Human Immunodeficiency Virus Type 2: The Neglected Threat
Abstract
:1. Introduction
2. HIV-2 Origin and Infection Worldwide
3. HIV-2 Genetic Diversity and Molecular Epidemiology
4. Natural History Clinical Manifestations
5. Testing
6. Treatment and Resistance
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hahn, B.H.; Shaw, G.M.; De Cock, K.M.; Sharp, P.M. AIDS as a zoonosis: Scientific and public health implications. Science 2000, 287, 607–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Campbell-Yesufu, O.T.; Gandhi, R.T. Update on human immunodeficiency virus (HIV)-2 infection. Clin. Infect. Dis. 2011, 52, 780–787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gottlieb, G.S.; Raugi, D.N.; Smith, R.A. 90-90-90 for HIV-2? Ending the HIV-2 epidemic by enhancing care and clinical management of patients infected with HIV-2. Lancet HIV 2018, 5, e390–e399. [Google Scholar] [CrossRef]
- Nyamweya, S.; Hegedus, A.; Jaye, A.; Rowland-Jones, S.; Flanagan, K.L.; Macallan, D.C. Comparing HIV-1 and HIV-2 infection: Lessons for viral immunopathogenesis. Rev. Med. Virol. 2013, 23, 221–240. [Google Scholar] [CrossRef]
- Wejse, C.; Hønge, B.L. Is it time to revise the notion that HIV-2 is benign? Lancet HIV 2018. [Google Scholar] [CrossRef]
- Ghosn, J.; Taiwo, B.; Seedat, S.; Autran, B.; Katlama, C. HIV. Lancet 2018, 392, 685–697. [Google Scholar] [CrossRef]
- Ceccarelli, G.; Statzu, M.; Santinelli, L.; Pinacchio, C.; Bitossi, C.; Cavallari, E.N.; Vullo, V.; Scagnolari, C.; d’Ettorre, G. Challenges in the management of HIV infection: Update on the role of probiotic supplementation as a possible complementary therapeutic strategy for cART treated people living with HIV/AIDS. Expert Opin. Biol. Ther. 2019, 949–965. [Google Scholar] [CrossRef] [PubMed]
- UNAIDS. 90-90-90 An Ambitious Treatment Target to Help End the AIDS Epidemic. 2014. Available online: https://www.unaids.org/sites/default/files/media_asset/90-90-90_en.pdf (accessed on 3 September 2021).
- de Silva, T.I.; Cotten, M.; Rowland-Jones, S.L. HIV-1: The forgotten AIDS virus. Trends Microbiol. 2008, 16, 588–595. [Google Scholar] [CrossRef] [PubMed]
- BHIVA. British HIV Association Guidelines for the Management of HIV-2 2021. 2021. Available online: https://www.bhiva.org/HIV-2-guidelines-consultation (accessed on 3 September 2021).
- Clavel, F.; Guétard, D.; Brun-Vézinet, F.; Chamaret, S.; Rey, M.A.; Santos-Ferreira, M.O.; Laurent, A.G.; Dauguet, C.; Katlama, C.; Rouzioux, C.; et al. Isolation of a new human retrovirus from West African patients with AIDS. Science 1986, 233, 343–346. [Google Scholar] [CrossRef]
- Barin, F.; M’Boup, S.; Denis, F.; Kanki, P.; Allan, J.S.; Lee, T.H.; Essex, M. Serological evidence for virus related to simian T-lymphotropic retrovirus III in residents of west Africa. Lancet 1985, 2, 1387–1389. [Google Scholar] [CrossRef]
- Gottlieb, G.S.; Sow, P.S.; Hawes, S.E.; Ndoye, I.; Coll-Seck, A.M.; Curlin, M.E.; Critchlow, C.W.; Kiviat, N.B.; Mullins, J.I. Molecular epidemiology of dual HIV-1/HIV-2 seropositive adults from Senegal, West Africa. AIDS Res. Hum. Retrovir. 2003, 19, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Visseaux, B.; Damond, F.; Matheron, S.; Descamps, D.; Charpentier, C. Hiv-2 molecular epidemiology. Infect. Genet. Evol. 2016, 46, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, A.K.; Padival, S. HIV-2. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2021. Available online: https://www.ncbi.nlm.nih.gov/books/NBK572083/ (accessed on 3 September 2021).
