Microbiota from Specific Pathogen-Free Mice Reduces Campylobacter jejuni Chicken Colonization
Abstract
:1. Introduction
2. Results
2.1. Mouse Microbiota Reduced C. jejuni AR101 Chicken Colonization
2.2. SPF-Aerobe and SPF-Anaerobe Modulated the Chicken Microbiota
2.3. Chicken Noninfected Microbiota and Mouse SPF Microbiota Reduced C. jejuni Growth
2.4. An Aerobic Bacterial Isolate Reduced C. jejuni AR101 In Vitro Growth
2.5. Enterobacter102 Reduced C. jejuni AR101 Chicken Colonization
3. Discussion
4. Materials and Methods
4.1. Mouse Microbiota Preparation and Chicken Experiments of Microbiota Transplantation and C. jejuni Infection
4.2. Estimation of Microbiota Composition at Phylum Level
4.3. Isolation of Enterobacter102
4.4. Identification of Bacterial Species Using 16s rDNA and Sanger Sequencing
4.5. In Vitro Co-Culturing of C. jejuni with Various Microbiota
4.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Campylobacter. Available online: https://www.who.int/news-room/fact-sheets/detail/campylobacter (accessed on 21 October 2021).
- Hazards, E.P.o.B.; Koutsoumanis, K.; Allende, A.; Alvarez-Ordonez, A.; Bolton, D.; Bover-Cid, S.; Chemaly, M.; Davies, R.; De Cesare, A.; Herman, L.; et al. Role played by the environment in the emergence and spread of antimicrobial resistance (AMR) through the food chain. EFSA J. 2021, 19, e06651. [Google Scholar] [CrossRef]
- Pham, N.T.; Thongprachum, A.; Tran, D.N.; Nishimura, S.; Shimizu-Onda, Y.; Trinh, Q.D.; Khamrin, P.; Ukarapol, N.; Kongsricharoern, T.; Komine-Aizawa, S.; et al. Antibiotic Resistance of Campylobacter jejuni and C. coli Isolated from Children with Diarrhea in Thailand and Japan. Jpn. J. Infect. Dis. 2016, 69, 77–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bae, J.; Oh, E.; Jeon, B. Enhanced transmission of antibiotic resistance in Campylobacter jejuni biofilms by natural transformation. Antimicrob. Agents Chemother. 2014, 58, 7573–7575. [Google Scholar] [CrossRef] [Green Version]
- Hou, F.Q.; Sun, X.T.; Wang, G.Q. Clinical manifestations of Campylobacter jejuni infection in adolescents and adults, and change in antibiotic resistance of the pathogen over the past 16 years. Scand. J. Infect. Dis. 2012, 44, 439–443. [Google Scholar] [CrossRef] [PubMed]
- Szczepanska, B.; Kaminski, P.; Andrzejewska, M.; Spica, D.; Kartanas, E.; Ulrich, W.; Jerzak, L.; Kasprzak, M.; Bochenski, M.; Klawe, J.J. Prevalence, virulence, and antimicrobial resistance of Campylobacter jejuni and Campylobacter coli in white stork Ciconia ciconia in Poland. Foodborne Pathog. Dis. 2015, 12, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Mukherjee, S.; Chen, Y.; Li, C.; Young, S.; Warren, M.; Abbott, J.; Friedman, S.; Kabera, C.; Karlsson, M.; et al. Novel gentamicin resistance genes in Campylobacter isolated from humans and retail meats in the USA. J. Antimicrob. Chemother. 2015, 70, 1314–1321. [Google Scholar] [CrossRef] [Green Version]
- CDC. Foodborne Diseases Active Surveillance Network. Available online: https://www.cdc.gov/foodnet/index.html (accessed on 21 October 2021).
- EFSA-2021. Campylobacter and Salmonella Cases Stable in EU. Available online: https://www.efsa.europa.eu/en/news/campylobacter-and-salmonella-cases-stable-eu (accessed on 21 October 2021).
- CDC. Foodborne Diseases Active Surveillance Network (FoodNet) Fast. Available online: https://wwwn.cdc.gov/foodnetfast/ (accessed on 19 May 2021).
- CDC. Campylobacter (Campylobacteriosis). Available online: https://wwwn.cdc.gov/foodnetfast/ (accessed on 21 October 2021).
