Antiparasitic and Antibacterial Functionality of Essential Oils: An Alternative Approach for Sustainable Aquaculture
Abstract
:1. Introduction
2. EOs as Growth, Immunity, and Disease Resistance Enhancer
Aquatic Species | Essential Oil | Dose and Duration | Influence | References |
---|---|---|---|---|
Mozambique tilapia (Oreochromis mossambicus) | Bitter lemon (Citrus limon) | 0.5, 0.75, and 1% for 60 days |
| Baba, et al. [61] |
O. mossambicus | Sweet orange (C. sinensis) | 0.1, 0.3, and 0.5% for 60 days |
| Acar, et al. [62] |
Labeo victorianus | C. limon | 1, 2, 5, and 8% for 28 days |
| Ngugi, et al. [63] |
Nile tilapia (O. niloticus) | Lemongrass (Cymbopogon citratus) and Geranium (Pelargonium graveolens) | 200 and 400 mg/kg for 12 weeks |
| Al-Sagheer, et al. [40] |
O. niloticus | Origanum vulgare | 5 and 10% for 8 weeks |
| Abdel-Latif and Khalil [70] |
Tilapia zillii | Origanum | 1 g/kg for 15 days |
| Mabrok and Wahdan [65] |
Channel catfish (Ictalurus punctatus) | O. heracleoticum | 0.05% for 8 weeks |
| Zheng, et al. [66] |
Silver catfish (Rhamdia quelen) | Aloysia triphylla | 2.0 mL/kg for 21 days |
| dos Santos, et al. [41] |
R. quelen | Eugenol | Bath (5 and 10 mg/L) |
| Sutili, et al. [67] |
Common carp (Cyprinus carpio L.) | O. vulgare | 0, 5, 10, 15, and 20 g/kg diet for 8 weeks |
| Abdel-Latif, et al. [64] |
Koi carp (C. carpio) | O. vulgare | 0, 500, 1500, and 4500 mg/kg for 8 weeks |
| Zhang, et al. [60] |
Rainbow trout (Oncorhynchus mykiss) | O. onites | 0.125, 1.5, 2.5, and 3.0 mL/kg for 90 days |
| Diler, et al. [68] |
L. rohita | Ocimum sanctum | 0.0, 0.05, 0.1, 0.2, 0.5, and 1% for 42 days |
| Das, et al. [69] |
3. Essential Oils as Antiparasitic Agents
3.1. Acanthocephalas
Neoechinorhynchus buttnerae
3.2. Monogeneans
3.2.1. Anacanthorus spathulatus, Notozothecium janauachensis, and Mymarothecium boegeri
3.2.2. Dactylogyrus spp.
3.2.3. Cichlidogyrus spp.
3.2.4. Dawestrema spp.
3.2.5. Gyrodactylus spp.
3.3. Trepomonadea
Hexamita inflata
3.4. Clinostomidae
Euclinostomum heterostomum
3.5. Oligohymenophorea
Ichthyophthirius multifiliis
Parasitic Pathogens | Essential Oil | Concentrations | Elimination Time/Effectiveness Concentration/Elimination Percentage | References |
---|---|---|---|---|
Neoechinorhynchus buttnerae | Mentha piperita, Lippia alba, and Zingiber officinale | 360, 540, 720, 1440, and 2880 mg/L |
| Costa, et al. [73] |
Neoechinorhynchus buttnerae | Piper hispidinervum, Piper hispidum, Piper marginatum, and Piper callosum | 0.19, 0.39, 0.78, 1.56, 3.125, 6.25, 12.5, 25, and 50 mg/L |
| dos Santos, et al. [74] |
Anacanthorus spathulatus, Notozothecium janauachensis, and Mymarothecium boegeri | Cymbopogon citratus | 100, 200, 300, 400, and 500 mg/L |
| Gonzales, et al. [10] |
A. spathulatus, N. janauachensis, and M. boegeri | Pterodon emarginatus | 0, 50, 100, 200, 400, and 600 mg/L |
| Valentim, et al. [25] |
A. spathulatus, N. janauachensis, and M. boegeri | Lippia origanoides | 10, 20, 40, 80, 160, and 320 mg/L |
| Soares, et al. [78] |
A. spathulatus, N. janauachensis, and M. boegeri | L. alba | 160, 320, 640, 1280, and 2560 mg/L |
| Soares, et al. [77] |
Dactylogyrus minutus and Dactylogyrus extensus | L. alba, L. Origanoides, and L. sidoides | 10, 20, 40, 60, 80, and 100 mg/L |
| Brasil, et al. [9] |
Cichlidogyrus tilapiae | Ocimum gratissimum | 40, 160, and 320 mg/L |
| Meneses, et al. [93] |
Cichlidogyrus tilapiae, Cichlidogyrus thurstonae, Cichlidogyrus halli, and Scutogyrus longicornis | L. sidoides and Mentha piperita | 160 and 320 mg/L |
| de Oliveira Hashimoto, et al. [82] |
Dawestrema cycloancistrium and Dawestrema cycloancistrioides | M. piperita | 80, 160, and 320 mg/L |
| Malheiros, et al. [85] |
Gyrodactylus sp. | Hesperozygis ringens and Ocimum gratissimum | 20 and 40 mg/L of H. ringens and 5 and 10 mg/L of O. gratissimum |
| Bandeira, et al. [37] |
Gyrodactylus sp. | Ocimum americanum | 10 and 50 mg/L |
| Sutili, et al. [86] |
Ichthyophthirius multifiliis trophonts and tomonts | Varronia curassavica (VCUR-001 VCUR-202 VCUR-509 VCUR-601) | 10, 25, 50, 75, 100, and 200 mg/L |
| de Castro Nizio, et al. [35] |
Ichthyophthirius multifiliis | Hyptis mutabilis | 10 and 20 mg/L |
| Da Cunha, et al. [91] |
Ichthyophthirius multifiliis trophonts | Melaleuca alternifolia, Lavandula angustifolia, and Mentha piperita | 57, 114, 227, and 455 µL/L |
| Valladão, et al. [92] |
Euclinostomum heterostomum | Verbesina alternifolia and Mentha piperita | 200 to 1000 mg/L |
| Mahdy, et al. [90] |
Hexamita inflata | L. angustifolia and L. × intermedia Miss Donnington | 1, 0.5, or 0.1% |
