Suitability of GWAS as a Tool to Discover SNPs Associated with Tick Resistance in Cattle: A Review
Abstract
:1. Introduction
2. GWAS Overview
3. Computer Software for GWAS and Genomic Public Databases
4. Available Genotyping Platforms and Coverage
5. Testing for an Association
6. Post GWAS Analysis
7. Factors Influencing the Success of GWAS
7.1. GWAS Experimental Design
7.2. Phenotyping
7.3. Population Size
7.4. Data Quality Control for GWAS
7.5. The Extent of LD Measures r2 in GWAS
7.6. The Effect of Genotype−Environment Interaction
7.7. Batch Effect
7.8. Genotype Imputation as a Cost Effective Approach to Improve the Power of GWASs
8. Progress on Tick Resistance GWAS in Cattle
9. Breeding Cattle for Tick Resistance
10. Limitations for GWAS to Uncover Tick Resistance Causal Variants in Cattle
11. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cardoso, F.F.; Gomes, C.C.G.; Sollero, B.P.; Oliveira, M.; Roso, V.M.; Piccoli, M.L.; Higa, R.H.; Yokoo, M.J.; Caetano, A.R.; Aguilar, I. Genomic prediction for tick resistance in Braford and Hereford cattle. J. Anim. Sci. 2015, 93, 2693–2705. [Google Scholar] [CrossRef] [PubMed]
- Muchenje, V.; Dzama, K.; Chimonyo, M.; Raats, J.G.; Strydom, P.E. Tick susceptibility and its effects on growth performance and carcass characteristics of Nguni, Bonsmara and Angus steers raised on natural pasture. Animal 2008, 2, 298–304. Available online: https://www.cambridge.org/core/journals/animal/article/abs/tick-susceptibility-and-its-effects-on-growth-performance-and-carcass-characteristics-of-nguni-bonsmara-and-angus-steers-raised-on-natural-pasture/F17959F52851D2B2B159FF9A9C30BE40 (accessed on 20 May 2019). [CrossRef] [Green Version]
- Ibelli, A.; Ribeiro, A.; Giglioti, R.; Regitano, L.; Alencar, M.; Chagas, A.; Paço, A.; Oliveira, H.; Duarte, J.; Oliveira, M. Resistance of cattle of various genetic groups to the tick Rhipicephalus microplus and the relationship with coat traits. Veter. Parasitol. 2012, 186, 425–430. Available online: https://www.sciencedirect.com/science/article/pii/S0304401711007515?via%3Dihub (accessed on 20 May 2019). [CrossRef] [Green Version]
- Guerrero, F.D.; Miller, R.J.; de León, A.A.P. Cattle tick vaccines: Many candidate antigens, but will a commercially viable product emerge? Int. J. Parasitol. 2012, 42, 421–427. [Google Scholar] [CrossRef]
- Castro-Janer, E.; Martins, J.R.; Mendes, M.C.; Namindome, A.; Klafke, G.M.; Schumaker, T.T.S. Diagnoses of fipronil resistance in Brazilian cattle ticks (Rhipicephalus (Boophilus) microplus) using in vitro larval bioassays. Veter. Parasitol. 2010, 173, 300–306. [Google Scholar] [CrossRef]
- Rajput, Z.I.; Hu, S.; Chen, W.; Arijo, A.G.; Xiao, C. Importance of ticks and their chemical and immunological control in livestock. J. Zhejiang Univ. Sci. B 2006, 7, 912–921. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1635821/ (accessed on 20 May 2019). [CrossRef]
- Mapholi, N.O.; Marufu, M.C.; Maiwashe, A.; Banga, C.B.; Muchenje, V.; MacNeil, M.D.; Chimonyo, M.; Dzama, K. Towards a genomics approach to tick (Acari: Ixodidae) control in cattle: A review. Ticks Tick-Borne Dis. 2014, 5, 475–483. [Google Scholar] [CrossRef]
- Mapholi, N.O.; Maiwashe, A.; Matika, O.; Riggio, V.; Bishop, S.C.; MacNeil, M.D.; Banga, C.; Taylor, J.F.; Dzama, K. Genome-wide association study of tick resistance in South African Nguni cattle. Ticks Tick-Borne Dis. 2016, 7, 487–497. [Google Scholar] [CrossRef] [PubMed]
- Nyangiwe, N.; Yawa, M.; Muchenje, V. Driving forces for changes in geographic range of cattle ticks (Acari: Ixodidae) in Africa: A review. S. Afr. J. Anim. Sci. 2018, 48, 829–841. Available online: http://www.scielo.org.za/scielo.php?script=sci_abstract&pid=S0375-15892018000600004&lng=en&nrm=iso&tlng=en (accessed on 20 May 2019). [CrossRef] [Green Version]
- Acosta-Rodríguez, R.; Alonso-Morales, R.; Balladares, S.; Flores-Aguilar, H.; García-Vazquez, Z.; Gorodezky, C. Analysis of BoLA class II microsatellites in cattle infested with Boophilus microplus ticks: Class II is probably associated with susceptibility. Veter. Parasitol. 2005, 127, 313–321. [Google Scholar] [CrossRef]
- Gasparin, G.; Miyata, M.; Coutinho, L.L.; Martinez, M.L.; Teodoro, R.L.; Furlong, J.; Machado, M.A.; Sliva, M.V.G.B.; Sonstegard, T.S.; Regitano, L.C.A. Mapping of quantitative trait loci controlling tick [Riphicephalus (Boophilus) microplus] resistance on bovine chromosomes 5, 7 and 14. Anim. Genet. 2007, 38, 453–459. [Google Scholar] [CrossRef]
- Machado, M.A.; SAzevedo, A.L.; Teodoro, R.L.; Pires, M.A.; CDPeixoto, M.G.; de Freitas, C.; Prata, M.C.A.; Furlong, J.; da Silva, M.V.G.; Guimaraes, S.F.E.; et al. Genome wide scan for quantitative trait loci affecting tick resistance in cattle (Bos taurus × Bos indicus). BMC Genom. 2010, 11, 280. Available online: https://bmcgenomics.biomedcentral.com/articles/10.1186/1471-2164-11-280 (accessed on 20 May 2019). [CrossRef]
- Sollero, B.P.; Junqueira, V.S.; Gomes, C.C.G.; Caetano, A.R.; Cardoso, F.F. Tag SNP selection for prediction of tick resistance in Brazilian Braford and Hereford cattle breeds using Bayesian methods. Genet. Sel. Evol. 2017, 49, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otto, P.I.; Guimarães, S.E.F.; Verardo, L.L.; Azevedo, A.L.S.; Vandenplas, J.; Sevillano, C.A.; Marques, D.B.D.; Pires, M.F.A.; Freitas, C.; Verneque, R.S.; et al. Genome-wide association studies for tick resistance in Bos taurus × Bos indicus crossbred cattle: A deeper look into this intricate mechanism. J. Dairy Sci. 2018, 101, 11020–11032. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marufu, M.; Qokweni, L.; Chimonyo, M.; Dzama, K. Relationships between tick counts and coat characteristics in Nguni and Bonsmara cattle reared on semiarid rangelands in South Africa. Ticks Tick-Borne Dis. 2011, 2, 172–177. [Google Scholar] [CrossRef]