- Berden, J.H.; Muytjens, H.L.; van de Putte, L.B. Reactive arthritis associated with Campylobacter jejuni enteritis. Br. Med. J. 1979, 1, 380–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Speed, B.; Kaldor, J.; Cavanagh, P. Guillain-Barre syndrome associated with Campylobacter jejuni enteritis. J. Infect. 1984, 8, 85–86. [Google Scholar] [CrossRef]
- Boyanova, L.; Gergova, G.; Spassova, Z.; Koumanova, R.; Yaneva, P.; Mitov, I.; Derejian, S.; Krastev, Z. Campylobacter infection in 682 bulgarian patients with acute enterocolitis, inflammatory bowel disease, and other chronic intestinal diseases. Diagn. Microbiol. Infect. Dis. 2004, 49, 71–74. [Google Scholar] [CrossRef]
- Newman, A.; Lambert, J.R. Campylobacter jejuni causing flare-up in inflammatory bowel disease. Lancet 1980, 2, 919. [Google Scholar] [CrossRef]
- Gradel, K.O.; Nielsen, H.L.; Schonheyder, H.C.; Ejlertsen, T.; Kristensen, B.; Nielsen, H. Increased short- and long-term risk of inflammatory bowel disease after salmonella or campylobacter gastroenteritis. Gastroenterology 2009, 137, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Gibbens, J.C.; Pascoe, S.J.; Evans, S.J.; Davies, R.H.; Sayers, A.R. A trial of biosecurity as a means to control Campylobacter infection of broiler chickens. Prev. Vet. Med. 2001, 48, 85–99. [Google Scholar] [CrossRef]
- Hodgins, D.C.; Barjesteh, N.; St Paul, M.; Ma, Z.; Monteiro, M.A.; Sharif, S. Evaluation of a polysaccharide conjugate vaccine to reduce colonization by Campylobacter jejuni in broiler chickens. BMC Res. Notes 2015, 8, 204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguiar, V.F.; Donoghue, A.M.; Arsi, K.; Reyes-Herrera, I.; Metcalf, J.H.; de los Santos, F.S.; Blore, P.J.; Donoghue, D.J. Targeting motility properties of bacteria in the development of probiotic cultures against Campylobacter jejuni in broiler chickens. Foodborne Pathog. Dis. 2013, 10, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Kittler, S.; Fischer, S.; Abdulmawjood, A.; Glunder, G.; Klein, G. Colonisation of a phage susceptible Campylobacter jejuni population in two phage positive broiler flocks. PLoS ONE 2014, 9, e94782. [Google Scholar] [CrossRef] [PubMed]
- Hertwig, S.; Hammerl, J.A.; Appel, B.; Alter, T. Post-harvest application of lytic bacteriophages for biocontrol of foodborne pathogens and spoilage bacteria. Berl. Munch. Tierarztl. Wochenschr. 2013, 126, 357–369. [Google Scholar]
- Rosenquist, H.; Nielsen, N.L.; Sommer, H.M.; Norrung, B.; Christensen, B.B. Quantitative risk assessment of human campylobacteriosis associated with thermophilic Campylobacter species in chickens. Int. J. Food Microbiol. 2003, 83, 87–103. [Google Scholar] [CrossRef]
- CDC. Morbidity and Mortality Weekly Report. Available online: https://wonder.cdc.gov/mmwr/mmwrmort.asp (accessed on 19 June 2021).
- Sun, X.; Jia, Z. Microbiome modulates intestinal homeostasis against inflammatory diseases. Vet. Immunol. Immunopathol. 2018, 205, 97–105. [Google Scholar] [CrossRef]
- Fan, Y.; Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 2021, 19, 55–71. [Google Scholar] [CrossRef] [PubMed]
- Caricilli, A.M.; Castoldi, A.; Camara, N.O. Intestinal barrier: A gentlemen’s agreement between microbiota and immunity. World J. Gastrointest. Pathophysiol. 2014, 5, 18–32. [Google Scholar] [CrossRef]
- Subramanian, S.; Huq, S.; Yatsunenko, T.; Haque, R.; Mahfuz, M.; Alam, M.A.; Benezra, A.; DeStefano, J.; Meier, M.F.; Muegge, B.D.; et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature 2014, 510, 417–421. [Google Scholar] [CrossRef]