| Moon, et al. [87] |
4. Essential Oils as Antibacterial Agents: An In Vitro Perspective
4.1. Aeromonas spp.
4.2. Vibrio spp., Listonella anguillarum, and Photobacterium damselae
4.3. Pseudomonas fluorescens
4.4. Citrobacter spp.
4.5. Raoultella ornithinolytica
4.6. Nocardia seriolae
4.7. Flavobacterium spp.
4.8. Staphylococcus aureus
4.9. Streptococcus spp., Lactococcus spp., and Vagococcus salmoninarum
Bacterial Pathogens | Essential Oil | Concentrations | Effective Essential Oil/Concentration/Disc/MIC/MBC/Pathogen | References |
---|---|---|---|---|
Aeromonas salmonicida subsp. salmonicida ATCC 14174 |
| 61 to 3628 μg/mL |
| Hayatgheib, et al. [96] |
A. salmonicida subsp. salmonicida CAE 235 |
| 61 to 3628 μg/mL |
| Hayatgheib, et al. [96] |
A. salmonicida subsp. salmonicida CAE 452 |
| 61 to 3628 μg/mL |
| Hayatgheib, et al. [96] |
A. salmonicida subsp. salmonicida CAE 258 |
| 61 to 3628 μg/mL |
| Hayatgheib, et al. [96] |
Vibrio campbellii |
| 50 to 3000 μg/mL |
| Domínguez-Borbor, et al. [110] |
Vibrio harveyi |
| 50 to 3000 μg/mL |
| Domínguez-Borbor, et al. [110] |
Vibrio vulnificus |
| 50 to 3000 μg/mL |
| Domínguez-Borbor, et al. [110] |
Vibrio parahaemolyticus |
| 50 to 3000 μg/mL |
| Domínguez-Borbor, et al. [110] |
Vagococcus salmoninarum |
| 0.195 to 25 final well concentration for agar diffusion assay, 1000–0.01 μL/mL for MIC |
| Metin and Biçer [42] |
Aeromonas spp. isolates (248, 249, 284, 351, 432, 520, 533, 561, 562, 565, 568 and 570) |
| 312.5 to 40,000 μg/mL |
| Chagas, et al. [36] |
Aeromonas hydrophila isolates (248, 249, 284, 432, 520, 533, 562, 568, 569 and 570) |
| 117.2 to 30,000 μg/mL |
| Majolo, et al. [43] |
Streptococcus agalactiae |
| 312 to 20,000 μg/mL |
| Majolo, et al. [119] |
Aeromonas hydrophila |
| 625 to 20,000 μg/mL |
| Majolo, et al. [104] |
Aeromonas veronii Aeromonas hydrophila Citrobacter freundii Raoultella ornithinolytica |
| 100 to 3200 μg/mL |
| Bandeira, et al. [37] |
A. veronii A. hydrophila C. freundii R. ornithinolytica |
| 100 to 3200 μg/mL |
| Bandeira, et al. [37] |
A. hydrophila |
| 12.5 to 6400 μg/mL |
| Bandeira Jr, et al. [106] |
C. freundii |
| 12.5 to 6400 μg/mL |
| Bandeira Jr, et al. [106] |
R. ornithinolytica |
| 12.5 to 6400 μg/mL |
| Bandeira Jr, et al. [106] |
Aeromonas hydrophila, Aeromonas veronii, Pseudomonas fluorescens, and Streptococcus agalactiae |
| 3 and 6 μL/disc 3 to 300 μL/mL MIC |
| El-Ekiaby [105] |
Streptococcus agalactiae |
| - |
| de Souza Silva, et al. [45] |
Photobacterium damselae |
| - |
| Gholipourkanani, et al. [51] |
Aeromonas hydrophila |
| - |
| Gholipourkanani, et al. [51] |
Streptococcus iniae |
| - |
| Gholipourkanani, et al. [51] |
Yersinia ruckeri (2 isolates) |
| 15 μL/disc |
| Tural, et al. [98] |
Lactococcus garvieae |
| 15 μL/disc |
| Tural, et al. [98] |
Pseudomonas fluorescens |
| 15 μL/disc |
| Tural, et al. [98] |
Aeromonas sobria |
| 15 μL/disc |
| Tural, et al. [98] |
Aeromonas salmonicida |
| 15 μL/disc |
| Tural, et al. [98] |
Aeromonas veronii |
| 15 μL/disc |
| Tural, et al. [98] |
Streptococcus iniae |
| 15 mg/disc |
| Vazirzadeh, et al. [120] |
Nocardia seriolae (80 isolates) |
| 5 to 5120 μg/mL |
| Ismail and Yoshida [116] |
Aeromonas hydrophila |
|
| Sutili, et al. [86] | |
Yersinia ruckeri, Aeromonas hydrophila, Listonella anguillarum, Edwarsiella tarda, Citrobacter freundii and Lactococcus garvieae |
| 0.5%, 1%, 2.5%, 5%, 7.5%, or 10% disc and 0.06 to 500 μL/mL MIC |
| Öntaş, et al. [113] |
Aeromonas salmonicida subsp. salmonicida |
| 25 μL of 20% solution/disc |
| Starliper, et al. [100] |
Aeromonas salmonicida subsp. salmonicida (10 isolate) Aeromonas hydrophila (5 isolate) Aeromonas veronii bv. sobria (9 isolate) Aeromonas caviae Aeromonas popoffii (17 isolate) Aeromonas allosaccharophila (3 isolate) Aeromonas encheleia (9 isolate) Aeromonas eucrenophila (11 isolate) Aeromonas molluscorum (4 isolate) |
| Overall mean percent minimum bactericidal concentrations (MBC) |
| Starliper, et al. [100] |
Aeromonas hydrophila (14 isolates) |
| 100 to 3200 μg/mL |
| Sutili, et al. [107] |
A. hydrophila |
| the initial concentration of 176,100 μg/mL |
| Sutili, et al. [108] |
Lactococcus garvieae |
| 1 to 0.007 μL/mL |
| Soltani, et al. [126] |
Streptococcus iniae (2 isolates) |
| 1 to 0.0017 μL/mL |
| Soltani, et al. [121] |
Staphylococcus aureus Lactococcus garviae Yersinia ruckeri Aeromonas hydrophila |
| 10 μL/disc |
| Gulec, et al. [101] |
Aeromonas salmonicida |
| 40 μL/disc |
| Thomas, et al. [99] |
Staphylococcus aureus Pseudomonas aeruginosa |
| 10 μL/disc |
| Shehata, et al. [114] |
Edwardsiella spp. (2 isolate) Edwardsiella tarda (18) Vibrio spp. (5 isolate) Vibrio damsel Aeromonas spp. (2 isolate) Escherichia coli (2 isolate) Flavobacterium spp. Pseudomonas spp. Streptococcus spp. Aeromonas hydrophila (ATCC 49140) Citrobacter freundii (ATCC 8090) Edwardsiella tarda (ATCC 15947) Pseudomonas aeruginosa (ATCC 35032), Streptococcus agalactiae (ATCC 13813) |
| - |
| Wei and Wee [102] |
Lactococcus garvieae |
| 100 μg/disc and 10 to 1000 μg/mL for MIC |
| Fereidouni, et al. [127] |
Streptococcus iniae |
| 2 mg/disc and 7.8 to 1000 μg/mL MIC and MBC |
| Roomiani, et al. [122] |
Listonella anguillarum |
| 2 μL/disc |
| Stefanakis, et al. [112] |
Vibrio splendidus |
| 2 μL/disc |
| Stefanakis, et al. [112] |
Vibrio alginolyticus |