- Ibeagha-Awemu, E.M.; Kgwatalala, P.; Ibeagha, A.E.; Zhao, X. A critical analysis of disease-associated DNA polymorphisms in the genes of cattle, goat, sheep, and pig. Mamm. Genome 2008, 19, 226–245. [Google Scholar] [CrossRef] [Green Version]
- Myles, S.; Peiffer, J.; Brown, P.J.; Ersoz, E.S.; Zhang, Z.; Costich, D.E.; Buckler, E.S. Association mapping: Critical considerations shift from genotyping to experimental design. Plant Cell 2009, 21, 2194–2202. [Google Scholar] [CrossRef] [Green Version]
- Visscher, P.M.; Wray, N.R.; Zhang, Q.; Sklar, P.; McCarthy, M.I.; Brown, M.A.; Yang, J. 10 Years of GWAS Discovery: Biology, Function, and Translation. Am. J. Hum. Genet. 2017, 101, 5–22. [Google Scholar] [CrossRef] [Green Version]
- Sherva, R.; Farrer, L.A. Power and Pitfalls of the Genome-Wide Association Study Approach to Identify Genes for Alzheimer’s Disease. Curr. Psychiatry Rep. 2011, 13, 138–146. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3154249/ (accessed on 20 May 2019). [CrossRef] [Green Version]
- Psifidi, A.; Banos, G.; Matika, O.; Desta, T.T.; Bettridge, J.; Hume, D.A.; Dessie, T.; Christely, R.; Wigely, R.; Hanotte, O.; et al. Genome-wide association studies of immune, disease and production traits in indigenous chicken ecotypes. Genet. Sel. Evol. 2016, 48, 74. [Google Scholar] [CrossRef]
- Patron, J.; Serra-Cayuela, A.; Han, B.; Li, C.; Wishart, D.S. Assessing the performance of genome-wide association studies for predicting disease risk. PLoS ONE 2019, 14, e0220215. Available online: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0220215 (accessed on 20 May 2019).
- Wang, Z.; Chatterjee, N. Increasing mapping precision of genomewide association studies: To genotype and impute, sequence, or both? Genome Biol. 2017, 18, 118. [Google Scholar] [CrossRef] [Green Version]
- Paes, G.P.; Viana, J.M.S.; Silva, F.F.E.; Mundim, G.B. Linkage disequilibrium, SNP frequency change due to selection, and association mapping in popcorn chromosome regions containing QTLs for quality traits. Genet. Mol. Biol. 2016, 39, 97–110. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4807383/ (accessed on 20 May 2019). [CrossRef] [PubMed] [Green Version]
- Amos, C.I. Successful design and conduct of genome-wide association studies. Hum. Mol. Genet. 2007, 16, R220–R225. [Google Scholar] [CrossRef]
- Greely, H.T. The uneasy ethical and legal underpinnings of large-scale genomic biobanks. Annu. Rev. Genom. Hum. Genet. 2007, 8, 343–364. [Google Scholar] [CrossRef]
- Reed, E.; Nunez, S.; Kulp, D.; Qian, J.; Reilly, M.P.; Foulkes, A.S. A guide to genome-wide association analysis and post-analytic interrogation. Stat. Med. 2015, 34, 3769–3792. [Google Scholar] [CrossRef]
- Bermingham, M.L.; Bishop, S.C.; Woolliams, J.A.; Pong-Wong, R.; Allen, A.R.; McBride, S.H.; Ryder, J.J.; Wright, D.M.; Skuce, R.A.; McDowell, S.W.J.; et al. Genome-wide association study identifies novel loci associated with resistance to bovine tuberculosis. Heredity 2014, 112, 543–551. [Google Scholar] [CrossRef] [Green Version]
- Sodeland, M.; Kent, M.P.; Olsen, H.G.; Opsal, M.A.; Svendsen, M.; Sehested, E.; Hayes, B.J.; Lien, S. Quantitative trait loci for clinical mastitis on chromosomes 2, 6, 14 and 20 in Norwegian Red cattle. Anim. Genet. 2011, 42, 457–465. [Google Scholar] [CrossRef]
- Lee, B.-Y.; Lee, K.-N.; Lee, T.; Park, J.-H.; Kim, S.-M.; Lee, H.-S.; Chung, D.-S.; Shim, H.-S.; Lee, H.-K.; Kim, H. Bovine Genome-wide Association Study for Genetic Elements to Resist the Infection of Foot-and-mouth Disease in the Field. Asian-Australas. J. Anim. Sci. 2015, 28, 166–170. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4283160/ (accessed on 20 May 2019). [CrossRef] [PubMed] [Green Version]
- Xia, J.; Fan, H.; Chang, T.; Xu, L.; Zhang, W.; Song, Y.; Bo, Z.; Zhang, L.; Gao, X.; Chen, Y.; et al. Searching for new loci and candidate genes for economically important traits through gene-based association analysis of Simmental cattle. Sci. Rep. 2017, 7, 42048. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5294460/ (accessed on 20 May 2019). [CrossRef] [Green Version]
- Santiago, G.G.; Siqueira, F.; Cardoso, F.F.; Regitano, L.C.A.; Ventura, R.; Sollero, B.P.; Souza, M.D.; Monkry, F.B.; Ferreria, A.B.R.; Torres, R.A.A. Genomewide association study for production and meat quality traits in Canchim beef cattle. J. Anim. Sci. 2017, 95, 3381–3390. [Google Scholar] [CrossRef]
- Yue, S.J.; Zhao, Y.Q.; Gu, X.R.; Yin, B.; Jiang, Y.L.; Wang, Z.H.; Shi, K.R. A genome-wide association study suggests new candidate genes for milk production traits in Chinese Holstein cattle. Anim. Genet. 2017, 48, 677–681. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Yao, Y.; Ma, P.; Wang, Q.; Pan, Y. Haplotype-based genome-wide association study identifies loci and candidate genes for milk yield in Holsteins. PLoS ONE 2018, 13, e0192695. [Google Scholar] [CrossRef] [Green Version]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007, 81, 559–575. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1950838/ (accessed on 20 May 2019). [CrossRef] [Green Version]
- Aulchenko, Y.S.; Ripke, S.; Isaacs, A.; van Duijn, C.M. GenABEL: An R library for genome-wide association analysis. Bioinformatics 2007, 23, 1294–1296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helix, G. SNP & Variation Suite; Golden Helix, Inc.: Bozeman, MT, USA, 2017; Available online: https://www.goldenhelix.com/products/SNP_Variation/index.html (accessed on 1 June 2019).