- Belkaid, Y.; Hand, T.W. Role of the microbiota in immunity and inflammation. Cell 2014, 157, 121–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caruso, R.; Lo, B.C.; Nunez, G. Host-microbiota interactions in inflammatory bowel disease. Nat. Rev. Immunol. 2020, 20, 411–426. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Winglee, K.; Gharaibeh, R.Z.; Gauthier, J.; He, Z.; Tripathi, P.; Avram, D.; Bruner, S.; Fodor, A.; Jobin, C. Microbiota-Derived Metabolic Factors Reduce Campylobacteriosis in Mice. Gastroenterology 2018, 154, 1751–1763.e1752. [Google Scholar] [CrossRef] [PubMed]
- Han, Z.; Willer, T.; Li, L.; Pielsticker, C.; Rychlik, I.; Velge, P.; Kaspers, B.; Rautenschlein, S. Influence of the Gut Microbiota Composition on Campylobacter jejuni Colonization in Chickens. Infect. Immun. 2017, 85, e00380-17. [Google Scholar] [CrossRef] [Green Version]
- Deng, W.; Dittoe, D.K.; Pavilidis, H.O.; Chaney, W.E.; Yang, Y.; Ricke, S.C. Current Perspectives and Potential of Probiotics to Limit Foodborne Campylobacter in Poultry. Front. Microbiol. 2020, 11, 583429. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Alenezi, T.; Almansour, A.; Wang, H.; Jia, Z.; Sun, X. The Role of Immune Response and Microbiota on Campylobacteriosis. In Campylobacter; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Scupham, A.J.; Patton, T.G.; Bent, E.; Bayles, D.O. Comparison of the cecal microbiota of domestic and wild turkeys. Microb. Ecol. 2008, 56, 322–331. [Google Scholar] [CrossRef]
- Kers, J.G.; Velkers, F.C.; Fischer, E.A.J.; Hermes, G.D.A.; Stegeman, J.A.; Smidt, H. Host and Environmental Factors Affecting the Intestinal Microbiota in Chickens. Front. Microbiol. 2018, 9, 235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, M.C.; Bessegatto, J.A.; Alfieri, A.A.; Weese, J.S.; Filho, J.A.; Oba, A. Different antibiotic growth promoters induce specific changes in the cecal microbiota membership of broiler chicken. PLoS ONE 2017, 12, e0171642. [Google Scholar] [CrossRef]
- Alrubaye, B.; Abraha, M.; Almansour, A.; Bansal, M.; Wang, H.; Kwon, Y.M.; Huang, Y.; Hargis, B.; Sun, X. Microbial metabolite deoxycholic acid shapes microbiota against Campylobacter jejuni chicken colonization. PLoS ONE 2019, 14, e0214705. [Google Scholar] [CrossRef] [Green Version]
- Shane, S.M. The significance of Campylobacter jejuni infection in poultry: A review. Avian Pathol. 1992, 21, 189–213. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.; Miller, J.F. Campylobacter jejuni colonization of mice with limited enteric flora. Infect. Immun. 2006, 74, 5261–5271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cammarota, G.; Ianiro, G.; Gasbarrini, A. Fecal microbiota transplantation for the treatment of Clostridium difficile infection: A systematic review. J. Clin. Gastroenterol. 2014, 48, 693–702. [Google Scholar] [CrossRef] [PubMed]
- Pang, X.; Hua, X.; Yang, Q.; Ding, D.; Che, C.; Cui, L.; Jia, W.; Bucheli, P.; Zhao, L. Inter-species transplantation of gut microbiota from human to pigs. ISME J. 2007, 1, 156–162. [Google Scholar] [CrossRef]
- Wei, S.; Morrison, M.; Yu, Z. Bacterial census of poultry intestinal microbiome. Poult. Sci. 2013, 92, 671–683. [Google Scholar] [CrossRef]
- Islam, K.B.; Fukiya, S.; Hagio, M.; Fujii, N.; Ishizuka, S.; Ooka, T.; Ogura, Y.; Hayashi, T.; Yokota, A. Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology 2011, 141, 1773–1781. [Google Scholar] [CrossRef] [PubMed]
- Sakaridis, I.; Ellis, R.J.; Cawthraw, S.A.; van Vliet, A.H.M.; Stekel, D.J.; Penell, J.; Chambers, M.; La Ragione, R.M.; Cook, A.J. Investigating the Association Between the Caecal Microbiomes of Broilers and Campylobacter Burden. Front. Microbiol. 2018, 9, 927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, Y.; Atarashi, K.; Plichta, D.R.; Arai, Y.; Sasajima, S.; Kearney, S.M.; Suda, W.; Takeshita, K.; Sasaki, T.; Okamoto, S.; et al. Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians. Nature 2021, 1–7. [Google Scholar] [CrossRef]
