β-Lactam Resistance in Upper Respiratory Tract Pathogens Isolated from a Tertiary Hospital in Malaysia
Abstract
:1. Introduction
2. Results
2.1. Streptococcus Pneumoniae
2.2. Haemophilus Influenzae
2.3. Methicillin-Susceptible Staphylococcus aureus
2.4. In Vitro Efficiency of Flomoxef and Cefcapene
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains
4.2. Minimum Inhibitory Concentrations and Comparison of In Vitro Activity
4.3. Molecular Detection of Penicillin Resistance-Conferring Genes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Centre for Clinical Practice at NICE (UK). Respiratory Tract Infections—Antibiotic Prescribing: Prescribing of Antibiotics for Self-Limiting Respiratory Tract Infections in Adults and Children in Primary Care; National Institute for Health and Clinical Excellence: London, UK, 2008. [Google Scholar]
- Ministry of Health Malaysia. Ministry of Health Hospitals Admissions Data for Diseases of the Respiratory System. 2018. Available online: http://www.data.gov.my/data/en_US/dataset/kemasukan-ke-hospital-kkm-bagi-diseases-of-the-respiratory-system-malaysia/resource/0c6d18ca-5a0e-4a3c-9050-5de4d20c5afa (accessed on 24 January 2021).
- World Health Organization. Prevention of Hospital-Acquired Infections: A Practical Guide, 2nd ed.; Ducel, G., Fabry, J., Nicolle, L., Eds.; World Health Organization: Geneva, Switzerland, 2002. [Google Scholar]
- World Health Organization. Pneumonia Fact Sheets: World Health Organization. 2016. Available online: http://www.who.int/en/news-room/fact-sheets/detail/pneumonia (accessed on 10 February 2021).
- Hughes, A.J.; Ariffin, N.; Huat, T.L.; Abdul Molok, H.; Hashim, S.; Sarijo, J.; Abd Latif, N.H.; Abu Hanifah, Y.; Kamarulzaman, A. Prevalence of nosocomial infection and antibiotic use at a university medical center in Malaysia. Infect. Control Hosp. Epidemiol 2005, 26, 100–104. [Google Scholar] [CrossRef]
- Ministry of Health Malaysia. Ministry of Health Hospitals Mortality Data for Diseases of the Respiratory System. 2018. Available online: http://www.data.gov.my/data/en_US/dataset/kematian-di-hospital-kkm-bagi-diseases-of-the-respiratory-system-malaysia/resource/3d0f4699-5e75-4d5c-b54c-e88f3420dfe9# (accessed on 24 January 2021).
- Kronman, M.P.; Zhou, C.; Mangione-Smith, R. Bacterial prevalence and antimicrobial prescribing trends for acute respiratory tract infections. Pediatrics 2014, 134, e956. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention, CDC. Appropriate Antibiotic Use: Community Atlanta, Georgia, United States of America Centers for Disease Control and Prevention. 2015. Available online: http://www.cdc.gov/antibiotic-use/community/for-hcp/index.html (accessed on 7 February 2021).