- de Silva, T.I.; van Tienen, C.; Onyango, C.; Jabang, A.; Vincent, T.; Loeff, M.F.; Coutinho, R.A.; Jaye, A.; Rowland-Jones, S.; Whittle, H.; et al. Population dynamics of HIV-2 in rural West Africa: Comparison with HIV-1 and ongoing transmission at the heart of the epidemic. AIDS 2013, 27, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Poulsen, A.G.; Kvinesdal, B.; Aaby, P. Prevalence of and mortality from human immunodeficiency virus type 2 in Bissau, West Africa. Lancet 1989, 1, 827–831. [Google Scholar] [CrossRef]
- Ingole, N.A.; Sarkate, P.P.; Paranjpe, S.M. HIV-2 infection: Where are we today? J. Glob. Infect. Dis. 2013, 5, 110–113. [Google Scholar] [CrossRef]
- Ekouevi, D.K.; Balestre, E.; Coffie, P.A.; Minta, D.; Messou, E.; Sawadogo, A.; Minga, A.; Sow, P.S.; Bissagnene, E.; Eholie, S.P.; et al. Characteristics of HIV-2 and HIV-1/HIV-2 Dually Seropositive Adults in West Africa Presenting for Care and Antiretroviral Therapy: The IeDEA-West Africa HIV-2 Cohort Study. PLoS ONE 2013, 8, e66135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- da Silva, Z.J.; Oliveira, I.; Andersen, A. Changes in prevalence and incidence of HIV-1, HIV-2 and dual infections in urban areas of Bissau, Guinea-Bissau: Is HIV-2 disappearing? AIDS 2008, 22, 1195–1202. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, W.P.; Van Der Loeff, M.S.; Aaby, P.; Whittle, H.; Bakker, R.; Buckner, M.; Dias, F.; White, R.G. Behaviour change and competitive exclusion can explain the diverging HIV-1 and HIV-2 prevalence trends in Guinea-Bissau. Epidemiol. Infect. 2008, 136, 551–561. [Google Scholar] [CrossRef] [PubMed]
- Fryer, H.R.; Van Tienen, C.; Schim Van Der Loeff, M. Predicting the extinction of HIV-2 in rural Guinea-Bissau. AIDS 2015, 29, 2479–2486. [Google Scholar] [CrossRef] [Green Version]
- Olesen, J.S.; Jespersen, S.; da Silva, Z.J. HIV-2 continues to decrease, whereas HIV-1 is stabilizing in Guinea-Bissau. AIDS 2018, 32, 1193–1198. [Google Scholar] [CrossRef] [PubMed]
- Berzow, D.; Descamps, D.; Obermeier, M.; Charpentier, C.; Kaiser, R.; Guertler, L.; Eberle, J.; Wensing, A.; Sierra, S.; Ruelle, J.; et al. Human Immunodeficiency Virus-2 (HIV-2): A Summary of the Present Standard of Care and Treatment Options for Individuals Living with HIV-2 in Western Europe. Clin. Infect. Dis. 2021, 72, 503–509. [Google Scholar] [CrossRef] [PubMed]
- de Mendoza, C.; Cabezas, T.; Caballero, E. Spanish HIV-2 Network. HIV type 2 epidemic in Spain: Challenges and missing opportunities. AIDS 2017, 31, 1353–1364. [Google Scholar] [CrossRef] [PubMed]
- Marquart, K.H.; Muller, H.A.G.; Brede, H.D. HIV-2 in West Germany. AIDS 1988, 2, 141. [Google Scholar]
- Evans, B.G.; Gill, O.N.; Gleave, S.R. HIV-2 in the United Kingdom—A review. CDR (Lond. Engl. Rev.) 1991, 1, R19–R23. [Google Scholar] [PubMed]
- Centers for Disease Control and Prevention. HIV-2 Infection Surveillance—United States, 1987–2009. MMWR Morb. Mortal Wkly. Rep. 2011, 60, 985–988. [Google Scholar]
- Faria, N.R.; Hodges-Mameletzis, I.; Silva, J.C.; Rodés, B.; Erasmus, S.; Paolucci, S.; Ruelle, J.; Pieniazek, D.; Taveira, N.; Treviño, A.; et al. Phylogeographical footprint of colonial history in the global dispersal of human immunodeficiency virus type 2 group A. J Gen Virol. 2012, 93, 889–899. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, A.C.; Valadas, E.; França, L.; Carvalho, C.; Aleixo, M.J.; Mendez, J.; Marques, R.; Sarmento, A.; Doroana, M.; Antunes, F.; et al. Population mobility and the changing epidemics of HIV-2 in Portugal. HIV Med. 2012, 13, 219–225. [Google Scholar] [CrossRef]
- Infeção VIH e SIDA em Por tugal-2019. Portugal. Ministério da Saúde. Direção-Geral da Saúde/Instituto Nacional de Saúde Doutor, Ricardo Jorge. Lisboa: DGS/INSA; 2019, ISBN 978-989-8794-68. Available online: https://www.dgs.pt/portal-da-estatistica-da-saude/diretoriode-informacao/diretorio-de-informacao/por-serie-1136517-pdf.aspx (accessed on 12 September 2021).