- Baffoni, L.; Gaggia, F.; Garofolo, G.; Di Serafino, G.; Buglione, E.; Di Giannatale, E.; Di Gioia, D. Evidence of Campylobacter jejuni reduction in broilers with early synbiotic administration. Int. J. Food Microbiol. 2017, 251, 41–47. [Google Scholar] [CrossRef]
- Augustinos, A.A.; Kyritsis, G.A.; Papadopoulos, N.T.; Abd-Alla, A.M.; Caceres, C.; Bourtzis, K. Exploitation of the Medfly Gut Microbiota for the Enhancement of Sterile Insect Technique: Use of Enterobacter sp. in Larval Diet-Based Probiotic Applications. PLoS ONE 2015, 10, e0136459. [Google Scholar] [CrossRef] [Green Version]
- Lowenthal, A.; Livni, G.; Amir, J.; Samra, Z.; Ashkenazi, S. Secondary bacteremia after rotavirus gastroenteritis in infancy. Pediatrics 2006, 117, 224–226. [Google Scholar] [CrossRef] [PubMed]
- Bar-Oz, B.; Preminger, A.; Peleg, O.; Block, C.; Arad, I. Enterobacter sakazakii infection in the newborn. Acta Paediatr. 2001, 90, 356–358. [Google Scholar] [CrossRef] [PubMed]
- Mon, K.K.; Saelao, P.; Halstead, M.M.; Chanthavixay, G.; Chang, H.C.; Garas, L.; Maga, E.A.; Zhou, H. Salmonella enterica Serovars Enteritidis Infection Alters the Indigenous Microbiota Diversity in Young Layer Chicks. Front. Vet. Sci. 2015, 2, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Latorre, J.D.; Bansal, M.; Abraha, M.; Al-Rubaye, B.; Tellez-Isaias, G.; Hargis, B.; Sun, X. Microbial metabolite deoxycholic acid controls Clostridium perfringens-induced chicken necrotic enteritis through attenuating inflammatory cyclooxygenase signaling. Sci. Rep. 2019, 9, 14541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, Y.; Almansour, A.; Bansal, M.; Alenezi, T.; Alrubaye, B.; Wang, H.; Sun, X. Microbiota attenuates chicken transmission-exacerbated campylobacteriosis in Il10(−/−) mice. Sci. Rep. 2020, 10, 20841. [Google Scholar] [CrossRef] [PubMed]
- Bansal, M.; Fu, Y.; Alrubaye, B.; Abraha, M.; Almansour, A.; Gupta, A.; Liyanage, R.; Wang, H.; Hargis, B.; Sun, X. A secondary bile acid from microbiota metabolism attenuates ileitis and bile acid reduction in subclinical necrotic enteritis in chickens. J. Anim. Sci. Biotechnol. 2020, 11, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef] [PubMed]
- Bacchetti De Gregoris, T.; Aldred, N.; Clare, A.S.; Burgess, J.G. Improvement of phylum- and class-specific primers for real-time PCR quantification of bacterial taxa. J. Microbiol. Methods 2011, 86, 351–356. [Google Scholar] [CrossRef]
Group A | Compared to Group B | Phylum | p-Value |
---|---|---|---|
Noninfected | SPF-Aerobe | Bacteroidetes | <0.001 |
Firmicutes | <0.001 | ||
SPF-Anaerobe | Bacteroidetes | <0.001 | |
Firmicutes | <0.001 | ||
Cj AR101 | Bacteroidetes | 0.02 | |
Firmicutes | 0.04 | ||
Cj AR101 | SPF-Aerobe + Cj AR101 | Bacteroidetes | <0.001 |
Firmicutes | <0.001 | ||
SPF-Anaerobe + Cj AR101 | Bacteroidetes | <0.001 | |
Firmicutes | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almansour, A.; Fu, Y.; Alenezi, T.; Bansal, M.; Alrubaye, B.; Wang, H.; Sun, X. Microbiota from Specific Pathogen-Free Mice Reduces Campylobacter jejuni Chicken Colonization. Pathogens 2021, 10, 1387. https://doi.org/10.3390/pathogens10111387
Almansour A, Fu Y, Alenezi T, Bansal M, Alrubaye B, Wang H, Sun X. Microbiota from Specific Pathogen-Free Mice Reduces Campylobacter jejuni Chicken Colonization. Pathogens. 2021; 10(11):1387. https://doi.org/10.3390/pathogens10111387
Chicago/Turabian StyleAlmansour, Ayidh, Ying Fu, Tahrir Alenezi, Mohit Bansal, Bilal Alrubaye, Hong Wang, and Xiaolun Sun. 2021. "Microbiota from Specific Pathogen-Free Mice Reduces Campylobacter jejuni Chicken Colonization" Pathogens 10, no. 11: 1387. https://doi.org/10.3390/pathogens10111387
APA StyleAlmansour, A., Fu, Y., Alenezi, T., Bansal, M., Alrubaye, B., Wang, H., & Sun, X. (2021). Microbiota from Specific Pathogen-Free Mice Reduces Campylobacter jejuni Chicken Colonization. Pathogens, 10(11), 1387. https://doi.org/10.3390/pathogens10111387