- Teng, C.L.; Tong, S.F.; Khoo, E.M.; Lee, V.; Zailinawati, A.H.; Mimi, O.; Chen, W.S.; Nordin, S. Antibiotics for URTI and UTI—Prescribing in Malaysian primary care settings. Aust. Fam. Physician 2011, 40, 325–329. [Google Scholar]
- Huttner, A.; Harbarth, S.; Carlet, J.; Cosgrove, S.; Goossens, H.; Holmes, A.; Jarlier, V.; Voss, A.; Pittet, D. Antimicrobial resistance: A global view from the 2013 World Healthcare-Associated Infections Forum. Antimicrob. Resist. Infect. Control 2013, 2, 31. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, J. Antimicrobial resistance, from bench-to-publicside. Microbes Infect. Chemother. 2021, 1, e1182. [Google Scholar] [CrossRef]
- Dabernat, H.; Delmas, C.; Seguy, M.; Pelissier, R.; Faucon, G.; Bennamani, S.; Pasquier, C. Diversity of beta-lactam resistance-conferring amino acid substitutions in penicillin-binding protein 3 of Haemophilus influenzae. Antimicrob. Agents Chemother. 2002, 46, 2208–2218. [Google Scholar] [CrossRef] [Green Version]
- García-Cobos, S.; Campos, J.; Lázaro, E.; Román, F.; Cercenado, E.; García-Rey, C.; Pérez-Vázquez, M.; Oteo, J.; de Abajo, F. Ampicillin-resistant non-beta-lactamase-producing Haemophilus influenzae in Spain: Recent emergence of clonal isolates with increased resistance to cefotaxime and cefixime. Antimicrob. Agents Chemother. 2007, 51, 2564–2573. [Google Scholar] [CrossRef] [Green Version]
- Ubukata, K.; Shibasaki, Y.; Yamamoto, K.; Chiba, N.; Hasegawa, K.; Takeuchi, Y.; Sunakawa, K.; Inoue, M.; Konno, M. Association of amino acid substitutions in penicillin-binding protein 3 with beta-lactam resistance in beta-lactamase-negative ampicillin-resistant Haemophilus influenzae. Antimicrob. Agents Chemother. 2001, 45, 1693–1699. [Google Scholar] [CrossRef] [Green Version]
- Otsuka, T.; Chang, B.; Shirai, T.; Iwaya, A.; Wada, A.; Yamanaka, N.; Okazaki, M. Individual risk factors associated with nasopharyngeal colonization with Streptococcus pneumoniae and Haemophilus influenzae: A Japanese birth cohort study. Pediatr. Infect. Dis. J. 2013, 32, 709–714. [Google Scholar] [CrossRef]
- Vasoo, S.; Singh, K.; Hsu, L.Y.; Chiew, Y.F.; Chow, C.; Lin, R.T.; Tambyah, P.A. Increasing antibiotic resistance in Streptococcus pneumoniae colonizing children attending day-care centres in Singapore. Respirology 2011, 16, 1241–1248. [Google Scholar] [CrossRef]
- Ito, M.; Hotomi, M.; Maruyama, Y.; Hatano, M.; Sugimoto, H.; Yoshizaki, T.; Yamanaka, N. Clonal spread of beta-lactamase-producing amoxicillin-clavulanate-resistant (BLPACR) strains of non-typeable Haemophilus influenzae among young children attending a day care in Japan. Int. J. Pediatr. Otorhinolaryngol. 2010, 74, 901–906. [Google Scholar] [CrossRef] [Green Version]
- Soh, S.W.; Poh, C.L.; Lin, R.V. Serotype distribution and antimicrobial resistance of Streptococcus pneumoniae isolates from pediatric patients in Singapore. Antimicrob. Agents Chemother. 2000, 44, 2193–2196. [Google Scholar] [CrossRef] [Green Version]
- Le, C.-F.; Palanisamy, N.K.; Mohd Yusof, M.Y.; Sekaran, S.D. Capsular Serotype and Antibiotic Resistance of Streptococcus pneumoniae Isolates in Malaysia. PLoS ONE 2011, 6, e19547. [Google Scholar] [CrossRef] [Green Version]
