editora FIOCRUZ: São Paulo, Brasil, 2015. [Google Scholar]
- Van Duijvendijk, G.; van Andel, W.; Fonville, M.; Gort, G.; Hovius, J.W.; Sprong, H.; Takken, W. A Borrelia afzelii Infection Increases Larval Tick Burden on Myodes glareolus (Rodentia: Cricetidae) and Nymphal Body Weight of Ixodes ricinus (Acari: Ixodidae). J. Med. Entomol. 2017, 54, 422–428. [Google Scholar] [PubMed]
- Vedururu, R.K.; Neave, M.J.; Sundaramoorthy, V.; Green, D.; Harper, J.A.; Gorry, P.R.; Duchemin, J.-B.; Paradkar, P.N. Whole Transcriptome Analysis of Aedes albopictus Mosquito Head and Thorax Post-Chikungunya Virus Infection. Pathogens 2019, 8, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vedururu, R.K.; Neave, M.J.; Tachedjian, M.; Klein, M.J.; Gorry, P.R.; Duchemin, J.-B.; Paradkar, P.N. RNASeq Analysis of Aedes albopictus Mosquito Midguts after Chikungunya Virus Infection. Viruses 2019, 11, 513. [Google Scholar] [CrossRef] [Green Version]
- Verhulst, N.O.; Andriessen, R.; Groenhagen, U.; Kiss, G.B.; Schulz, S.; Takken, W.; Van Loon, J.J.A.; Schraa, G.; Smallegange, R.C. Differential Attraction of Malaria Mosquitoes to Volatile Blends Produced by Human Skin Bacteria. PLoS ONE 2010, 5, e15829. [Google Scholar] [CrossRef] [Green Version]
- Vogels, C.B.F.; Fros, J.; Pijlman, G.P.; van Loon, J.J.A.; Gort, G.; Koenraadt, C.J.M. Virus interferes with host-seeking behaviour of mosquito. J. Exp. Biol. 2017, 220, 3598–3603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, E.; Ni, H.; Xu, R.; Barrett, A.D.T.; Watowich, S.J.; Gubler, D.J.; Weaver, S.C. Evolutionary Relationships of Endemic/Epidemic and Sylvatic Dengue Viruses. J. Virol. 2000, 74, 3227–3234. [Google Scholar] [CrossRef] [Green Version]
- Wekesa, J.W.; Mwangi, R.W.; Copeland, R.S. Effect of Plasmodium Falciparum on Blood Feeding Behavior of Naturally Infected Anopheles Mosquitoes in Western Kenya. Am. J. Trop. Med. Hyg. 1992, 47, 484–488. [Google Scholar] [CrossRef] [PubMed]
- Westaway, E.G.; Brinton, M.A.; Gaidamovich, S.; Horzinek, M.C.; Igarashi, A.; Kääriäinen, L.; Lvov, D.K.; Porterfield, J.S.; Russell, P.K.; Trent, D.W. Flaviviridae. Intervirology 1985, 24, 183–192. [Google Scholar] [CrossRef] [PubMed]
- Wilder-Smith, A.; Gubler, D.J.; Weaver, S.C.; Monath, T.P.; Heymann, D.L.; Scott, T.W. Epidemic arboviral diseases: Priorities for research and public health. Lancet Infect. Dis. 2016, 17, e101–e106. [Google Scholar] [CrossRef] [Green Version]
- Wilson, A.J.; Morgan, E.R.; Booth, M.; Norman, R.; Perkins, S.E.; Hauffe, H.C.; Mideo, N.; Antonovics, J.; Mccallum, H.; Fenton, A. What is a vector? Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2017, 372, 20160085. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Vector Control; World Health Organization/Regional Office for South-East Asia: New Delhi, India, 2017. [Google Scholar]
- World Health Organization. Malaria in Children Under Five. 2018. Available online: https://www.who.int/malaria/areas/high_risk_groups/children/en/ (accessed on 28 November 2020).
- World Health Organization. The “World Malaria Report 2019” at a Glance. 2019. Available online: https://www.who.int/news-room/feature-stories/detail/world-malaria-report-2019 (accessed on 28 November 2020).
- World Health Organization. Vector-Borne Diseases. 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/vector-borne-diseases (accessed on 26 November 2020).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Javed, N.; Bhatti, A.; Paradkar, P.N. Advances in Understanding Vector Behavioural Traits after Infection. Pathogens 2021, 10, 1376. https://doi.org/10.3390/pathogens10111376
Javed N, Bhatti A, Paradkar PN. Advances in Understanding Vector Behavioural Traits after Infection. Pathogens. 2021; 10(11):1376. https://doi.org/10.3390/pathogens10111376
Chicago/Turabian StyleJaved, Nouman, Asim Bhatti, and Prasad N. Paradkar. 2021. "Advances in Understanding Vector Behavioural Traits after Infection" Pathogens 10, no. 11: 1376. https://doi.org/10.3390/pathogens10111376
APA StyleJaved, N., Bhatti, A., & Paradkar, P. N. (2021). Advances in Understanding Vector Behavioural Traits after Infection. Pathogens, 10(11), 1376. https://doi.org/10.3390/pathogens10111376