- Groupe D’experts Pour la Prise en Charge du VIH CNdS. Prise en Charge Médicale des Personnes Vivant Avec le VIH. Infection VIH-2; Diversité des VIH-1. 2016. Available online: https://cns.sante.fr/wpcontent/uploads/2017/01/experts-vih_diversite.pdf (accessed on 12 September 2021).
- Centers for Disease Control and Prevention (CDC). AIDS due to HIV-2 infection—New Jersey. MMWR Morb. Mortal Wkly. Rep. 1987, 37, 33–35. [Google Scholar]
- Shah, S.S. Diagnosis and Management of HIV-2 in Adults; Johns Hopkins University: Baltimore, MD, USA, 2019. [Google Scholar]
- Ayouba, A. Evidence for continuing cross-species transmission of SIVsmm to humans: Characterization of a new HIV-2 lineage in rural Cote d’Ivoire. AIDS 2013, 27, 2488–2491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damon, F. Identification of a highly divergent HIV type 2 and proposal for a change in HIV type 2 classification. AIDS Res. Hum. Retrovir. 2004, 20, 666–672. [Google Scholar] [CrossRef]
- Gao, F.; Yue, L.; Robertson, D.L.; Hill, S.C.; Hui, H.; Biggar, R.J.; Neequaye, A.E.; Whelan, T.M.; Ho, D.D.; Shaw, G.M. Genetic diversity of human immunodeficiency virus type 2: Evidence for distinct sequence subtypes with differences in virus biology. J. Virol. 1994, 68, 7433–7447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibe, S.; Yokomaku, Y.; Shiino, T.; Tanaka, R.; Hattori, J.; Fujisaki, S.; Iwatani, Y.; Mamiya, N.; Utsumi, M.; Kato, S.; et al. HIV-2 CRF01_AB: First Circulating Recombinant Form of HIV-2. JAIDS J. Acquir. Immune Defic. Syndr. 2010, 54, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Cella, E.; Foley, B.T.; Riva, E.; Scolamacchia, V.; Ceccarelli, G.; Vita, S.; Iannetta, M.; Ciardi, M.R.; D’Ettorre, G.; Angeletti, S.; et al. HIV-2 Infection in a Migrant from Gambia: The History of the Disease Combined with Phylogenetic Analysis Revealed the Real Source of Infection. AIDS Res. Hum. Retrovir. 2018, 34, 1090–1094. [Google Scholar] [CrossRef] [PubMed]
- Ciccozzi, M.; Cella, E.; Presti, A.L.; Giovanetti, M.; Veo, C.; Lai, A.; Dicuonzo, G.; Angeletti, S.; Ciotti, M.; Zehender, G. Phylogenetic analysis of human immunodeficiency virus type 2 group B. J. Glob. Infect. Dis. 2016, 8, 108–114. [Google Scholar] [CrossRef] [PubMed]
- d’Ettorre, G. An HIV type 2 case series in Italy: A phylogenetic analysis. AIDS Res. Hum. Retrovir. 2013, 29, 1254–1259. [Google Scholar] [CrossRef] [PubMed]
- Ciccozzi, M.; Callegaro, A.; Presti, A.L.; Cella, E.; Giovanetti, M.; Salpini, R.; Babakir-Mina, M.; Farina, C.; Maggiolo, F.; Perno, C.F.; et al. When phylogenetic analysis complements the epidemiological investigation: A case of HIV-2 infection, Italy. New Microbiol. 2013, 36, 93–96. [Google Scholar]
- Ciccozzi, M.; Babakir-Mina, M.; Cella, E.; Bertoli, A.; Presti, A.L.; Maniar, J.K.; Perno, C.F.; Ciotti, M. A Case of Italian HIV Type 2 Infection: A Genetic Analysis. AIDS Res. Hum. Retrovir. 2011, 27, 1333–1335. [Google Scholar] [CrossRef] [Green Version]