- Phongsamart, W.; Srifeungfung, S.; Dejsirilert, S.; Chatsuwan, T.; Nunthapisud, P.; Treerauthaweeraphong, V.; Rungnobhakhun, P.; Chokephaibulkit, K. Serotype distribution and antimicrobial susceptibility of S. pneumoniae causing invasive disease in Thai children younger than 5 years old, 2000–2005. Vaccine 2007, 25, 1275–1280. [Google Scholar] [CrossRef]
- Zhang, B.; Gertz, R.E.; Liu, Z.; Li, Z.; Fu, W.; Beall, B. Characterization of highly antimicrobial-resistant clinical pneumococcal isolates recovered in a Chinese hospital during 2009-2010. J. Med. Microbiol. 2012, 61, 42–48. [Google Scholar] [CrossRef]
- Goh, S.L.; Kee, B.P.; Abdul Jabar, K.; Chua, K.H.; Nathan, A.M.; Bruyne, J.; Ngoi, S.T.; Teh, C.S.J. Molecular detection and genotypic characterisation of Streptococcus pneumoniae isolated from children in Malaysia. Pathog. Glob. Health 2020, 114, 46–54. [Google Scholar] [CrossRef]
- Diawara, I.; Nayme, K.; Katfy, K.; Barguigua, A.; Kettani-Halabi, M.; Belabbes, H.; Timinouni, M.; Zerouali, K.; Elmdaghri, N. Analysis of amino acid motif of penicillin-binding proteins 1a, 2b, and 2x in invasive Streptococcus pneumoniae nonsusceptible to penicillin isolated from pediatric patients in Casablanca, Morocco. BMC Res. Notes 2018, 11, 632. [Google Scholar] [CrossRef]
- Chewapreecha, C.; Marttinen, P.; Croucher, N.J.; Salter, S.J.; Harris, S.R.; Mather, A.E.; Hanage, W.P.; Goldblatt, D.; Nosten, F.H.; Turner, C.; et al. Comprehensive Identification of Single Nucleotide Polymorphisms Associated with Beta-lactam Resistance within Pneumococcal Mosaic Genes. PLoS Genet. 2014, 10, e1004547. [Google Scholar] [CrossRef] [Green Version]
- Job, V.; Carapito, R.; Vernet, T.; Dessen, A.; Zapun, A. Common alterations in PBP1a from resistant Streptococcus pneumoniae decrease its reactivity toward beta-lactams: Structural insights. J. Biol. Chem. 2008, 283, 4886–4894. [Google Scholar] [CrossRef] [Green Version]
- Varghese, R.; Neeravi, A.; Subramanian, N.; Baskar, P.; Anandhan, K.; Veeraraghavan, B. Analysis of Amino Acid Sequences of Penicillin-Binding Proteins 1a, 2b, and 2x in Invasive Streptococcus pneumoniae Nonsusceptible to Penicillin Isolated from Children in India. Microb. Drug Resist. 2021, 27, 311–319. [Google Scholar] [CrossRef]
- Calvez, P.; Breukink, E.; Roper, D.I.; Dib, M.; Contreras-Martel, C.; Zapun, A. Substitutions in PBP2b from β-Lactam-resistant Streptococcus pneumoniae Have Different Effects on Enzymatic Activity and Drug Reactivity. J. Biol. Chem. 2017, 292, 2854–2865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granger, D.; Boily-Larouche, G.; Turgeon, P.; Weiss, K.; Roger, M. Genetic analysis of pbp2x in clinical Streptococcus pneumoniae isolates in Quebec, Canada. J. Antimicrob. Chemother. 2005, 55, 832–839. [Google Scholar] [CrossRef] [Green Version]
- Asahi, Y.; Takeuchi, Y.; Ubukata, K. Diversity of substitutions within or adjacent to conserved amino acid motifs of penicillin-binding protein 2X in cephalosporin-resistant Streptococcus pneumoniae isolates. Antimicrob. Agents Chemother. 1999, 43, 1252–1255. [Google Scholar] [CrossRef] [Green Version]