- Curtis, R.E.; Kinnaird, P.; Xing, E.P. GenAMap: Visualization Strategies for Structured Association Mapping. In Proceedings of the 2011 IEEE Symposium on Biological Data Visualization (BioVis), Providence, RI, USA, 23–24 October 2011. [Google Scholar]
- Zhou, X.; Stephens, M. Genome-wide efficient mixed-model analysis for association studies. Nat. Genet. 2012, 44, 821–824. [Google Scholar] [CrossRef] [Green Version]
- Misztal, I.; Lourenco, D.; Aguilar, I.; Legarra, A.; Vitezica, Z. Manual for BLUPF90 Family of Programs; pp. 1–142. Available online: http://nce.ads.uga.edu/wiki/lib/exe/fetch.php?media=blupf90_all6.pdf (accessed on 20 May 2019).
- Hu, Z.-L.; Park, C.A.; Reecy, J.M. Building a livestock genetic and genomic information knowledgebase through integrative developments of Animal QTLdb and CorrDB. Nucleic Acids Res. 2019, 47, D701–D710. [Google Scholar] [CrossRef] [Green Version]
- Vignal, A.; Milan, D.; SanCristobal, M.; Eggen, A. A review on SNP and other types of molecular markers and their use in animal genetics. Genet. Sel. Evol. 2002, 34, 275. [Google Scholar] [CrossRef] [Green Version]
- Brumfield, R.; Beerli, P.; Nickerson, D.; Edwards SBrumfield, R.T.; Beerli, P.; Nickerson, D.A.; Edwards, S.V. The utility of single nucleotide polymorphisms in inferences of population history. Trends Ecol. Evol. 2003, 18, 249–256. [Google Scholar] [CrossRef]
- Fan, B.; Du, Z.-Q.; Gorbach, D.M.; Rothschild, M.F. Development and Application of High-density SNP Arrays in Genomic Studies of Domestic Animals. Asian-Australas. J. Anim. Sci. 2010, 23, 833–847. Available online: https://www.koreascience.or.kr/article/JAKO201018861576911.page (accessed on 20 May 2019). [CrossRef]
- Scheben, A.; Yuan, Y.; Edwards, D. Advances in genomics for adapting crops to climate change. Curr. Plant Biol. 2016, 6, 2–10. Available online: https://www.sciencedirect.com/science/article/pii/S221466281630024X (accessed on 20 May 2019). [CrossRef] [Green Version]
- Ganal, M.W.; Polley, A.; Graner, E.-M.; Plieske, J.; Wieseke, R.; Luerssen, H.; Durstewwitz, G. Large SNP arrays for genotyping in crop plants. J. Biosci. 2012, 37, 821–828. [Google Scholar] [CrossRef] [PubMed]
- Lashmar, S.F.; Muchadeyi, F.C.; Visser, C. Genotype imputation as a cost-saving genomic strategy for South African Sanga cattle: A review. S. Afr. J. Anim. Sci. 2019, 49, 262–280. Available online: https://www.ajol.info/index.php/sajas/article/view/186645 (accessed on 20 May 2019). [CrossRef]
- Nicolazzi, E.L.; Biffani, S.; Biscarini, F.; Wengel, P.O.T.; Caprera, A.; Nazzicari, N.; Stella, A. Software solutions for the livestock genomics SNP array revolution. Anim. Genet. 2015, 46, 343–353. [Google Scholar] [CrossRef]
- Schmid, M.; Bennewitz, J. Invited review: Genome-wide association analysis for quantitative traits in livestock–A selective review of statistical models and experimental designs. Arch. Anim. Breed. 2017, 60, 335–346. Available online: https://aab.copernicus.org/articles/60/335/2017/ (accessed on 20 May 2019). [CrossRef]
- Alqudah, A.M.; Haile, J.K.; Alomari, D.Z.; Pozniak, C.J.; Kobiljski, B.; Börner, A. Genome-wide and SNP network analyses reveal genetic control of spikelet sterility and yield-related traits in wheat. Sci. Rep. 2020, 10, 2098. Available online: https://www.nature.com/articles/s41598-020-59004-4 (accessed on 20 May 2019). [CrossRef] [PubMed]
- Wang, Y.; Zhang, F.; Mukiibi, R.; Chen, L.; Vinsky, M.; Plastow, G.; Basarab, J.; Stothard, P.; Li, C. Genetic architecture of quantitative traits in beef cattle revealed by genome wide association studies of imputed whole genome sequence variants: II: Carcass merit traits. BMC Genom. 2020, 21, 38. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.; Lu, Y.; Yang, X.; Huang, J.; Zhou, Y.; Ali, F.; Wen, W.; Liu, J.; Li, J.; Yan, J. Genome Wide Association Studies Using a New Nonparametric Model Reveal the Genetic Architecture of 17 Agronomic Traits in an Enlarged Maize Association Panel. PLoS Genet. 2014, 10, e1004573. Available online: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1004573 (accessed on 20 May 2019). [CrossRef] [Green Version]
- Fernando, R.L.; Nettleton, D.; Southey, B.R.; Dekkers, J.C.M.; Rothschild, M.F.; Soller, M. Controlling the Proportion of False Positives in Multiple Dependent Tests. Genetics 2004, 166, 611–619. Available online: https://www.genetics.org/content/166/1/611 (accessed on 20 May 2019). [CrossRef] [Green Version]
- Gao, X.; Starmer, J.; Martin, E.R. A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms. Genet. Epidemiol. 2008, 32, 361–369. [Google Scholar] [CrossRef]
- Hochberg, Y.; Benjamini, Y. More powerful procedures for multiple significance testing. Stat. Med. 1990, 9, 811–818. [Google Scholar] [CrossRef] [PubMed]
- De, R.; Bush, W.S.; Moore, J.H. Bioinformatics challenges in genome-wide association studies (GWAS). Methods Mol. Biol. 2014, 1168, 63–81. [Google Scholar] [PubMed]
- Zeng, P.; Zhao, Y.; Qian, C.; Zhang, L.; Zhang, R.; Gou, J.; Liu, J.; Liu, L.; Chen, F. Statistical analysis for genome-wide association study. J. Biomed. Res. 2015, 29, 285–297. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4547377/ (accessed on 20 May 2019).