| 2 μL/disc |
| Stefanakis, et al. [112] |
Aeromonas salmonicida (18 isolate) |
| 20 μL/disc and 10 to 800 μg/mL for MIC |
| Okmen, et al. [97] |
Flavobacterium psychrophilum |
| 0.0, 0.1, 0.3, 0.5, 0.7, 0.9 μL rosemary oil/μL |
| Ostrand, et al. [117] |
L. garvieae |
| 2 mg/disc and 7.8 to 1000 μg/mL MIC and MBC |
| Mahmoodi, et al. [128] |
Streptococcus iniae |
| 100 μg/disc |
| Pirbalouti, et al. [124] |
L. garvieae |
| 4 to 1000 μL/mL for MIC and MBC |
| Goudarzi, et al. [125] |
Lactococcus piscium Streptococcus phocae Flavobacterium psychrophilum Vibrio ordalii Vibrio anguillarum Vibrio parahaemolyticus Shewanella baltica Pseudomonas sp. Kluyvera intermedia Citrobacter gillenii Hafnia alvei Psychrobacter sp. Lactococcus lactis Lactococcus lactis subsp. lactis bv. diacetylactis Arthrobacter sp. |
| 2.5 to 1280 μg/mL for MIC |
| Navarrete, et al. [111] |
Streptococcus iniae |
| 10 to 640 μg/mL |
| Rattanachaikunsopon and Phumkhachorn [123] |
Flavobacterium columnare (6 isolate) |
| 280 μg/mL | MIC: 20 to 80 | Rattanachaikunsopon and Phumkhachorn [118] |
Vibrio spp. (6 isolates) Edwardsiella spp. (21 isolates) Aeromonas spp. (2 isolates) Escherichia coli (2 isolates) Flavobacterium spp. Streptococcus spp. Pseudomonas spp. Citrobacter freundii (ATCC 8090), Aeromonas hydrophila (ATCC 49140), Pseudomonas aeruginosa (ATCC 35032), Streptococcus agalactiae (ATCC13813), Edwardsiella tarda (ATCC 15947) |
| 0.015 to 0.062 μg/mL | Overall mean MIC: 0.015 to 0.062 | Lee, et al. [103] |
5. Research Gaps and Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agricultural Organization (FAO). Fisheries Department, Fishery Information, Data and Statistics Unit. Fishstatj, a Tool for Fishery Statistics Analysis, Release: 3.04.5, Universal Software for Fishery Statistical Time Series. Global Aquaculture Production: Quantity 1950–2016; Value 1950–2016; Global Capture Production: 1950–2016; 2018-03-16. 2018. Available online: http://www.fao.org/fishery/statistics/software/fishstatj/en (accessed on 12 December 2020).
- Shah, B.R.; Mráz, J. Advances in nanotechnology for sustainable aquaculture and fisheries. Rev. Aquac. 2019, 12, 925–942. [Google Scholar] [CrossRef]
- Dawood, M.; Koshio, S. Application of fermentation strategy in aquafeed for sustainable aquaculture. Rev. Aquac. 2019, 12, 987–1002. [Google Scholar] [CrossRef]
- Hasan, T.; Jang, W.J.; Lee, B.-J.; Kim, K.W.; Hur, S.W.; Lim, S.G.; Bai, S.C.; Kong, I.-S. Heat-killed Bacillus sp. SJ-10 probiotic acts as a growth and humoral innate immunity response enhancer in olive flounder (Paralichthys olivaceus). Fish Shellfish. Immunol. 2019, 88, 424–431. [Google Scholar] [CrossRef]
- Hasan, T.; Jang, W.J.; Lee, J.M.; Lee, B.-J.; Hur, S.W.; Lim, S.G.; Kim, K.W.; Han, H.-S.; Kong, I.-S. Effects of Immunostimulants, Prebiotics, Probiotics, Synbiotics, and Potentially Immunoreactive Feed Additives on Olive Flounder (Paralichthys olivaceus): A Review. Rev. Fish. Sci. Aquac. 2019, 27, 417–437. [Google Scholar] [CrossRef]
- Dawood, M.A.; Metwally, A.E.-S.; El-Sharawy, M.E.; Atta, A.M.; El-Bialy, Z.I.; Abdel-Latif, H.M.; Paray, B.A. The role of β-glucan in the growth, intestinal morphometry, and immune-related gene and heat shock protein expressions of Nile tilapia (Oreochromis niloticus) under different stocking densities. Aquaculture 2020, 523, 735205. [Google Scholar] [CrossRef]
- Martos-Sitcha, J.A.; Mancera, J.M.; Prunet, P.; Magnoni, L.J. Editorial: Welfare and Stressors in Fish: Challenges Facing Aquaculture. Front. Physiol. 2020, 11, 162. [Google Scholar] [CrossRef] [PubMed]
- Dawood, M.; Abo-Al-Ela, H.G.; Hassan, T. Modulation of transcriptomic profile in aquatic animals: Probiotics, prebiotics and synbiotics scenarios. Fish Shellfish. Immunol. 2020, 97, 268–282. [Google Scholar] [CrossRef]
- Brasil, E.; Figueredo, A.; Cardoso, L.; Santos, M.; Bertaglia, E.; Furtado, W.; Viana, J.; Carmo, I.; Chaves, F.; Mouriño, J.; et al. In vitro and in vivo antiparasitic action of essential oils of Lippia spp. in Koi Carp (Cyprinus carpio) fed supplemented diets. Braz. J. Veter. Pathol. 2019, 12, 88–100. [Google Scholar] [CrossRef]
- Gonzales, A.P.P.F.; Yoshioka, E.T.O.; Mathews, P.D.; Mertins, O.; Chaves, F.C.M.; Videira, M.N.; Tavares-Dias, M. Anthelminthic efficacy of Cymbopogon citratus essential oil (Poaceae) against monogenean parasites of Colossoma macropomum (Serrasalmidae), and blood and histopathological effects. Aquaculture 2020, 528, 735500. [Google Scholar] [CrossRef]
- Paray, B.A.; El-Basuini, M.F.; Alagawany, M.; Albeshr, M.F.; Farah, M.A.; Dawood, M.A.O. Yucca schidigera Usage for Healthy Aquatic Animals: Potential Roles for Sustainability. Animals 2021, 11, 93. [Google Scholar] [CrossRef]
- El-Basuini, M.F.; Shahin, S.A.; Teiba, I.I.; Zaki, M.A.; El-Hais, A.M.; Sewilam, H.; Almeer, R.; Abdelkhalek, N.; Dawood, M.A. The influence of dietary coenzyme Q10 and vitamin C on the growth rate, immunity, oxidative-related genes, and the resistance against Streptococcus agalactiae of Nile tilapia (Oreochromis niloticus). Aquaculture 2021, 531, 735862. [Google Scholar] [CrossRef]
- Hasan, T.; Jang, W.J.; Lee, S.; Kim, K.W.; Lee, B.-J.; Han, H.-S.; Bai, S.C.; Kong, I.-S. Effect of β-glucooligosaccharides as a new prebiotic for dietary supplementation in olive flounder (Paralichthys olivaceus) aquaculture. Aquac. Res. 2018, 49, 1310–1319. [Google Scholar] [CrossRef]