- Nagai, K.; Davies, T.A.; Jacobs, M.R.; Appelbaum, P.C. Effects of amino acid alterations in penicillin-binding proteins (PBPs) 1a, 2b, and 2x on PBP affinities of penicillin, ampicillin, amoxicillin, cefditoren, cefuroxime, cefprozil, and cefaclor in 18 clinical isolates of penicillin-susceptible, -intermediate, and -resistant pneumococci. Antimicrob. Agents Chemother. 2002, 46, 1273–1280. [Google Scholar] [CrossRef] [Green Version]
- Chesnel, L.; Pernot, L.; Lemaire, D.; Champelovier, D.; Croizé, J.; Dideberg, O.; Vernet, T.; Zapun, A. The structural modifications induced by the M339F substitution in PBP2x from Streptococcus pneumoniae further decreases the susceptibility to beta-lactams of resistant strains. J. Biol. Chem. 2003, 278, 44448–44456. [Google Scholar] [CrossRef] [Green Version]
- Sanbongi, Y.; Ida, T.; Ishikawa, M.; Osaki, Y.; Kataoka, H.; Suzuki, T.; Kondo, K.; Ohsawa, F.; Yonezawa, M. Complete sequences of six penicillin-binding protein genes from 40 Streptococcus pneumoniae clinical isolates collected in Japan. Antimicrob. Agents Chemother. 2004, 48, 2244–2250. [Google Scholar] [CrossRef] [Green Version]
- Doi, Y.; Chambers, H.F. Penicillins and β-lactamase inhibitors. In Mandell, Douglas, Bennett’s Principles and Practice of Infectious Diseases, 8th, ed.; Bennett, J.E., Dolin, R., Blaser, M.J., Eds.; W.B. Saunders: Philadephia, PA, USA, 2015; pp. 263–277. [Google Scholar]
- Strachan, S.A.; Friedland, I.R. Therapy for penicillin-resistant Streptococcus pneumoniae. J. Med. Microbiol. 1995, 43, 237–238. [Google Scholar] [CrossRef]
- Jacobs, M.R. Worldwide trends in antimicrobial resistance among common respiratory tract pathogens in children. Pediatr. Infect. Dis. J. 2003, 22, S109–S119. [Google Scholar] [CrossRef]
- Yokota, S.-i.; Ohkoshi, Y.; Sato, K.; Fujii, N. High prevalence of β-lactam-resistant Haemophilus influenzae type b isolates derived from respiratory tract specimens in Japanese patients. Int. J. Infect. Dis. 2009, 13, 584–588. [Google Scholar] [CrossRef] [Green Version]
- Ubukata, K.; Chiba, N.; Morozumi, M.; Iwata, S.; Sunakawa, K. Longitudinal surveillance of Haemophilus influenzae isolates from pediatric patients with meningitis throughout Japan, 2000–2011. J. Infect. Chemother. 2013, 19, 34–41. [Google Scholar] [CrossRef]
- Skaare, D.; Allum, A.G.; Anthonisen, I.L.; Jenkins, A.; Lia, A.; Strand, L.; Tveten, Y.; Kristiansen, B.E. Mutant ftsI genes in the emergence of penicillin-binding protein-mediated beta-lactam resistance in Haemophilus influenzae in Norway. Clin. Microbiol. Infect. 2010, 16, 1117–1124. [Google Scholar] [CrossRef] [Green Version]
- Institute of Medical Research. National Surveillance of Antimicrobial Resistance, Malaysia. 2019. Available online: https://www.imr.gov.my/MyOHAR/index.php/site/archive_rpt (accessed on 10 February 2021).
- Zarizal, S.; Yeo, C.C.; Faizal, G.M.; Chew, C.H.; Zakaria, Z.A.; Jamil Al-Obaidi, M.M.; Syafinaz Amin, N.; Mohd Nasir, M.D. Nasal colonisation, antimicrobial susceptibility and genotypic pattern of Staphylococcus aureus among agricultural biotechnology students in Besut, Terengganu, east coast of Malaysia. Trop. Med. Int. Health 2018, 23, 905–913. [Google Scholar] [CrossRef] [Green Version]