- Manolio, T.A.; Collins, F.S.; Cox, N.J.; Goldstein, D.B.; Hindorff, L.A.; Hunter, D.J.; McCarthy, M.I.; Ramos, E.M.; Cardon, L.R.; VHakravarti, A.; et al. Finding the missing heritability of complex diseases. Nature 2009, 461, 747–753. [Google Scholar] [CrossRef] [Green Version]
- Moore, J.H.; Asselbergs, F.W.; Williams, S.M. Bioinformatics challenges for genome-wide association studies. Bioinforma. Oxf. Engl. 2010, 26, 445–455. [Google Scholar] [CrossRef] [Green Version]
- Sandoval-Motta, S.; Aldana, M.; Martínez-Romero, E.; Frank, A. The Human Microbiome and the Missing Heritability Problem. Front. Genet. 2017, 8, 80. Available online: https://www.frontiersin.org/article/10.3389/fgene.2017.00080 (accessed on 20 May 2019). [CrossRef] [PubMed] [Green Version]
- Li, C.; Fu, Y.; Sun, R.; Wang, Y.; Wang, Q. Single-Locus and Multi-Locus Genome-Wide Association Studies in the Genetic Dissection of Fiber Quality Traits in Upland Cotton (Gossypium hirsutum L.). Front. Plant Sci. 2018, 9, 1083. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-M.; Jia, Z.; Dunwell, J.M. Editorial: The Applications of New Multi-Locus GWAS Methodologies in the Genetic Dissection of Complex Traits. Front. Plant Sci. 2019, 10, 100. Available online: https://www.frontiersin.org/article/10.3389/fpls.2019.00100 (accessed on 20 May 2019). [CrossRef] [PubMed] [Green Version]
- Chu, B.B.; Keys, K.L.; German, C.A.; Zhou, H.; Zhou, J.J.; Sobel, E.; Sinsheimer, J.S.; Lange, K. Iterative hard thresholding in genome-wide association studies: Generalized linear models, prior weights, and double sparsity. GigaScience 2020, 9, 1–13. [Google Scholar] [CrossRef]
- Zhang, Z.; Ersoz, E.; Lai, C.-Q.; Todhunter, R.J.; Tiwari, H.K.; Gore, M.A.; Bradbury, P.J.; Yu, J.; Arnett, D.K.; Ordovas, J.M.; et al. Mixed linear model approach adapted for genome-wide association studies. Nat. Genet. 2010, 42, 355–360. [Google Scholar] [CrossRef] [Green Version]
- Shenstone, E.; Cooper, J.; Rice, B.; Bohn, M.; Jamann, T.M.; Lipka, A.E. An assessment of the performance of the logistic mixed model for analyzing binary traits in maize and sorghum diversity panels. PLoS ONE 2018, 13, e0207752. Available online: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0207752 (accessed on 20 May 2019). [CrossRef] [PubMed]
- Wang, S.-B.; Feng, J.-Y.; Ren, W.-L.; Huang, B.; Zhou, L.; Wen, Y.-J.; Zhang, J.; Dunwell, J.M.; Xu, S.; Zhang, Y.-M. Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology. Sci. Rep. 2016, 6, 19444. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4726296/ (accessed on 20 May 2019). [CrossRef] [PubMed] [Green Version]
- Zhang, Y.-W.; Tamba, C.L.; Wen, Y.-J.; Li, P.; Ren, W.-L.; Ni, Y.-L.; Gao, J.; Zhang, Y.-M. mrMLM v4.0.2: An R Platform for Multi-locus Genome-wide Association Studies. Genom. Proteom. Bioinform. 2020, 18, 481–487. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8242264/ (accessed on 20 May 2019). [CrossRef]
- Wen, Y.; Zhang, Y.; Zhang, J.; Feng, J.; Zhang, Y. The Improved FASTmrEMMA and GCIM Algorithms for Genome-Wide Association and Linkage Studies in Large Mapping Populations. Crop J. 2020, 8, 723–732. [Google Scholar] [CrossRef]
- Wen, Y.-J.; Zhang, Y.-W.; Zhang, J.; Feng, J.-Y.; Dunwell, J.M.; Zhang, Y.-M. An efficient multi-locus mixed model framework for the detection of small and linked QTLs in F2. Briefings Bioinform. 2018, 20, 1913–1924. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6917223/ (accessed on 20 May 2019). [CrossRef] [PubMed]
- Wang, S.; Dvorkin, D.; Da, Y. SNPEVG: A graphical tool for GWAS graphing with mouse clicks. BMC Bioinform. 2012, 13, 319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, S.D. qqman: An R package for visualizing GWAS results using Q-Q and manhattan plots. J. Open Source Softw. 2018, 3, 731. [Google Scholar] [CrossRef] [Green Version]
- Cook, D.E.; Ryckman, K.R.; Murray, J.C. Generating Manhattan Plots in Stata. Stata J. 2013, 13, 323–328. [Google Scholar] [CrossRef] [Green Version]