- Giovanetti, M.; Ciccozzi, M.; Parolin, C.; Borsetti, A. Molecular epidemiology of HIV-1 in African countries: A comprehensive overview. Pathogens. 2020, 9, 1072. [Google Scholar] [CrossRef]
- Costarelli, S.; Torti, C.; Rodella, A.; Baldanti, F.; Paolucci, S.; Lapadula, G.; Manca, N.; Quiros-Roldan, E.; Izzo, I.; Carosi, G. Screening and Management of HIV-2-Infected Individuals in Northern Italy. AIDS Patient Care STDs 2008, 22, 489–494. [Google Scholar] [CrossRef] [PubMed]
- Quiros-Roldan, E.; Castelli, F.; Pan, A.; Chiodera, S.; Casari, S.; Airoldi, M.; Caros, G. Evidence of HIV-2 infection in northern Italy. Infection 2001, 29, 362–363. [Google Scholar]
- Schim van der Loeff, M.F.; Aaby, P. Towards a better understanding of the epidemiology of HIV-2. AIDS 1999, 13, 69–84. [Google Scholar]
- Norrgren, H.; Andersson, S.; Biague, A.J.; Da Silva, Z.J.; Dias, F.; Nauclér, A.; Biberfeld, G. Trends and interaction of HIV-1 and HIV-2 in Guinea-Bissau, west Africa: No protection of HIV-2 against HIV-1 infection. AIDS 1999, 13, 701–707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engell-Sørensen, T.; Rieckmann, A.; Medina, C.; da Silva Té, D.; Rodrigues, A.; Fisker, A.B.; Aaby, P.; Erikstrup, C.; Jespersen, S.; Wejse, C.; et al. Life expectancy of HIV-infected patients followed at the largest hospital in Guinea-Bissau is one-fourth of life expectancy of the background population. Infection 2021, 49, 631–643. [Google Scholar] [CrossRef]
- MacNeil, A.; Sarr, A.D.; Sankalé, J.-L.; Meloni, S.T.; Mboup, S.; Kanki, P. Direct Evidence of Lower Viral Replication Rates In Vivo in Human Immunodeficiency Virus Type 2 (HIV-2) Infection than in HIV-1 Infection. J. Virol. 2007, 81, 5325–5330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reeves, J.D.; Doms, R.W. Human immunodeficiency virus type 2. J. Gen. Virol. 2002, 83, 1253–1265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanson, A.; Sarr, A.D.; Shea, A.; Jones, N.; Mboup, S.; Kanki, P.; Cao, H. Distinct Profile of T Cell Activation in HIV Type 2 Compared to HIV Type 1 Infection: Differential Mechanism for Immunoprotection. AIDS Res. Hum. Retrovir. 2005, 21, 791–798. [Google Scholar] [CrossRef]
- Michel, P.; Balde, A.T.; Roussilhon, C.; Aribot, G.; Sarthou, J.L.; Gougeon, M.L. Reduced immune activation and T cell apoptosis in human immunodeficiency virus type 2 compared with type 1: Correlation of T cell apoptosis with beta2 microglobulin concentration and disease evolution. J. Infect. Dis. 2000, 181, 64–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leligdowicz, A.; Feldmann, J.; Jaye, A.; Cotten, M.; Dong, T.; McMichael, A.; Whittle, H.; Rowland-Jones, S. Direct Relationship between Virus Load and Systemic Immune Activation in HIV-2 Infection. J. Infect. Dis. 2010, 201, 114–122. [Google Scholar] [CrossRef]