- CLSI. Performance standards for antimicrobial susceptibility testing: Twenty-fifth informational supplement. In CLSI Document M100-S25; CLSI: Wayne, PA, USA, 2015. [Google Scholar]
- Richards, D.M.; Brogden, R.N. Ceftazidime. Drugs 1985, 29, 105–161. [Google Scholar] [CrossRef]
- Brakstad, O.G.; Aasbakk, K.; Maeland, J.A. Detection of Staphylococcus aureus by polymerase chain reaction amplification of the nuc gene. J. Clin. Microbiol. 1992, 30, 1654–1660. [Google Scholar] [CrossRef] [Green Version]
- Song, K.H.; Jung, S.I.; Lee, S.; Park, S.; Kim, E.S.; Park, K.H.; Park, W.B.; Choe, P.G.; Kim, Y.K.; Kwak, Y.G.; et al. Inoculum effect of methicillin-susceptible Staphylococcus aureus against broad-spectrum beta-lactam antibiotics. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 67–74. [Google Scholar] [CrossRef]
- Saeki, M.; Shinagawa, M.; Yakuwa, Y.; Nirasawa, S.; Sato, Y.; Yanagihara, N.; Takahashi, S. Inoculum effect of high concentrations of methicillin-susceptible Staphylococcus aureus on the efficacy of cefazolin and other beta-lactams. J. Infect. Chemother. 2018, 24, 212–215. [Google Scholar] [CrossRef]
- Stapleton, P.D.; Taylor, P.W. Methicillin resistance in Staphylococcus aureus: Mechanisms and modulation. Sci. Prog. 2002, 85, 57–72. [Google Scholar] [CrossRef]
- Bryskier, A.; Aszodi, J.; Chantot, J.-F. Parenteral cephalosporin classification. Expert Opin. Investig. Drugs 1994, 3, 145–171. [Google Scholar] [CrossRef]
- Arumugham, V.B.; Gujarathi, R.; Cascella, M. Third Generation Cephalosporins. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2021. [Google Scholar]
- Hancock, R.E.; Bellido, F. Antibacterial in vitro activity of fourth generation cephalosporins. J. Chemother. 1996, 8 (Suppl. S2), 31–36. [Google Scholar]
- Pucci, M.J.; Boice-Sowek, J.; Kessler, R.E.; Dougherty, T.J. Comparison of cefepime, cefpirome, and cefaclidine binding affinities for penicillin-binding proteins in Escherichia coli K-12 and Pseudomonas aeruginosa SC8329. Antimicrob. Agents Chemother. 1991, 35, 2312–2317. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Health Malaysia. National Antimicrobial Guideline 2019. In Programme PS.; Malaysia Pharmaceutical Services Programme, Petaling, J., Eds.; Ministry of Health Malaysia & Pharmaceutical Services Programme: Selangor, Malaysia, 2019. [Google Scholar]
- Cui, L.; Li, Y.; Lv, Y.; Xue, F.; Liu, J. Antimicrobial resistance surveillance of flomoxef in China. J. Infect. Chemother. 2015, 21, 402–404. [Google Scholar] [CrossRef]
- Yang, Q.; Zhang, H.; Cheng, J.; Xu, Z.; Hou, X.; Xu, Y. Flomoxef showed excellent in vitro activity against clinically important gram-positive and gram-negative pathogens causing community- and hospital-associated infections. Diagn. Microbiol. Infect. Dis. 2015, 81, 269–274. [Google Scholar] [CrossRef]
- Takakura, M.; Fukuda, Y.; Nomura, N.; Mitsuyama, J.; Yamaoka, K.; Asano, Y.; Sawamura, H.; Katsuragawa, K.; Hashido, H.; Matsukawa, Y.; et al. Antibacterial susceptibility surveillance of Haemophilus influenzae isolated from pediatric patients in Gifu and Aichi prefectures (2009–2010). Jpn. J. Antibiot. 2012, 65, 305–321. [Google Scholar] [PubMed]