- Grace, C.; Farrall, M.; Watkins, H.; Goel, A. Manhattan++: Displaying genome-wide association summary statistics with multiple annotation layers. BMC Bioinform. 2019, 20, 610. [Google Scholar] [CrossRef]
- Haller, T.; Tasa, T.; Metspalu, A. Manhattan Harvester and Cropper: A system for GWAS peak detection. BMC Bioinform. 2019, 20, 22. [Google Scholar] [CrossRef]
- Pruim, R.J.; Welch, R.P.; Sanna, S.; Teslovich, T.M.; Chines, P.S.; Gliedt, T.P.; Boehnke, M.; Abecasisi, G.R.; Willer, C.J. LocusZoom: Regional visualization of genome-wide association scan results. Bioinformatics 2010, 26, 2336–2337. [Google Scholar] [CrossRef] [Green Version]
- Chittoor, G.; Haack, K.; Mehta, N.R.; Laston, S.; Cole, S.A.; Comuzzie, A.G.; Butte, N.F.; Voruganti, V.S. Genetic variation underlying renal uric acid excretion in Hispanic children: The Viva La Familia Study. BMC Med. Genet. 2017, 18, 6. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5240212/ (accessed on 20 May 2019). [CrossRef] [PubMed] [Green Version]
- Zimin, A.V.; Delcher, A.L.; Florea, L.; Kelley, D.R.; Schatz, M.C.; Puiu, D.; Hanrahana, F.; Pertea, G.; Tassell, C.V.; Sonstehard, T.S.; et al. A whole-genome assembly of the domestic cow, Bos taurus. Genome Biol. 2009, 10, R42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanehisa, M.; Goto, S.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M. Data, information, knowledge and principle: Back to metabolism in KEGG. Nucleic Acids Res. 2014, 42, D199–D205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. Available online: https://www.nature.com/articles/nprot.2008.211 (accessed on 20 May 2019). [CrossRef] [PubMed]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Pickrell, J.; Clerget-Darpoux, F.; Bourgain, C. Power of genome-wide association studies in the presence of interacting loci. Genet. Epidemiology 2007, 31, 748–762. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/gepi.20238 (accessed on 20 May 2019). [CrossRef] [Green Version]
- Ledur, M.C.; Navarro, N.; Pérez-Enciso, M. Large-scale SNP genotyping in crosses between outbred lines: How useful is it? Heredity 2010, 105, 173–182. [Google Scholar] [CrossRef] [Green Version]
- Schmid, M.; Wellmann, R.; Bennewitz, J. Power and precision of QTL mapping in simulated multiple porcine F2 crosses using whole-genome sequence information. BMC Genet. 2018, 19, 22. [Google Scholar] [CrossRef] [Green Version]
- Morin, P.A.; Luikart, G.; Wayne, R.K.; The SNP Workshop Group. SNPs in ecology, evolution and conservation. Trends Ecol. Evol. 2004, 19, 208–216. Available online: https://www.sciencedirect.com/science/article/pii/S0169534704000205 (accessed on 20 May 2019). [CrossRef]
- Burrow, H.; Mans, B.; Cardoso, F.; Birkett, M.; Kotze, A.; Hayes, B.; Mapholi, N.; Dzama, K.; Marufu, M.C.; Githaka, N.; et al. Towards a new phenotype for tick resistance in beef and dairy cattle: A review. Anim. Prod. Sci. 2019, 59, 1401–1427. [Google Scholar] [CrossRef] [Green Version]
- Mapholi, N.O.; Maiwashe, A.; Matika, O.; Riggio, V.; Banga, C.; MacNeil, M.D.; Muchenje, V.; Nephawe, K.; Dzama, K. Genetic parameters for tick counts across months for different tick species and anatomical locations in South African Nguni cattle. Trop. Anim. Health Prod. 2017, 49, 1201–1210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prayaga, K.C.; Corbet, N.J.; Johnston, D.J.; Wolcott, M.L.; Fordyce, G.; Burrow, H.M. Genetics of adaptive traits in heifers and their relationship to growth, pubertal and carcass traits in two tropical beef cattle genotypes. Anim. Prod. Sci. 2009, 49, 413–425. Available online: https://www.publish.csiro.au/an/EA08247 (accessed on 20 May 2019). [CrossRef] [Green Version]
- Burrow, H.M. Genetic Aspects of Cattle Adaptation in the Tropics. In The Genetics of Cattle; CAB International; Place: Oxfordshire, UK, 2014; Available online: https://rune.une.edu.au/web/handle/1959.11/17403 (accessed on 20 May 2019).