- Schindler, M.; Münch, J.; Kutsch, O.; Li, H.; Santiago, M.L.; Bibollet-Ruche, F. Nef-mediated suppression of T cell activation was lost in a lentiviral lineage that gave rise to HIV-1. Cell 2006, 125, 1055–1067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popper, S.J.; Sarr, A.D.; Travers, K.U.; Guèye-Ndiaye, A.; Mboup, S.; Essex, M.E.; Kanki, P.J. Lower Human Immunodeficiency Virus (HIV) Type 2 Viral Load Reflects the Difference in Pathogenicity of HIV-1 and HIV-2. J. Infect. Dis. 1999, 180, 1116–1121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marlink, R.; Kanki, P.; Thior, I.; Travers, K.; Eisen, G.; Siby, T.; Traore, I.; Hsieh, C.-C.; Dia, M.C.; Gueye, E.-H.; et al. Reduced Rate of Disease Development After HIV-2 Infection as Compared to HIV-1. Science 1994, 265, 1587–1590. [Google Scholar] [CrossRef] [PubMed]
- Jaffar, S.; Wilkins, A.; Ngom, P.T.; Sabally, S.; Corrah, T.; Bangali, J.E.; Rolfe, M.; Whittle, H.C. Rate of Decline of Percentage CD4+ Cells Is Faster in HIV-1 Than in HIV-2 Infection. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 1997, 16, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Drylewicz, J.; Matheron, S.; Lazaro, E.; Damond, F.; Bonnet, F.; Simon, F. Comparison of viro-immunological marker changes between HIV-1 and HIV-2-infected patients in France. AIDS 2008, 22, 457–468. [Google Scholar] [CrossRef] [PubMed]
- Matheron, S.; Pueyo, S.; Damond, F.; Simon, F.; Leprêtre, A.; Campa, P. Factors associated with clinical progression in HIV-2 infected-patients: The French ANRS cohort. AIDS 2003, 17, 2593–2601. [Google Scholar] [CrossRef] [PubMed]
- Bienaime, A.; Colson, P.; Moreau, J.; Zandotti, C.; Pellissier, J.-F.; Brouqui, P. Progressive multifocal leukoencephalopathy in HIV-2-infected patient. AIDS 2006, 20, 1342–1343. [Google Scholar] [CrossRef]
- Stoner, G.L.; Agostini, H.T.; Ryschkewitsch, C.F.; Mázló, M.; Gullotta, F.; Wamukota, W.; Lucas, S. Detection of JC virus in two African cases of progressive multifocal leukoencephalopathy including identification of JCV type 3 in a Gambian AIDS patient. J. Med. Microbiol. 1998, 47, 733–742. [Google Scholar] [CrossRef] [Green Version]
- Camacho, R.J. Special aspects of the treatment of HIV-2-infected patients. Intervirology 2012, 55, 79–183. [Google Scholar] [CrossRef] [PubMed]
- Esbjörnsson, J.; Mansson, F.; Kvist, A.; Isberg, P.E.; Nowroozalizadeh, S.; Biague, A.J.; da Silva, Z.J.; Jansson, M.; Fenyo, E.M.; Norrgren, H.; et al. Inhibition of the progression of HIV-1 disease from HIV-2 simultaneous infection. N. Engl. J. Med. 2012, 367, 224–232. [Google Scholar] [CrossRef] [PubMed]
- CDC. Laboratory Testing for the Diagnosis of HIV Infection: Updated Recommendations. 2014. Available online: https://stacks.cdc.gov/view/cdc/23447 (accessed on 12 September 2021).