- Choo, E.J.; Kwak, Y.G.; Lee, M.S.; Jeong, J.Y.; Choi, S.H.; Kim, N.J.; Kim, Y.S.; Woo, J.H.; Ryu, J. In vitro Antimicrobial Activity of Cefcapene against Clinical Isolates. Infect. Chemother. 2005, 37, 133–137. [Google Scholar]
- Kanegae, H.; Yamada, H.; Yamaguchi, T.; Kuroki, S.; Katoh, O. Clinical studies on flomoxef in respiratory tract infections. Jpn. J. Antibiot. 1987, 40, 1803–1808. [Google Scholar] [PubMed]
- Sato, H.; Narita, A.; Nakazawa, S.; Suzuki, H.; Mastumoto, K.; Nakanishi, Y.; Nakazawa, S.; Niino, K.; Nakada, Y. The study of flomoxef in the pediatric field. Jpn. J. Antibiot. 1987, 40, 1349–1363. [Google Scholar] [PubMed]
- Saito, A.; Hiraga, Y.; Watanabe, A.; Saito, A.; Shimada, K.; Kobayashi, H.; Odagiri, S.; Miki, F.; Soejima, R.; Oizumi, K.; et al. Comparative clinical study of cefcapene pivoxil and cefteram pivoxil in chronic respiratory tract infections by a double-blind method. J. Int. Med. Res. 2004, 32, 590–607. [Google Scholar] [CrossRef]
- Wang, H.L.; Huo, L.; Wang, Z.S.; Zhao, J.Y.; Xue, X.; Ge, G.Z.; Ren, J.L.; Xia, T.; Han, X.W.; Yue, H.M.; et al. Multicenter, double-blind, randomized controlled clinical trial of cefcapene pivoxil hydrochloride tablets in the treatment of acute bacterial infections. Chin. J. Clin. Pharmacol. 2012, 1, R978.11. [Google Scholar]
- Enright, M.C.; Spratt, B.G. A multilocus sequence typing scheme for Streptococcus pneumoniae: Identification of clones associated with serious invasive disease. Microbiology 1998, 144 Pt 11, 3049–3060. [Google Scholar] [CrossRef] [Green Version]
- Torigoe, H.; Seki, M.; Yamashita, Y.; Sugaya, A.; Maeno, M. Detection of Haemophilus influenzae by loop-mediated isothermal amplification (LAMP) of the outer membrane protein P6 gene. Jpn. J. Infect. Dis. 2007, 60, 55–58. [Google Scholar] [PubMed]
- Dias, C.A.; Teixeira, L.M.; Carvalho, M.D.G.; Beall, B. Sequential multiplex PCR for determining capsular serotypes of pneumococci recovered from Brazilian children. J. Med. Microbiol. 2007, 56, 1185–1188. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Liu, J.; Zhang, Z.; Liu, Y.; Wang, Y.; Liu, Y. Molecular characteristics of penicillin-binding protein 2b, 2x and 1a sequences in Streptococcus pneumoniae isolates causing invasive diseases among children in Northeast China. Eur. J. Clin. Microbiol. Infect. Dis. 2016, 35, 633–645. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- Tenover, F.C.; Huang, M.B.; Rasheed, J.K.; Persing, D.H. Development of PCR assays to detect ampicillin resistance genes in cerebrospinal fluid samples containing Haemophilus influenzae. J. Clin. Microbiol. 1994, 32, 2729–2737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
S. pneumoniae (n) (%) | H. influenzae (n) (%) | MSSA (n) (%) | |
---|---|---|---|
Gender | |||
Female | 27 (54) | 21 (42) | 18 (36) |
Male | 23 (46) | 29 (58) | 32 (64) |
Age Range | |||
<1 year | 7 (14) | 5 (10) | 12 (24) |
1–17 | 43 (86) | 45 (90) | 10 (20) |
18–59 | 0 (0) | 0 (0) | 18 (36) |
≥60 | 0 (0) | 0 (0) | 10 (20) |
Source of Specimen | |||
Bronchoalveolar lavage | 2 (4) | 0 (0) | 0 (0) |