- Dawood, M.A.; Koshio, S. Recent advances in the role of probiotics and prebiotics in carp aquaculture: A review. Aquaculture 2016, 454, 243–251. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, Q.E.; Zhou, X.; Wang, F.-H.; Muurinen, J.; Virta, M.P.; Brandt, K.K.; Zhu, Y. Antibiotic resistome in the livestock and aquaculture industries: Status and solutions. Crit. Rev. Environ. Sci. Technol. 2020, 1–38. [Google Scholar] [CrossRef]
- Dawood, M. Nutritional immunity of fish intestines: Important insights for sustainable aquaculture. Rev. Aquac. 2021, 13, 642–663. [Google Scholar] [CrossRef]
- Shourbela, R.; Khatab, S.; Hassan, M.; van Doan, H.; Dawood, M. The Effect of Stocking Density and Carbon Sources on the Oxidative Status, and Nonspecific Immunity of Nile tilapia (Oreochromis niloticus) Reared under Biofloc Conditions. Animals 2021, 11, 184. [Google Scholar] [CrossRef]
- Dawood, M.A.; Gewaily, M.S.; Monier, M.N.; Younis, E.M.; van Doan, H.; Sewilam, H. The regulatory roles of yucca extract on the growth rate, hepato-renal function, histopathological alterations, and immune-related genes in common carp exposed with acute ammonia stress. Aquaculture 2020, 736287. [Google Scholar] [CrossRef]
- Abdel-Latif, H.M.; Dawood, M.; Menanteau-Ledouble, S.; El-Matbouli, M. The nature and consequences of co-infections in tilapia: A review. J. Fish Dis. 2020, 43, 651–664. [Google Scholar] [CrossRef] [PubMed]
- Srichaiyo, N.; Tongsiri, S.; Hoseinifar, S.H.; Dawood, M.A.; Jaturasitha, S.; Esteban, M.Á.; Ringø, E.; van Doan, H. The effects gotu kola (Centella asiatica) powder on growth performance, skin mucus, and serum immunity of Nile tilapia (Oreochromis niloticus) fingerlings. Aquac. Rep. 2020, 16, 100239. [Google Scholar] [CrossRef]
- Srichaiyo, N.; Tongsiri, S.; Hoseinifar, S.H.; Dawood, M.A.; Esteban, M.Á.; Ringø, E.; van Doan, H. The effect of fishwort (Houttuynia cordata) on skin mucosal, serum immunities, and growth performance of Nile tilapia. Fish Shellfish. Immunol. 2020, 98, 193–200. [Google Scholar] [CrossRef]
- Shekarabi, S.P.H.; Omidi, A.H.; Dawood, M.; Adel, M.; Avazeh, A.; Heidari, F. Effect of Black Mulberry (Morus nigra) Powder on Growth Performance, Biochemical Parameters, Blood Carotenoid Concentration, and Fillet Color of Rainbow Trout. Ann. Anim. Sci. 2020, 20, 125–136. [Google Scholar] [CrossRef] [Green Version]
- Sarhadi, I.; Alizadeh, E.; Ahmadifar, E.; Adineh, H.; Dawood, M.A. Skin Mucosal, Serum Immunity and Antioxidant Capacity of Common Carp (Cyprinus carpio) Fed Artemisia (Artemisia annua). Ann. Anim. Sci. 2020, 20, 1011–1027. [Google Scholar] [CrossRef]
- Sadeghi, F.; Ahmadifar, E.; Moghadam, M.S.; Ghiyasi, M.; Dawood, M.; Yılmaz, S. Lemon, Citrus aurantifolia, peel and Bacillus licheniformis protected common carp, Cyprinus carpio, from Aeromonas hydrophila infection by improving the humoral and skin mucosal immunity, and antioxidative responses. J. World Aquac. Soc. 2020. [Google Scholar] [CrossRef]
- Valentim, D.S.S.; Duarte, J.L.; Oliveira, A.E.M.F.M.; Cruz, R.A.S.; Carvalho, J.C.T.; Conceição, E.C.; Fernandes, C.P.; Tavares-Dias, M. Nanoemulsion from essential oil of Pterodon emarginatus (Fabaceae) shows in vitro efficacy against monogeneans of Colossoma macropomum (Pisces: Serrasalmidae). J. Fish Dis. 2018, 41, 443–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alagawany, M.; Farag, M.R.; Abdelnour, S.A.; Dawood, M.A.; El-Nesr, S.S.; Dhama, K. Curcumin and its different forms: A review on fish nutrition. Aquaculture 2021, 532, 736030. [Google Scholar] [CrossRef]
- Coimbra, J.L.; Soares, A.C.F.; Garrido, M.D.S.; Sousa, C.D.S.; Ribeiro, F.L.B. Toxicity of plant extracts to Scutellonema bradys. Pesqui. Agropecuária Bras. 2006, 41, 1209–1211. [Google Scholar] [CrossRef] [Green Version]
- Magouz, F.I.; Mahmoud, S.A.; El-Morsy, R.A.; Paray, B.A.; Soliman, A.A.; Zaineldin, A.I.; Dawood, M.A. Dietary menthol essential oil enhanced the growth performance, digestive enzyme activity, immune-related genes, and resistance against acute ammonia exposure in Nile tilapia (Oreochromis niloticus). Aquaculture 2021, 530, 735944. [Google Scholar] [CrossRef]
- Hyldgaard, M.; Mygind, T.; Meyer, R.L. Essential Oils in Food Preservation: Mode of Action, Synergies, and Interactions with Food Matrix Components. Front. Microbiol. 2012, 3, 12. [Google Scholar] [CrossRef] [Green Version]
- Calo, J.R.; Crandall, P.G.; O’Bryan, C.A.; Ricke, S.C. Essential oils as antimicrobials in food systems—A review. Food Control 2015, 54, 111–119. [Google Scholar] [CrossRef]
- Nazzaro, F.; Fratianni, F.; de Martino, L.; Coppola, R.; de Feo, V. Effect of Essential Oils on Pathogenic Bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef]
- Zanetti, M.; Ternus, Z.; Dalcanton, F.; de Mello, M.; de Oliveira, D.; Araujo, P.; Riella, H.; Fiori, M. Microbiological characterization of pure geraniol and comparison with bactericidal activity of the cinnamic acid in gram-positive and gram-negative bacteria. J. Microb. Biochem. Technol. 2015, 7, 186–193. [Google Scholar]