- Hong, E.P.; Park, J.W. Sample size and statistical power calculation in genetic association studies. Genom. Inform. 2012, 10, 117–122. [Google Scholar] [CrossRef]
- Kumar, J.; Pratap, A.; Solanki, R.K.; Gupta, D.S.; Goyal, A.; Chaturvedi, S.K.; Nadarajana, N.; Kumar, S. Genomic resources for improving food legume crops. J. Agric. Sci. 2011, 150, 289–318. Available online: https://www.cambridge.org/core/journals/journal-of-agricultural-science/article/abs/genomic-resources-for-improving-food-legume-crops/23984357B2E09BABF3F6A578631601A8 (accessed on 20 May 2019). [CrossRef]
- Yano, K.; Yamamoto, E.; Aya, K.; Takeuchi, H.; Lo, P.-C.; Hu, L.; Yamasaki, M.; Yoshida, S.; Kitano, H.; Hirano, K.; et al. Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice. Nat. Genet. 2016, 48, 927–934. [Google Scholar] [CrossRef] [PubMed]
- Klein, R.J. Power analysis for genome-wide association studies. BMC Genet. 2007, 8, 58. [Google Scholar] [CrossRef] [Green Version]
- Park, J.-H.; Wacholder, S.; Gail, M.H.; Peters, U.; Jacobs, K.; Chanock, S.J.; Chatterjee, N. Estimation of effect size distribution from genome-wide association studies and implications for future discoveries. Nat. Genet. 2010, 42, 570–575. [Google Scholar] [CrossRef] [Green Version]
- Anderson, C.A.; Pettersson, F.H.; Clarke, G.M.; Cardon, L.R.; Morris, A.P.; Zondervan, K.T. Data quality control in genetic case-control association studies. Nat. Protoc. 2010, 5, 1564–1573. Available online: https://www.nature.com/articles/nprot.2010.116 (accessed on 20 May 2019). [CrossRef] [Green Version]
- Teo, Y.Y. Common statistical issues in genome-wide association studies: A review on power, data quality control, genotype calling and population structure. Curr. Opin. Lipidol. 2008, 19, 133–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laird, N.M.; Horvath, S.; Xu, X. Implementing a unified approach to family-based tests of association. Genet. Epidemiol. 2000, 19 (Suppl. S1), S36–S42. [Google Scholar] [CrossRef]
- Wigginton, J.E.; Cutler, D.J.; Abecasis, G.R. A Note on Exact Tests of Hardy-Weinberg Equilibrium. Am. J. Hum. Genet. 2005, 76, 887–893. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1199378/ (accessed on 20 May 2019). [CrossRef] [PubMed] [Green Version]
- Slatkin, M. Linkage disequilibrium—Understanding the evolutionary past and mapping the medical future. Nat. Rev. Genet. 2008, 9, 477–485. Available online: https://www.nature.com/articles/nrg2361 (accessed on 20 May 2019). [CrossRef] [PubMed] [Green Version]
- Bush, W.S.; Moore, J.H. Chapter 11: Genome-wide association studies. PLoS Comput. Biol. 2012, 8, e1002822. [Google Scholar] [CrossRef] [Green Version]
- Flint-Garcia, S.; Thornsberry, J.; Buckler, E. Structure of Linkage Disequilibrium in Plants. Annu. Rev. Plant Biol. 2003, 54, 357–374. [Google Scholar] [CrossRef] [Green Version]
- Falconer, D.S.; Mackay, T.F.C. Introduction to Quantitative Genetics; Subsequent Edition; Benjamin-Cummings Pub. Co.: Harlow, UK, 1996; p. 464. [Google Scholar]
- Kolmodin, R.; Strandberg, E.; Madsen, P.; Jensen, J.; Jorjani, H. Genotype by Environment Interaction in Nordic Dairy Cattle Studied Using Reaction Norms. Acta Agric. Scand. Sect.-Anim. Sci. 2002, 52, 11–24. [Google Scholar] [CrossRef]
- Mota, R.R.; Tempelman, R.J.; Lopes, P.S.; Aguilar, I.; Silva, F.F.; Cardoso, F.F. Genotype by environment interaction for tick resistance of Hereford and Braford beef cattle using reaction norm models. Genet. Sel. Evol. 2016, 48, 3. [Google Scholar] [CrossRef] [Green Version]
- Hayes, B.J.; Daetwyler, H.D.; Goddard, M.E. Models for Genome × Environment Interaction: Examples in Livestock. Crop. Sci. 2016, 56, 2251–2259. [Google Scholar] [CrossRef]
- Biegelmeyer, P.; Nizoli, L.Q.; Cardoso, F.F.; Dionello, N.J. Aspectos da resistência de bovinos ao carrapato rhipicephalus (boophilus) microplus. Arch. Zootec. 2012, 61, 1–11. Available online: https://www.uco.es/ucopress/az/index.php/az/article/view/2954 (accessed on 20 May 2019). [CrossRef] [Green Version]
- Mulder, H.A.; Bijma, P. Effects of genotype × environment interaction on genetic gain in breeding programs1. J. Anim. Sci. 2005, 83, 49–61. [Google Scholar] [CrossRef]
- Sae-Lim, P.; Grøva, L.; Olesen, I.; Varona, L. A comparison of nonlinear mixed models and response to selection of tick-infestation on lambs. PLoS ONE 2017, 12, e0172711. [Google Scholar] [CrossRef] [PubMed]
- Cooley, P.C.; Clark, R.F.; Folsom, R.E. Assessing Gene-Environment Interactions in Genome-Wide Association Studies: Statistical Approaches; Research Triangle Park (NC); RTI Press Research Report Series; 2014. Available online: http://www.ncbi.nlm.nih.gov/books/NBK532519/ (accessed on 20 May 2019).