- Peruski, A.H.; Wesolowski, L.G.; Delaney, K.P. Trends in HIV-2 Diagnoses and Use of the HIV-1/HIV-2 Differentiation Test—United States, 2010–2017. MMWR Morb. Mortal Wkly. Rep. 2020, 69, 63–66. [Google Scholar] [CrossRef] [PubMed]
- Hans, L.; Allmen, N.V.; Edelmann, A.; Hofmann, J.; Nilsson, A.Y.; Simon, C.O.; Seiverth, B.; Gohl, P.; Carmona, S. Early diagnosis of HIV-1 and HIV-2 using Cobas HIV-1/HIV-2 qualitative test: A novel qualitative nucleic acid amplification test for plasma, serum, and dried blood spot specimens. J. Acquir. Immune Defic. Syndr. 2021, 87, 1187–1195. [Google Scholar] [CrossRef]
- Yamazaki, S.; Kondo, M.; Sudo, K.; Ueda, T.; Fujiwara, H.; Hasegawa, N.; Kato, S. Qualitative Real-Time PCR Assay for HIV-1 and HIV-2 RNA. Jpn. J. Infect. Dis. 2016, 21, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Greenwald, J.L.; Burstein, G.R.; Pincus, J.; Branson, B. A rapid review of rapid HIV antibody tests. Curr. Infect. Dis. Rep. 2006, 8, 125–131. [Google Scholar] [CrossRef] [PubMed]
- de Mendoza, C.; Lozano, A.B.; Caballero, E.; Cabezas, T.; Ramos, J.M.; Soriano, V. Antiretroviral Therapy for HIV-2 Infection in Non-Endemic Regions. Aids Rev. 2021, 22, 44–56. [Google Scholar] [CrossRef]
- Poveda, E.; Briz, V.; Soriano, V. Enfuvirtide, the first fusion inhibitor to treat HIV infection. Aids Rev. 2005, 7, 139–147. [Google Scholar]
- Ren, J.; Bird, L.; Chamberlain, P.P.; Stewart-Jones, G.B.; Stuart, D.; Stammers, D.K. Structure of HIV-2 reverse transcriptase at 2.35-A resolution and the mechanism of resistance to non-nucleoside inhibitors. Proc. Natl. Acad. Sci. USA 2002, 99, 14410–14415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desbois, D.; Roquebert, B.; Peytavin, G.; Damond, F.; Collin, G.; Bénard, A.; Campa, P.; Matheron, S.; Chêne, G.; Brun-Veézinet, F.; et al. In Vitro Phenotypic Susceptibility of Human Immunodeficiency Virus Type 2 Clinical Isolates to Protease Inhibitors. Antimicrob. Agents Chemother. 2008, 52, 1545–1548. [Google Scholar] [CrossRef] [Green Version]
- Raugi, D.N.; Smith, R.A.; Gottlieb, G.; For the University of Washington-Dakar HIV-2 Study Group. Four Amino Acid Changes in HIV-2 Protease Confer Class-Wide Sensitivity to Protease Inhibitors. J. Virol. 2016, 90, 1062–1069. [Google Scholar] [CrossRef] [Green Version]
- Raugi, D.N.; Smith, R.A.; Ba, S.; Toure, M.; Traore, F.; Sall, F.; Pan, C.; Blankenship, L.; Montano, A.; Olson, J.; et al. Complex Patterns of Protease Inhibitor Resistance among Antiretroviral Treatment-Experienced HIV-2 Patients from Senegal: Implications for Second-Line Therapy. Antimicrob. Agents Chemother. 2013, 57, 2751–2760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McComsey, G.A.; Lingohr-Smith, M.; Rogers, R.; Lin, J.; Donga, P. Real-World Adherence to Antiretroviral Therapy Among HIV-1 Patients Across the United States. Adv. Ther. 2021, 38, 4961–4974. [Google Scholar] [CrossRef]
- Ekouevi, D.K.; Tchounga, B.K.; A Coffie, P.; Tegbe, J.; Anderson, A.M.; Gottlieb, G.S.; Vitoria, M.; Dabis, F.; Eholie, S.P. Antiretroviral therapy response among HIV-2 infected patients: A systematic review. BMC Infect. Dis. 2014, 14, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Menéndez-Arias, L.; Alvarez, M. Antiretroviral therapy and drug resistance in human immunodeficiency virus type 2 infection. Antivir. Res. 2014, 102, 70–86. [Google Scholar] [CrossRef] [PubMed]
- Witvrouw, M.; Pannecouque, C.; Switzer, W.M.; Folks, T.M.; De Clercq, E.; Heneine, W. Susceptibility of HIV-2, SIV and SHIV to various anti-HIV-1 compounds: Implications for treatment and postexposure prophylaxis. Antivir. Ther. 2004, 9, 57–65. [Google Scholar] [PubMed]
- Requena, S.; Lozano, A.B.; Caballero, E.; García, F.; Nieto, M.C.; Téllez, R.; Fernández, J.M.; Trigo, M.; Rodríguez-Avial, I.; Martín-Carbonero, L.; et al. Clinical experience with integrase inhibitors in HIV-2-infected individuals in Spain. J. Antimicrob. Chemother. 2019, 74, 1357–1362. [Google Scholar] [CrossRef] [PubMed]