- Carson, C.F.; Mee, B.J.; Riley, T.V. Mechanism of Action of Melaleuca alternifolia (Tea Tree) Oil on Staphylococcus aureus Determined by Time-Kill, Lysis, Leakage, and Salt Tolerance Assays and Electron Microscopy. Antimicrob. Agents Chemother. 2002, 46, 1914–1920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chavan, P.S.; Tupe, S.G. Antifungal activity and mechanism of action of carvacrol and thymol against vineyard and wine spoilage yeasts. Food Control 2014, 46, 115–120. [Google Scholar] [CrossRef]
- Nizio, D.A.D.C.; Fujimoto, R.Y.; Maria, A.N.; Carneiro, P.C.F.; França, C.C.S.; Sousa, N.D.C.; Brito, F.D.A.; Sampaio, T.S.; Arrigoni-Blank, M.D.F.; Blank, A.F. Essential oils of Varronia curassavica accessions have different activity against white spot disease in freshwater fish. Parasitol. Res. 2018, 117, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Chagas, E.C.; Majolo, C.; Monteiro, P.C.; de Oliveira, M.R.; Gama, P.E.; Bizzo, H.R.; Chaves, F.C.M. Composition of essential oils of Mentha species and their antimicrobial activity against Aeromonas spp. J. Essent. Oil Res. 2020, 32, 209–215. [Google Scholar] [CrossRef]
- Bandeira, G.; Pês, T.S.; Saccol, E.M.; Sutili, F.J.; Rossi, W.; Murari, A.L.; Heinzmann, B.M.; Pavanato, M.A.; de Vargas, A.C.; Silva, L.D.L.; et al. Potential uses of Ocimum gratissimum and Hesperozygis ringens essential oils in aquaculture. Ind. Crop. Prod. 2017, 97, 484–491. [Google Scholar] [CrossRef]
- Raeisi, M.; Hashemi, M.; Aminzare, M.; Ghorbani-Bidkorbeh, F.; Ebrahimi, M.; Jannat, B.; Tepe, B.; Noori, S.M.A. Effects of Sodium Alginate and Chitosan Coating Combined with Three Different Essential Oils on Microbial and Chemical Attributes of Rainbow Trout Fillets. J. Aquat. Food Prod. Technol. 2020, 29, 253–263. [Google Scholar] [CrossRef]
- Nisar, T.; Yang, X.; Alim, A.; Iqbal, M.; Guo, Y.; Guo, Y. Physicochemical responses and microbiological changes of bream (Megalobrama ambycephala) to pectin based coatings enriched with clove essential oil during refrigeration. Int. J. Biol. Macromol. 2019, 124, 1156–1166. [Google Scholar] [CrossRef]
- Al-Sagheer, A.A.; Mahmoud, H.K.; Reda, F.M.; Mahgoub, S.A.; Ayyat, M.S. Supplementation of diets for Oreochromis niloticus with essential oil extracts from lemongrass (Cymbopogon citratus) and geranium (Pelargonium graveolens) and effects on growth, intestinal microbiota, antioxidant and immune activities. Aquac. Nutr. 2018, 24, 1006–1014. [Google Scholar] [CrossRef]
- dos Santos, A.C.; Sutili, F.J.; Heinzmann, B.M.; Cunha, M.A.; Brusque, I.C.; Baldisserotto, B.; Zeppenfeld, C.C. Aloysia triphylla essential oil as additive in silver catfish diet: Blood response and resistance against Aeromonas hydrophila infection. Fish Shellfish. Immunol. 2017, 62, 213–216. [Google Scholar] [CrossRef]
- Metin, S.; Biçer, Z.I. Antibacterial activity of some essential oils againts Vagococcus salmoninarum Vagococcus salmoninarum’a karşı bazı uçucu yağların antibakteriyel aktivitesi. Scope J. 2020, 35, 167–173. [Google Scholar]
- Majolo, C.; Monteiro, P.C.; Nascimento, A.V.P.D.; Chaves, F.C.M.; Gama, P.E.; Bizzo, H.R.; Chagas, E.C. Essential Oils from Five Brazilian Piper Species as Antimicrobials Against Strains of Aeromonas hydrophila. J. Essent. Oil Bear. Plants 2019, 22, 746–761. [Google Scholar] [CrossRef]
- Djenane, D.; Yangüela, J.; Roncalés, P.; Aïder, M. Use of Essential Oils as Natural Food Preservatives: Effect on the Growth of Salmonella Enteritidis in Liquid Whole Eggs Stored Under Abuse Refrigerated Conditions. J. Food Res. 2013, 2, 65. [Google Scholar] [CrossRef]
- Silva, L.T.D.S.; Pereira, U.D.P.; de Oliveira, H.M.; Brasil, E.M.; Pereira, S.A.; Chagas, E.C.; Jesus, G.F.A.; Cardoso, L.; Mouriño, J.L.P.; Martins, M.L. Hemato-immunological and zootechnical parameters of Nile tilapia fed essential oil of Mentha piperita after challenge with Streptococcus agalactiae. Aquaculture 2019, 506, 205–211. [Google Scholar] [CrossRef]
- Hoseini, S.M.; Mirghaed, A.T.; Yousefi, M. Application of herbal anaesthetics in aquaculture. Rev. Aquac. 2019, 11, 550–564. [Google Scholar] [CrossRef]
- Vaseeharan, B.; Thaya, R. Medicinal plant derivatives as immunostimulants: An alternative to chemotherapeutics and antibiotics in aquaculture. Aquac. Int. 2014, 22, 1079–1091. [Google Scholar] [CrossRef]
- Brum, A.; Pereira, S.A.; Owatari, M.S.; Chagas, E.C.; Chaves, F.C.M.; Mouriño, J.L.P.; Martins, M.L. Effect of dietary essential oils of clove basil and ginger on Nile tilapia (Oreochromis niloticus) following challenge with Streptococcus agalactiae. Aquaculture 2017, 468, 235–243. [Google Scholar] [CrossRef]
- Turek, C.; Stintzing, F.C. Stability of Essential Oils: A Review. Compr. Rev. Food Sci. Food Saf. 2013, 12, 40–53. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, C.; Cui, H.; Lin, L. Encapsulation strategies to enhance the antibacterial properties of essential oils in food system. Food Control 2021, 123, 107856. [Google Scholar] [CrossRef]
- Gholipourkanani, H.; Buller, N.; Lymbery, A. In vitro antibacterial activity of four nano-encapsulated herbal essential oils against three bacterial fish pathogens. Aquac. Res. 2019, 50, 871–875. [Google Scholar] [CrossRef]
- Heurtault, B.; Saulnier, P.; Pech, B.; Proust, J.-E.; Benoit, J.-P. Physico-chemical stability of colloidal lipid particles. Biomaterials 2003, 24, 4283–4300. [Google Scholar] [CrossRef]