- Winham, S.J.; Biernacka, J.M. Gene-environment interactions in genome-wide association studies: Current approaches and new directions. J. Child Psychol. Psychiatry 2013, 54, 1120–1134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marigorta, U.M.; Egibson, G. A simulation study of gene-by-environment interactions in GWAS implies ample hidden effects. Front. Genet. 2014, 5, 225. Available online: https://www.frontiersin.org/article/10.3389/fgene.2014.00225 (accessed on 20 May 2019). [CrossRef]
- Arnau-Soler, A.; Scotland, G.; Macdonald-Dunlop, E.; Adams, M.J.; Clarke, T.-K.; MacIntyre, D.J.; Milburn, K.; Navrady, L.; Scotland, G.; Major Depressive Disorder Working group of the Psychiatric Genomic Consortium; et al. Genome-wide by environment interaction studies of depressive symptoms and psychosocial stress in UK Biobank and Generation Scotland. Transl. Psychiatry 2019, 9, 1–13. Available online: https://www.nature.com/articles/s41398-018-0360-y (accessed on 20 May 2019). [CrossRef] [PubMed] [Green Version]
- Gali, K.K.; Sackville, A.; Tafesse, E.G.; Lachagari, V.R.; McPhee, K.; Hybl, M.; Mikic, A.; Smykal, P.; McGee, R.; Burstin, J.; et al. Genome-Wide Association Mapping for Agronomic and Seed Quality Traits of Field Pea (Pisum sativum L.). Front. Plant Sci. 2019, 10, 1538. Available online: https://www.frontiersin.org/article/10.3389/fpls.2019.01538 (accessed on 20 May 2019). [CrossRef] [PubMed]
- Eltaher, S.; Baenziger, P.S.; Belamkar, V.; Emara, H.A.; Nower, A.A.; Salem, K.F.M.; Alqudah, A.M.; Sallam, A. GWAS revealed effect of genotype × environment interactions for grain yield of Nebraska winter wheat. BMC Genom. 2021, 22, 2. [Google Scholar] [CrossRef]
- Turner, S.; Armstrong, L.L.; Bradford, Y.; Carlson, C.S.; Crawford, D.C.; Crenshaw, A.T.; de Andrade, M.; Dohey, K.F.; Haines, J.L.; Hayes, G.; et al. Quality Control Procedures for Genome-Wide Association Studies. Curr. Protoc. Hum. Genet. 2011, 68, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Howie, B.N.; Donnelly, P.; Marchini, J. A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies. PLoS Genet. 2009, 5, e1000529. Available online: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1000529 (accessed on 20 May 2019). [CrossRef] [PubMed] [Green Version]
- Naj, A.C. Genotype Imputation in Genome-Wide Association Studies. Curr. Protoc. Hum. Genet. 2019, 102, e84. [Google Scholar] [CrossRef]
- Spencer, C.C.A.; Su, Z.; Donnelly, P.; Marchini, J. Designing Genome-Wide Association Studies: Sample Size, Power, Imputation, and the Choice of Genotyping Chip. PLoS Genet. 2009, 5, e1000477. Available online: https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1000477 (accessed on 20 May 2019). [CrossRef] [PubMed] [Green Version]
- Garcia-Ruiz, A.; Ruiz-López, F.; Wiggans, G.; Van Tassell, C.; Montaldo, H. Effect of reference population size and available ancestor genotypes on imputation of Mexican Holstein genotypes. J. Dairy Sci. 2015, 98, 3478–3484. [Google Scholar] [CrossRef] [Green Version]
- Holm, H.; Gudbjartsson, D.F.; Sulem, P.; Masson, G.; Helgadottir, H.T.; Zanon, C.; Magnusson, O.T.; Helgasin, A.; Saemundsdottir, J.; Gylfason, A.; et al. A rare variant in MYH6 is associated with high risk of sick sinus syndrome. Nat. Genet. 2011, 43, 316–320. [Google Scholar] [CrossRef]
- Pistis, G.; Porcu, E.; Vrieze, S.I.; Sidore, C.; Steri, A.M.; Danjou, F.; Busonero, F.; Mulas, A.; Zoledziuewska, M.; Maschio, A.; et al. Rare variant genotype imputation with thousands of study-specific whole-genome sequences: Implications for cost-effective study designs. Eur. J. Hum. Genet. 2014, 23, 975–983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quick, C.; Anugu, P.; Musani, S.; Weiss, S.T.; Burchard, E.G.; White, M.J.; Keys, K.L.; Cucca, F.; Sidore, C.; Boehnke, M.; et al. Sequencing and imputation in GWAS: Cost-effective strategies to increase power and genomic coverage across diverse populations. Genet. Epidemiol. 2020, 44, 537–549. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7449570/ (accessed on 20 May 2019). [CrossRef] [PubMed]
- Sargolzaei, M.; Chesnais, J.; Schenkel, F. FImpute-An efficient imputation algorithm for dairy cattle populations. J. Dairy Sci. 2011, 94, 421. [Google Scholar]
- Tabor, A.E.; Ali, A.; Rehman, G.; Garcia, G.R.; Zangirolamo, A.F.; Malardo, T.; Jonsson, N.N. Cattle Tick Rhipicephalus microplus-Host Interface: A Review of Resistant and Susceptible Host Responses. Front. Cell. Infect. Microbiol. 2017, 7, 506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Turner, L.B.; Harrison, B.E.; Bunch, R.J.; Neto, L.R.P.; Li, Y.; Barendse, W.; Turner, L.B.; Harrison, B.E.; Bunch, R.J.; Neto, L.R.P.; et al. A Genome-Wide Association Study of Tick Burden and Milk Composition in Cattle. Anim. Prod. Sci. 2010, 50, 235–245. [Google Scholar] [CrossRef] [Green Version]
- Regitano, L.; Prayaga, K. Breeding for Disease Resistance in Farm Animals, 3rd ed.; CABI Publishing: Oxon, UK, 2010; pp. 295–314. [Google Scholar]
- Henshall, J.M. A genetic analysis of parasite resistance traits in a tropically adapted line of Bos taurus. Aust. J. Agric. Res. 2004, 55, 1109–1116. Available online: https://www.publish.csiro.au/ar/AR03085 (accessed on 20 May 2019). [CrossRef]
- Budeli, M.A.; Nephawe, K.A.; Norris, D.; Selapa, N.W.; Bergh, L.; Maiwashe, A. Genetic parameter estimates for tick resistance in Bonsmara cattle. S. Afr. J. Anim. Sci. 2010, 39. Available online: https://www.ajol.info/index.php/sajas/article/view/51125 (accessed on 20 May 2019). [CrossRef] [Green Version]
- Shyma, K.P.; Gupta, J.P.; Singh, V. Breeding strategies for tick resistance in tropical cattle: A sustainable approach for tick control. J. Parasit. Dis. 2013, 39, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frazer, K.A.; Murray, S.S.; Schork, N.J.; Topol, E.J. Human genetic variation and its contribution to complex traits. Nat. Rev. Genet. 2009, 10, 241–251. Available online: https://www.nature.com/articles/nrg2554 (accessed on 20 May 2019). [CrossRef] [PubMed]