- Le Hingrat, Q.; Collin, G.; Le, M. A new mechanism of resistance of HIV-2 to integrase inhibitors: A 5 amino-acids insertion in the integrase Cterminal domain. Clin. Infect. Dis. 2018, 1, 5153362. [Google Scholar]
- Ba, S.; Raugi, D.N.; Smith, R.A.; Sall, F.; Faye, K.; Hawes, S.E.; Sow, P.S.; Seydi, M.; Gottlieb, G.S.; University of Washington–Dakar HIV-2 Study Group. A Trial of a Single-tablet Regimen of Elvitegravir, Cobicistat, Emtricitabine, and Tenofovir Disoproxil Fumarate for the Initial Treatment of Human Immunodeficiency Virus Type 2 Infection in a Resource-limited Setting: 48-Week Results From Senegal, West Africa. Clin. Infect. Dis. 2018, 67, 1588–1594. [Google Scholar] [CrossRef]
- Raugi, D.N.; Ba, S.; Cisse, O.; Diallo, K.; Tamba, I.T.; Ndour, C.; Badiane, N.M.D.; Fortes, L.; Diallo, M.B.; Faye, D.; et al. University of Washington–Senegal HIV-2 Study Group. Long-term Experience and Outcomes of Programmatic Antiretroviral Therapy for Human Immunodeficiency Virus Type 2 Infection in Senegal, West Africa. Clin. Infect. Dis. 2021, 72, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Charpentier, C.; Camacho, R.; Ruelle, J.; Kaiser, R.; Eberle, J.; Gürtler, L.; Pironti, A.; Stürmer, M.; Brun-Vézinet, F.; Descamps, D.; et al. HIV-2EU: Supporting Standardized HIV-2 Drug Resistance Interpretation in Europe. Clin. Infect. Dis. 2013, 56, 1654–1658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charpentier, C.; Camacho, R.; Ruelle, J.; Eberle, J.; Gürtler, L.; Pironti, A.; Stürmer, M.; Brun-Vézinet, F.; Kaiser, R.; Descamps, D.; et al. HIV-2EU—Supporting Standardized HIV-2 Drug-Resistance Interpretation in Europe: An Update: Table 1. Clin. Infect. Dis. 2015, 61, 1346–1347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brun-Vezinet, F.; Charpentier, C. Update on the human immunodeficiency virus. Médecine Mal. Infect. 2013, 43, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Cavaco-Silva, J.; Aleixo, M.J.; Van Laethem, K.; Faria, D.; Valadas, E.; Gonçalves, M.D.F.; Gomes, P.; Vandamme, A.-M.; Cunha, C.; Camacho, R.J. Mutations selected in HIV-2-infected patients failing a regimen including atazanavir. J. Antimicrob. Chemother. 2013, 68, 190–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Treviño, A.; de Mendoza, C.; Caballero, E.; Rodríguez, C.; Parra, P.; Benito, R.; Cabezas, T.; Roc, L.; Aguilera, A.; Soriano, V.; et al. Drug resistance mutations in patients infected with HIV-2 living in Spain. J. Antimicrob. Chemother. 2011, 66, 1484–1488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Descamps, D.; Damond, F.; Matheron, S.; Collin, G.; Campa, P.; Delarue, S.; Pueyo, S.; Chêne, G.; Brun-Vézinet, F.; The French ANRS HIV-2 Cohort Study Group. High frequency of selection of K65R and Q151M mutations in HIV-2 infected patients receiving nucleoside reverse transcriptase inhibitors containing regimen. J. Med. Virol. 2004, 74, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Boyer, P.L.; Clark, P.K.; Hughes, S.H. HIV-1 and HIV-2 Reverse Transcriptases: Different Mechanisms of Resistance to Nucleoside Reverse Transcriptase Inhibitors. J. Virol. 2012, 86, 5885–5894. [Google Scholar] [CrossRef] [Green Version]
- Charpentier, C.; Eholié, S.; Anglaret, X.; Bertine, M.; Rouzioux, C.; Avettand-Fenoel, V.; Messou, E.; Minga, A.; Damond, F.; Plantier, J.-C.; et al. Genotypic resistance profiles of HIV-2-treated patients in West Africa. AIDS 2014, 28, 1161–1169. [Google Scholar] [CrossRef] [PubMed]
- Cohorte Nationale VIH-2 (ANRS CO VIH2) ClinicalTrials.gov Identifier: NCT04658329. 2021. Available online: https://clinicaltrials.gov/ct2/show/NCT04658329?recrs=adm&cond=HIV-2&draw=2&rank=1 (accessed on 14 September 2021).