- Dawood, M.A.; Metwally, A.E.-S.; Elkomy, A.H.; Gewaily, M.S.; Abdo, S.E.; Abdel-Razek, M.A.; Soliman, A.A.; Amer, A.A.; Abdel-Razik, N.I.; Abdel-Latif, H.M.; et al. The impact of menthol essential oil against inflammation, immunosuppression, and histopathological alterations induced by chlorpyrifos in Nile tilapia. Fish Shellfish. Immunol. 2020, 102, 316–325. [Google Scholar] [CrossRef] [PubMed]
- Khafaga, A.F.; Naiel, M.A.E.; Dawood, M.A.O.; Abdel-Latif, H.M.R. Dietary Origanum vulgare essential oil attenuates cypermethrin-induced biochemical changes, oxidative stress, histopathological alterations, apoptosis, and reduces DNA damage in common carp (Cyprinus carpio). Aquat. Toxicol. 2020, 228, 105624. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, G.; Rafiee, G.; El-Basuini, M.F.; van Doan, H.; Ahmed, H.A.; Dawood, M.A.O.; Abdel-Latif, H.M.R. Oregano (Origanum vulgare), st John’s-wort (Hypericum perforatum), and lemon balm (Melissa officinalis) extracts improved the growth rate, antioxidative, and immunological responses in Nile tilapia (Oreochromis niloticus) in-fected with Aeromonas hydrophila. Aquac. Rep. 2020, 18, 100445. [Google Scholar]
- Jang, I.; Ko, Y.; Kang, S.; Lee, C. Effect of a commercial essential oil on growth performance, digestive enzyme activity and intestinal microflora population in broiler chickens. Anim. Feed. Sci. Technol. 2007, 134, 304–315. [Google Scholar] [CrossRef]
- Abdel-Latif, H.M.; Abdel-Tawwab, M.; Khafaga, A.F.; Dawood, M.A. Dietary oregano essential oil improved the growth performance via enhancing the intestinal morphometry and hepato-renal functions of common carp (Cyprinus carpio L.) fingerlings. Aquaculture 2020, 526, 735432. [Google Scholar] [CrossRef]
- Brewer, M.S. Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications. Compr. Rev. Food Sci. Food Saf. 2011, 10, 221–247. [Google Scholar] [CrossRef]
- Ahmadifar, E.; Yousefi, M.; Karimi, M.; Raieni, R.F.; Dadar, M.; Yilmaz, S.; Dawood, M.; Abdel-Latif, H.M.R. Benefits of Dietary Polyphenols and Polyphenol-Rich Additives to Aquatic Animal Health: An Overview. Rev. Fish. Sci. Aquac. 2020, 1–34. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, X.; Liu, L.; Cao, Y.; Zhu, H. Dietary oregano essential oil improved the immune response, activity of digestive enzymes, and intestinal microbiota of the koi carp, Cyprinus carpio. Aquaculture 2020, 518, 734781. [Google Scholar] [CrossRef]
- Baba, E.; Acar, Ü.; Öntaş, C.; Kesbiç, O.S.; Yılmaz, S. Evaluation of Citrus limon peels essential oil on growth performance, immune response of Mozambique tilapia Oreochromis mossambicus challenged with Edwardsiella tarda. Aquaculture 2016, 465, 13–18. [Google Scholar] [CrossRef]
- Acar, U.; Kesbiç, O.S.; Yilmaz, S.; Gültepe, N.; Türker, A. Evaluation of the effects of essential oil extracted from sweet orange peel (Citrus sinensis) on growth rate of tilapia (Oreochromis mossambicus) and possible disease resistance against Streptococcus iniae. Aquaculture 2015, 437, 282–286. [Google Scholar] [CrossRef]
- Ngugi, C.C.; Oyoo-Okoth, E.; Muchiri, M. Effects of dietary levels of essential oil (eo) extract from bitter lemon (Citrus limon) fruit peels on growth, biochemical, haemato-immunological parameters and disease resistance in juvenile Labeo victorianus fingerlings challenged with Aeromonas hydrophila. Aquac. Res. 2017, 48, 2253–2265. [Google Scholar]
- Abdel-Latif, H.M.R.; Abdel-Tawwab, M.; Khafaga, A.F.; Dawood, M.A.O. Dietary origanum essential oil improved antioxidative status, immune-related genes, and resistance of common carp (Cyprinus carpio l.) to Aeromonas hydrophila infection. Fish Shellfish Immunol. 2020, 104, 1–7. [Google Scholar] [CrossRef]
- Mabrok, M.A.E.; Wahdan, A. The immune modulatory effect of oregano (Origanum vulgare l.) essential oil on Tilapia zillii following intraperitoneal infection with Vibrio anguillarum. Aquac. Int. 2018, 26, 1147–1160. [Google Scholar] [CrossRef]
- Zheng, Z.L.; Tan, J.Y.W.; Liu, H.Y.; Zhou, X.H.; Xiang, X.; Wang, K.Y. Evaluation of oregano essential oil (Origanum heracleoticum l.) on growth, antioxidant effect and resistance against Aeromonas hydrophila in channel cat-fish (Ictalurus punctatus). Aquaculture 2009, 292, 214–218. [Google Scholar] [CrossRef]
- Sutili, F.J.; Kreutz, L.C.; Noro, M.; Gressler, L.T.; Heinzmann, B.M.; Vargas, A.C.; Baldisserotto, B. The use of eugenol against Aeromonas hydrophila and its effect on hematological and immunological parameters in silver catfish (Rhamdia quelen). Veter. Immunol. Immunopathol. 2014, 157, 142–148. [Google Scholar] [CrossRef]
- Diler, O.; Gormez, O.; Diler, I.; Metin, S. Effect of oregano (Origanum onites l.) essential oil on growth, lysozyme and antioxidant activity and resistance against Lactococcus garvieae in rainbow trout, Oncorhynchus mykiss (walbaum). Aquac. Nutr. 2017, 23, 844–851. [Google Scholar] [CrossRef]
- Das, R.; Raman, R.P.; Saha, H.; Singh, R. Effect of Ocimum sanctum linn.(tulsi) extract on the immunity and sur-vival of Labeo rohita (hamilton) infected with Aeromonas hydrophila. Aquac. Res. 2015, 46, 1111–1121. [Google Scholar] [CrossRef]
- Abdel-Latif, H.M.; Khalil, R.H. Evaluation of two phytobiotics, Spirulina platensis and Origanum vulgare extract on growth, serum antioxidant activities and resistance of Nile tilapia (Oreochromis niloticus) to pathogenic Vibrio alginolyticus. Int. J. Fish Aquat. Stud. 2014, 1, 250–255. [Google Scholar]