- Aschard, H.; Lutz, S.; Maus, B.; Duell, E.J.; Fingerlin, T.; Chatterjee, N.; Kraft, P.; Steen, K.V. Challenges and opportunities in genome-wide environmental interaction (GWEI) studies. Qual. Life Res. 2012, 131, 1591–1613. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3677711/ (accessed on 20 May 2019). [CrossRef] [PubMed] [Green Version]
- Tam, V.; Patel, N.; Turcotte, M.; Bossé, Y.; Paré, G.; Meyre, D. Benefits and limitations of genome-wide association studies. Nat. Rev. Genet. 2019, 20, 467–484. [Google Scholar] [CrossRef]
Software | Focus | Website | Reference |
---|---|---|---|
PLINK | Stratification, LD and structured association mapping | http://pngu.mgh.harvard.edu/purcell/plink, accessed on 20 May 2019 | [34] |
R (GenABEL) | Stratification, LD and structured association mapping | https://cran.r-project.org/src/contrib/Archive/GenABEL, accessed on 20 May 2019 | [35] |
SVS | Stratification, LD, haplotype blocs and structured association mapping | http://www.goldenhelix.com, accessed on 1 June 2019 | [36] |
GenAMap | Stratification, LD and structured association mapping | http://cogito-b.ml.cmu.edu/genamap, accessed on 1 June 2019 | [37] |
GEMMA | Stratification, Fits LMM and BSLM models, IBD analysis, estimation of chip heritability, and association mapping. | http://www.xzlab.org/software.html, accessed on 1 June 2019 | [38] |
Blupf90 | Data conditioning, estimate variances using several methods, and use SNP information for improved accuracy of breeding values + for genome-wide association studies (GWAS) | http://nce.ads.uga.edu/wiki/doku.php?id=documentation, accessed on 17 November 2021 | [39] |
Genomic Database | Description | URL |
---|---|---|
NCBI (Genbank) | Repository for biomedical and genomic information | https://www.ncbi.nlm.nih.gov/ accessed on 6 December 2019 |
Ensembel | Genome browser | https://www.ensembl.org/index.html accessed on 6 December 2019 |
Animal QTLdb | Animal QTL database | https://www.animalgenome.org/cgi-bin/QTLdb/index accessed on 4 September 2020 |
NAGRP | Genomic information browser | https://www.animalgenome.org/ accessed on 4 June 2020 |
EMBL-EBI | Genomic information database | https://www.ebi.ac.uk/ accessed on 15 June 2020 |
DDBJ | Genomic information browser | https://www.ddbj.nig.ac.jp/index-e.html accessed on 15 June 2020 |
UCSC | Genome browser | https://genome.ucsc.edu/ accessed on 15 June 2020 |
Refseq | Reference sequence database | https://www.ncbi.nlm.nih.gov/refseq/ accessed on 15 June 2020 |
VEGA | Genome browser | http://vega.archive.ensembl.org/index.html accessed on 15 June 2020 |
Model Type | Model | Reference |
---|---|---|
Single locus | General linear model(GLM) | [62] |
Mixed lieanr model (MLM) | [63] | |
Logistic mixed model(LMM) | [64] | |
Compressed mixed linear model (CMLM) | [63] | |
Multi-locus | Multilocus random SNP effect mixed linear models(mrMLM) | [65,66] |
Fast multilocus random SNP effect effiecient mixed model association (FASTmrEMMA) | [67] |
Software | Usage | Website |
---|---|---|
BEAGLE | Prephases haplotypes infers missing genotypes, and identifies IBD in related samples | https://Faculty.washington.edu/browning/beagle/old.beagle.html accessed on 9 July 2020 |
GIGI | Imputes missing genotypes on a pedigree | https://faculty.washington.edu/wijsman/progdists/gigi/software/GIGI/GIGI.html accessed on 9 July 2020 |
IMPUTE2 | Prephases haplotypes, infers missing genotypes | https://mathgen.stats.ox.ac.uk/impute/impute_v2.html accessed on 9 July 2020 |
MaCH/minimac3 | Prephases haplotypes, infers missing genotypes | https://github.com/statgen/Minimac4 accessed on 9 July 2020 |
Region | Breed | Sample Size | Mode of Infestation | Genotyping Platform | Findings | Reference |
---|---|---|---|---|---|---|
Brazil | F2 B. taurus × B. indicus | 382 | Artificial | Microsatellite | Identified significant genomic regions on chromosomes 5, 7 and 14 | [11] |
Brazil | F2 Gyr × Holstein | 376 | Artificial | Microsatellite markers | Identified dry season specific QTL on BTA 2 and 10, rainy season specific QTL on BTA 5, 11 and 27 and BTA 23 for both seasons | [12] |
Australia | Brown-Swiss, Holstein-Friesian, mixed taurine | 189 | Natural | MegAllele genotyping bovine10K SNP | Identified genes associated with tick burden, namely TNFSF8 [CD30], and SIRPA | [123] |
South Africa | Nguni | 586 | Natural | Illumina BovineSNP50 BeadChip | Identified significant genomic regions on chromosomes 1, 3, 6, 7, 8, 10, 11, 12, 14, 15, 17, 19 and 26 | [8] |
Brazil | Braford and Hereford | 3455 | Natural | Illumina BovineSNP50 BeadChip | Identified 48 tag SNPs associated with tick resistance | [13] |
Brazil | F2 Gir × Holstein | 46 | Artificial | Illumina BovineSNP50 BeadChip | Identified genes associated with immune system function, namely, TREM1, TREM2, CD83, MYO5A, TREML1, and PRSS16 | [14] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mkize, N.; Maiwashe, A.; Dzama, K.; Dube, B.; Mapholi, N. Suitability of GWAS as a Tool to Discover SNPs Associated with Tick Resistance in Cattle: A Review. Pathogens 2021, 10, 1604. https://doi.org/10.3390/pathogens10121604
Mkize N, Maiwashe A, Dzama K, Dube B, Mapholi N. Suitability of GWAS as a Tool to Discover SNPs Associated with Tick Resistance in Cattle: A Review. Pathogens. 2021; 10(12):1604. https://doi.org/10.3390/pathogens10121604
Chicago/Turabian StyleMkize, Nelisiwe, Azwihangwisi Maiwashe, Kennedy Dzama, Bekezela Dube, and Ntanganedzeni Mapholi. 2021. "Suitability of GWAS as a Tool to Discover SNPs Associated with Tick Resistance in Cattle: A Review" Pathogens 10, no. 12: 1604. https://doi.org/10.3390/pathogens10121604
APA StyleMkize, N., Maiwashe, A., Dzama, K., Dube, B., & Mapholi, N. (2021). Suitability of GWAS as a Tool to Discover SNPs Associated with Tick Resistance in Cattle: A Review. Pathogens, 10(12), 1604. https://doi.org/10.3390/pathogens10121604