- Prospective Observational Cohort Study on Mother to Child Transmission HIV1/HIV2 and Prevention (EPF). ClinicalTrials.gov Identifier: NCT03235310. 2021. Available online: https://clinicaltrials.gov/ct2/show/NCT03235310?recrs=adm&cond=HIV-2&draw=2&rank=2 (accessed on 14 September 2021).
- A Prospective Cohort for ex Vivo Cure Studies with Chronic HIV Infected Patients in the Netherlands (CHRONO). ClinicalTrials.gov Identifier: NCT04888754. 2021. Available online: https://clinicaltrials.gov/ct2/show/NCT04888754?recrs=adm&cond=HIV-2&draw=2&rank=3 (accessed on 14 September 2021).
HIV-1 | HIV-2 | |
---|---|---|
Origin | Chimpanzee | S. Mangabey |
Genetic diversity | High | Low |
Viral Characteristics | ||
Infectivity | High | Low |
Virulence | High | Low |
Pathogenicity | High | Low |
Clinical characteristics | ||
Illness | Majority develop AIDS | Majority LTNPs ≅25% develop AIDS |
Time to develop AIDS (without treatment) | <10 years | >20 years |
Opportunistic infections | Associated with similar opportunistic infections | |
Epidemiology | ||
Routes of transmission | Transmitted through the same routes | |
Vertical transmission | ≅40% | ≅4% |
Geographical spread of the disease | Global | Endemic in West Africa Sporadic in other countries |
Class | Antiretroviral Drugs: HIV-2 Activity | |
---|---|---|
Effective | Ineffective | |
NUCLEOS(T)IDE ANALOGS | tenofovir, lamivudine, emtricitabine, abacavir, islatravir | |
NON-NUCLEOSIDE ANALOGS | nevirapine, efavirenz, rilpivirine, etravirine, doravirine | |
PROTEASE INHIBITORS | lopinavir, darunavir, saquinavir | |
INTEGRASE INHIBITORS | raltegravir, elvitegravir, dolutegravir, bictegravir, cabotegravir | |
ENTRY INHIBITORS | maraviroc (CCR5 antagonist - in case of CCR5 tropism of the virus), ibalizumab | enfuvirtide (fusion inhibitor), fostemsavir |
MATURATION INHIBITORS | bevirimat |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ceccarelli, G.; Giovanetti, M.; Sagnelli, C.; Ciccozzi, A.; d’Ettorre, G.; Angeletti, S.; Borsetti, A.; Ciccozzi, M. Human Immunodeficiency Virus Type 2: The Neglected Threat. Pathogens 2021, 10, 1377. https://doi.org/10.3390/pathogens10111377
Ceccarelli G, Giovanetti M, Sagnelli C, Ciccozzi A, d’Ettorre G, Angeletti S, Borsetti A, Ciccozzi M. Human Immunodeficiency Virus Type 2: The Neglected Threat. Pathogens. 2021; 10(11):1377. https://doi.org/10.3390/pathogens10111377
Chicago/Turabian StyleCeccarelli, Giancarlo, Marta Giovanetti, Caterina Sagnelli, Alessandra Ciccozzi, Gabriella d’Ettorre, Silvia Angeletti, Alessandra Borsetti, and Massimo Ciccozzi. 2021. "Human Immunodeficiency Virus Type 2: The Neglected Threat" Pathogens 10, no. 11: 1377. https://doi.org/10.3390/pathogens10111377
APA StyleCeccarelli, G., Giovanetti, M., Sagnelli, C., Ciccozzi, A., d’Ettorre, G., Angeletti, S., Borsetti, A., & Ciccozzi, M. (2021). Human Immunodeficiency Virus Type 2: The Neglected Threat. Pathogens, 10(11), 1377. https://doi.org/10.3390/pathogens10111377