- Jerônimo, G.T.; Pádua, S.B.D.; Belo, M.A.D.A.; Chagas, E.C.; Taboga, S.R.; Maciel, P.O.; Martins, M.L. Neoechi-norhynchus buttnerae (acanthocephala) infection in farmed Colossoma macropomum: A pathological approach. Aquaculture 2017, 469, 124–127. [Google Scholar] [CrossRef] [Green Version]
- Valladão, G.M.R.; Gallani, S.U.; Jerônimo, G.T.; de Seixas, A.T. Challenges in the control of acanthocephalosis in aquaculture: Special emphasis on Neoechinorhynchus buttnerae. Rev. Aquac. 2019, 12, 1360–1372. [Google Scholar] [CrossRef]
- Costa, C.M.D.S.; da Cruz, M.G.; Lima, T.B.C.; Ferreira, L.C.; Ventura, A.S.; Brandão, F.R.; Chagas, E.C.; Chaves, F.C.M.; Martins, M.L.; Jerônimo, G.T. Efficacy of the essential oils of Mentha piperita, Lippia alba and Zingiber officinale to control the acanthocephalan Neoechinorhynchus buttnerae in Colossoma macropomum. Aquac. Rep. 2020, 18, 100414. [Google Scholar] [CrossRef]
- dos Santos, W.B.; Majolo, C.; dos Santos, D.S.; Rosa, M.C.; Monteiro, P.C.; Rocha, M.J.S.; de Oliveira, M.I.B.; Chaves, F.C.M.; Chagas, E.C. Eficácia in vitro de óleos essenciais de espécies de piperaceae no controle do acantocéfalo neoechinorhynchus buttnerae. Embrapa Amaz. Ocident. Artig. periódico indexado 2018, 12, 460–469. [Google Scholar]
- Cohen, S.C.; Kohn, A. A new species of Mymarothecium and new host and geographical records for M. viatorum (Monogenea: Dactylogyridae), parasites of freshwater fishes in Brazil. Folia Parasitol. 2005, 52, 307–310. [Google Scholar] [CrossRef] [Green Version]
- Silva, R.M.; Tavares-Dias, M.; Dias, M.W.R.; Dias, M.K.R.; Marinho, R.D.G.B. Parasitic fauna in hybrid tambacu from fish farms. Pesqui. Agropecuária Bras. 2013, 48, 1049–1057. [Google Scholar] [CrossRef] [Green Version]
- Soares, B.V.; Neves, L.R.; Oliveira, M.S.B.; Chaves, F.C.M.; Dias, M.K.R.; Chagas, E.C.; Tavares-Dias, M. Antiparasitic activity of the essential oil of Lippia alba on ectoparasites of Colossoma macropomum (tambaqui) and its physiological and histopathological effects. Aquaculture 2016, 452, 107–114. [Google Scholar] [CrossRef] [Green Version]
- Soares, B.V.; Cardoso, A.C.F.; Campos, R.R.; Gonçalves, B.B.; Santos, G.G.; Chaves, F.C.M.; Chagas, E.C.; Tavares-Dias, M. Antiparasitic, physiological and histological effects of the essential oil of Lippia origanoides (verbenaceae) in native freshwater fish Colossoma macropomum. Aquaculture 2017, 469, 72–78. [Google Scholar] [CrossRef] [Green Version]
- Woo, P.T.; Gregory, D.W.B. Diseases and Disorders of Finfish in Cage Culture; CABI: Wallingford, UK, 2014. [Google Scholar]
- Geraerts, M.; Muterezi, B.F.; Vanhove, M.P.; Pariselle, A.; Chocha, M.A.; Vreven, E.; Huyse, T.; Artois, T. Six new species of Cichlidogyrus paperna, 1960 (Platyhelminthes: Monogenea) from the gills of cichlids (Teleostei: Cichliformes) from the Lomami river basin (drc: Middle congo). Parasites Vectors 2020, 13, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, N.B.; Owatari, M.S.; Furtado, W.E.; Cardoso, L.; Tancredo, K.R.; Jesus, G.F.A.; Lopes, G.R.; Martins, M.L. Parasitological and histopathological diagnosis of a non-native fish (Oreochromis sp.) with a noticeable presence in a natural Brazilian river environment. J. Parasit. Dis. 2019, 44, 201–212. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, H.G.S.; Neto, F.M.; Ruiz, M.L.; Acchile, M.; Chagas, E.C.; Chaves, F.C.M.; Martins, M.L. Essential oils of Lippia sidoides and Mentha piperita against monogenean parasites and their influence on the hematology of nile tilapia. Aquaculture 2016, 450, 182–186. [Google Scholar] [CrossRef] [Green Version]
- Mathews, P.D.; Malheiros, A.F.; Vasquez, N.D.; Chavez, M.D. High Infestation by Dawestrema cycloancistrioides in Arapaima gigas Cultured in the Amazon Region, Peru. J. Veter. Med. 2014, 2014, 1–4. [Google Scholar] [CrossRef]
- Maciel, P.; Alves, R. Methods for quantifying eggs and oviposition rate of Dawestrema cycloancistrium (monogenea: Dactylogyridae), monogenean parasite of Arapaima gigas (teleostei: Osteoglossidae). J. Helminthol. 2020, 94, E4. [Google Scholar] [CrossRef] [PubMed]
- Malheiros, D.F.; Maciel, P.O.; Videira, M.N.; Tavares-Dias, M. Toxicity of the essential oil of Mentha piperita in Arapaima gigas (pirarucu) and antiparasitic effects on Dawestrema spp. (Monogenea). Aquaculture 2016, 455, 81–86. [Google Scholar] [CrossRef]
- Sutili, F.J.; Murari, A.L.; Silva, L.L.; Gressler, L.T.; Heinzmann, B.M.; de Vargas, A.C.; Schmidt, D.; Baldisserotto, B. The use of Ocimum americanum essential oil against the pathogens Aeromonas hydrophila and gyrodactylus sp. In silver catfish (Rhamdia quelen). Lett. Appl. Microbiol. 2016, 63, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Moon, T.; Wilkinson, J.M.; Cavanagh, H.M. Antiparasitic activity of two Lavandula essential oils against Giardia duodenalis, Trichomonas vaginalis and Hexamita inflata. Parasitol. Res. 2006, 99, 722–728. [Google Scholar] [CrossRef] [PubMed]
- Purivirojkul, W. Histological Change of Aquatic Animals by Parasitic Infection. Histopathol. Rev. Recent Adv. 2012, 153–176. [Google Scholar] [CrossRef] [Green Version]
- Taher, G. Some studies on metacercarial infection in Oreochromis niloticus in assiut governorate and their role in transmission of some trematodes to dogs. Assiut Univ. Bull. Environ. Res. 2009, 12, 63–79. [Google Scholar]