Nasopharyngeal swab | 46 (92) | 50 (100) | 50 (100) |
Sputum | 2 (4) | 0 (0) | 0 (0) |
Serotype 1 | |||
3 | 1 (2) | - | - |
34 | 1 (2) | - | - |
11A/D/F | 3 (6) | - | - |
15A/F | 1 (2) | - | - |
19A | 2 (4) | - | - |
19F | 11 (22) | - | - |
23A | 3 (6) | - | - |
23F | 2 (4) | - | - |
6A/6B | 11 (22) | - | - |
6C | 3 (6) | - | - |
Non-typeable | 12 (24) | - | - |
Antimicrobial Agent | S. pneumoniae1 | H. influenzae1 | MSSA 1 | ||||||
---|---|---|---|---|---|---|---|---|---|
MIC Range | MIC50 | MIC90 | MIC Range | MIC50 | MIC90 | MIC Range | MIC50 | MIC90 | |
Ampicillin | ≤0.125–128 | 16 | 64 | 0.5–>256 | 4 | >256 | ≤0.125–128 | 32 | 64 |
Penicillin G | ≤0.03–8 | 2 | 4 | 0.25–>64 | 1 | >64 | ≤0.03–>64 | 32 | >64 |
Piperacillin | ≤0.03–16 | 2 | 8 | ≤0.03–>64 | ≤0.03 | >64 | 0.5–>128 | 64 | >128 |
Ticarcillin | 1–>64 | ≥64 | >64 | 0.25–>64 | 2 | >64 | 2–32 | 16 | 32 |
Amoxicillin-clavulanate (2:1) | ≤0.03/0.015–32/16 | 2/1 | 8/4 | 0.125/0.06–>64/32 | 2/1 | 32/16 | ≤0.125/0.06–8/4 | 2/1 | 4/2 |
Cefotaxime-clavulanate 2 | ≤0.03–1 | 0.06 | 0.5 | ≤0.03–0.5 | ≤0.03 | 0.25 | 0.25–2 | 1 | 2 |
Ceftazidime-clavulanate 2 | ≤0.03–32 | 0.125 | 2 | ≤0.03–4 | 0.25 | 2 | 16–256 | 64 | 128 |
Piperacillin-tazobactam 3 | ≤0.03–2 | 0.5 | 1 | ≤0.03–1 | ≤0.03 | 1 | 0.5–64 | 16 | 64 |
Ticarcillin-clavulanate 4 | 1–>64 | ≥ 64 | >64 | 0.125–16 | 1 | 2 | 0.5–16 | 8 | 8 |
Cefmetazole | 0.125–64 | 4 | 32 | 1–8 | 8 | 8 | 0.5–2 | 1 | 2 |
Cefoxitin | 32–>64 | >64 | >64 | 1–>64 | 4 | >64 | 2–4 | 4 | 4 |
Cefcapene | ≤0.03–8 | 0.5 | 2 | ≤0.03–1 | ≤0.03 | 0.125 | 0.125–1 | 0.5 | 1 |
Cefoperazone | ≤0.03–32 | 4 | 32 | ≤0.03–16 | 0.125 | 8 | 0.25–8 | 4 | 8 |
Cefotaxime | ≤0.03–2 | 0.125 | 2 | ≤0.03–4 | ≤0.03 | 0.25 | 0.25–2 | 1 | 2 |
Ceftazidime | ≤0.03–64 | 2 | 16 | 0.06–64 | 1 | 8 | 32–>256 | 128 | 256 |
Ceftriaxone | ≤0.03–4 | 0.5 | 2 | ≤0.03–0.5 | ≤0.03 | 0.25 | 2–4 | 2 | 4 |
Cefepime | ≤0.03–2 | 0.25 | 1 | 0.06–2 | 0.25 | 0.5 | 0.5–4 | 2 | 2 |
Imipenem | 0.06–32 | 0.5 | 16 | 0.5–32 | 2 | 4 | ≤0.03 | ≤0.03 | ≤0.03 |
Meropenem | ≤0.03–2 | 0.5 | 1 | ≤0.03–0.5 | 0.125 | 0.5 | ≤0.03–0.06 | 0.06 | 0.06 |
Flomoxef | 0.125–16 | 0.5 | 16 | 0.5–4 | 1 | 4 | 0.06–0.5 | 0.25 | 0.25 |
Oxacillin 5 | - | - | - | - | - | - | ≤0.125–0.5 | 0.25 | 0.5 |
Mutation Profile 1 | No. of Strains | Ampicillin MIC Range (µg/mL) | Penicillin G MIC Range (µg/mL) | Penicillin-Binding Protein (PBP) motifs 2,3 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PBP1a | PBP2b | PBP2x | ||||||||||
STMK (370–373) | SRNVP (428–432) | KTG (557–559) | SVVK (385–388) | SSNT (442–445) | KTGTA (614–618) | STMK (337–340) | HSSN (395–397) | LKSG (546–549) | ||||
M01 | 1 | 4 | 1 | ---- | ----- | --- | ---- | ---- | ----- | ---- | L--- | V--- |
M02 | 3 | 16–64 | 4 | -S-- | ----T | --- | ---- | ---- | ----- | -A-- | ---- | V--- |
M03 | 3 | <0.125–64 | 1–4 | -S-- | ----T | --- | ---- | ---- | ----- | ---- | ---- | ---- |
M04 | 1 | 16 | 4 | ---- | ----- | --- | ---- | ---A | ----G | -A-- | ---- | V--- |
M05 | 3 | 16–32 | 4 | -A-- | ----T | --- | ---- | ---A | ----- | ---- | ---- | ---- |
M06 | 3 | 4–32 | 2–4 | -S-- | ----T | --- | ---- | ---A | ----- | -A-- | ---- | V--- |
M07 | 1 | 2 | 0.25 | ---- | ----- | --- | ---- | ---A | ----- | ---- | ---- | ---- |
M08 | 2 | 4–16 | 0.25–4 | ---- | ----- | --- | ---- | ---A | ----- | -A-- | ---- | V--- |
M09 | 2 | 2–32 | 0.5–2 | ---- | ----- | --- | ---- | ---- | ----- | -A-- | ---- | V--- |
M10 | 1 | 16 | 4 | -A-- | ----T | --- | ---- | ---- | ----- | ---- | ---- | ---- |
M11 | 1 | 16 | 2 | -A-- | ----T | --- | ---- | ---A | ----- | -A-- | ---- | V--- |
M12 | 1 | 64 | 8 | -S-- | ----T | --- | ---- | ---A | ----G | -A-- | ---- | V--- |
M13 | 1 | 128 | 8 | ---- | ----- | --- | ---- | ---- | ----- | -A-- | ---- | ---- |
M14 | 1 | 32 | 2 | ---- | ----- | --- | ---- | ---- | ----- | -AF- | ---- | V--- |
$ | 6 | <0.125–16 | 0.125–4 | ---- | ----- | --- | ---- | ---- | ----- | ---- | ---- | ---- |
Amino Acid Substitution Sites 1,2 | Group 3 | Ampicillin MIC Range (µg/mL) | No. (%) of Strains |
---|---|---|---|
BLNAR | |||
Asp-350-Asn; Met-377-Ile; Gly-490-Glu; Ala-502-Val; Asn-526-Lys | IIb | 8 | 1 (9) |
Asp-350-Asn; Gly-490-Glu; Ala-502-Val; Asn-526-Lys | IIb | 2–4 | 5 (46) |
Asp-350-Asn; Gly-490-Glu; Asn-526-Lys; Ala-530-Ser | IIa | 4 | 2 (18) |
Asp-350-Asn; Met-377-Ile; Ala-502-Val; Asn-526-Lys | IIb | 4 | 1 (9) |
Asn-526-Lys; Ala-530-Ser | IIa | 8–128 | 2 (18) |
Asp-350-Asn | M | >256 | 1 (9) |
BLPACR | |||
Asp-350-Asn; Gly-490-Glu; Asn-526-Lys; Ala-530-Ser | IIa | 128 | 1 (9) |
Ile-449-Val; Asn-526-Lys | IId | 4–>256 | 3 (27) |
Asp-350-Asn | M | 4–>256 | 6 (55) |
Antimicrobial Agent | MIC Range (µg/mL) | Susceptibility Phenotype | S. pneumoniae (n) (%) | H. influenzae (n) (%) | MSSA (n) (%) |
---|---|---|---|---|---|
Flomoxef 1 | ≤1 | Susceptible | 29 (58) | 25 (50) | 50 (100) |
2–8 | Susceptible | 15 (30) | 25 (50) | 0 (0) | |
≥16 | Resistant | 6 (12) | 0 (0) | 0 (0) | |
Cefcapene 2 | ≤1 | Susceptible | 40 (80) | 50 (100) | 50 (100) |
2 | Intermediate | 9 (18) | 0 (0) | 0 (0) | |
≥4 | Resistant | 1 (2) | 0 (0) | 0 (0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ngoi, S.T.; Muhamad, A.N.; Teh, C.S.J.; Chong, C.W.; Abdul Jabar, K.; Chai, L.C.; Leong, K.C.; Tee, L.H.; AbuBakar, S. β-Lactam Resistance in Upper Respiratory Tract Pathogens Isolated from a Tertiary Hospital in Malaysia. Pathogens 2021, 10, 1602. https://doi.org/10.3390/pathogens10121602
Ngoi ST, Muhamad AN, Teh CSJ, Chong CW, Abdul Jabar K, Chai LC, Leong KC, Tee LH, AbuBakar S. β-Lactam Resistance in Upper Respiratory Tract Pathogens Isolated from a Tertiary Hospital in Malaysia. Pathogens. 2021; 10(12):1602. https://doi.org/10.3390/pathogens10121602
Chicago/Turabian StyleNgoi, Soo Tein, Anis Najwa Muhamad, Cindy Shuan Ju Teh, Chun Wie Chong, Kartini Abdul Jabar, Lay Ching Chai, Kin Chong Leong, Loong Hua Tee, and Sazaly AbuBakar. 2021. "β-Lactam Resistance in Upper Respiratory Tract Pathogens Isolated from a Tertiary Hospital in Malaysia" Pathogens 10, no. 12: 1602. https://doi.org/10.3390/pathogens10121602
APA StyleNgoi, S. T., Muhamad, A. N., Teh, C. S. J., Chong, C. W., Abdul Jabar, K., Chai, L. C., Leong, K. C., Tee, L. H., & AbuBakar, S. (2021). β-Lactam Resistance in Upper Respiratory Tract Pathogens Isolated from a Tertiary Hospital in Malaysia. Pathogens, 10(12), 1602. https://doi.org/10.3390/pathogens10121602