- Mahdy, O.A.; Abdel-Maogood, S.Z.; Mohammed, F.F. Effect of Verbesina Alternifolia and Mentha Piperita Oil Extracts on Newly Excysted Metacercaria of Euclinostomum Heterostomum (Rudolphi, 1809) (Digenea: Clinostomatidae) from Naturally Infected Kidneys of Tilapia Zillii in Egypt. J. Egypt. Soc. Parasitol. 2017, 47, 513–521. [Google Scholar] [CrossRef]
- da Cunha, J.A.; Sutili, F.J.; Oliveira, A.M.; Gressler, L.T.; Scheeren, C.D.A.; Silva, L.D.L.; Vaucher, R.D.A.; Baldisserotto, B.; Heinzmann, B.M. The Essential Oil of Hyptis mutabilis in Ichthyophthirius multifiliis Infection and its Effect on Hematological, Biochemical, and Immunological Parameters in Silver Catfish, Rhamdia quelen. J. Parasitol. 2017, 103, 778–785. [Google Scholar] [CrossRef] [PubMed]
- Valladão, G.M.R.; Gallani, S.U.; Ikefuti, C.V.; da Cruz, C.; Levy-Pereira, N.; Rodrigues, M.V.N.; Pilarski, F. Essential oils to control ichthyophthiriasis in pacu, Piaractus mesopotamicus (holmberg): Special emphasis on treatment with Melaleuca alternifolia. J. Fish Dis. 2016, 39, 1143–1152. [Google Scholar] [CrossRef] [PubMed]
- Meneses, J.; Couto, M.D.; Sousa, N.; Cunha, F.D.S.; Abe, H.; Ramos, F.M.; Chagas, E.; Chaves, F.; Martins, M.; Maria, A.; et al. Efficacy of Ocimum gratissimum essential oil against the monogenean Cichlidogyrus tilapiae gill parasite of Nile tilapia. Arq. Bras. Med. Veterinária Zootec. 2018, 70, 497–504. [Google Scholar] [CrossRef] [Green Version]
- Austin, B.; Austin, D.A.; Austin, B.; Austin, D.A. Bacterial Fish Pathogens; Springer: Berlin/Heidelberg, Germany, 2012; Volume 481. [Google Scholar]
- Austin, B.; Austin, D.A. Vibrios. In Bacterial Fish Pathogens; Springer Nature: Cham, Switzerland, 2016; pp. 499–601. [Google Scholar]
- Hayatgheib, N.; Fournel, C.; Calvez, S.; Pouliquen, H.; Moreau, E. In vitro antimicrobial effect of various commercial essential oils and their chemical constituents on Aeromonas salmonicida subsp. Salmonicida. J.Appl. Microbiol. 2020, 129, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Okmen, G.; Ugur, A.; Sarac, N.; Arslan, T. In vivo and in vitro antibacterial activities of some essential oils of lamiaceae species on Aeromonas salmonicida isolates from cultured rainbow trout, Oncorhynchus mykiss. J. Anim. Vet. Adv. 2012, 11, 2762–2768. [Google Scholar] [CrossRef] [Green Version]
- Tural, S.; Durmaz, Y.; Urçar, E.; Turhan, S. Antibacterial Activity of Thyme (Thymus vulgaris L.), Laurel (Lauris nobilis L.), Rosemary (Rosmarinus officinalis L.) and Parsley (Petroselinum crispum L.) Essential Oils against Some Fish Pathogenic Bacteria. Acta Aquat. Turc. 2019, 15, 439–446. [Google Scholar] [CrossRef] [Green Version]
- Thomas, J.; Jerobin, J.; Seelan, T.S.J.; Thanigaivel, S.; Vijayakumar, S.; Mukherjee, A.; Chandrasekaran, N. Studies on pathogenecity of Aeromonas salmonicida in catfish Clarias batrachus and control measures by neem nanoemulsion. Aquaculture 2013, 396, 71–75. [Google Scholar] [CrossRef]
- Starliper, C.E.; Ketola, H.G.; Noyes, A.D.; Schill, W.B.; Henson, F.G.; Chalupnicki, M.A.; Dittman, D.E. An investigation of the bactericidal activity of selected essential oils to aeromonas spp. J. Adv. Res. 2015, 6, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Gulec, A.K.; Erecevit, P.; Yuce, E.; Arslan, A.; Bagci, E.; Kirbag, S. Antimicrobial activity of the methanol extracts and essential oil with the composition of endemic Origanum acutidens (lamiaceae). J. Essent. Oil Bear. Plants 2014, 17, 353–358. [Google Scholar] [CrossRef]
- Wei, L.S.; Wee, W. Chemical composition and antimicrobial activity of Cymbopogon nardus citronella essential oil against systemic bacteria of aquatic animals. Iran. J. Microbiol. 2013, 5, 147–152. [Google Scholar]
- Lee, S.; Najiah, M.; Wendy, W.; Nadirah, M. Chemical composition and antimicrobial activity of the essential oil of Syzygium aromaticum flower bud (Clove) against fish systemic bacteria isolated from aquaculture sites. Front. Agric. China 2009, 3, 332–336. [Google Scholar] [CrossRef]
- Majolo, C.; da Rocha, S.I.B.; Chagas, E.C.; Chaves, F.C.M.; Bizzo, H.R. Chemical composition of Lippia spp. Essential oil and antimicrobial activity against Aeromonas hydrophila. Aquac. Res. 2017, 48, 2380–2387. [Google Scholar] [CrossRef]
- El-Ekiaby, W.T. Basil oil nanoemulsion formulation and its antimicrobial activity against fish pathogen and enhance disease resistance against Aeromonas hydrophila in cultured Nile tilapia. Egypt. J. Aquac. 2019, 9, 13–33. [Google Scholar] [CrossRef]
- Bandeira, G., Jr.; de Freitas Souza, C.; Baldissera, M.D.; Descovi, S.N.; da Silveira, B.P.; Tasca, C.; Mourao, R.H.V.; de Vargas, A.P.C.; Baldisserotto, B. Plant essential oils against bacteria isolated from fish: An in vitro screening and in vivo efficacy of Lippia origanoides/oleos essenciais de plantas contra bacterias isoladas de peixes: Uma triagem in vitro e eficacia in vivo de Lippia origanoides. Cienc. Rural 2019, 49, e20190064. [Google Scholar] [CrossRef]
- Sutili, F.J.; de Lima, S.L.; Gressler, L.T.; Gressler, L.T.; Battisti, E.K.; Heinzmann, B.M.; de Vargas, A.C.; Baldisserotto, B. Plant essential oils against Aeromonas hydrophila: In vitro activity and their use in experimentally infected fish. J. Appl. Microbiol. 2015, 119, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Sutili, F.J.; Cunha, M.A.; Ziech, R.E.; Krewer, C.C.; Zeppenfeld, C.C.; Heldwein, C.G.; Gressler, L.T.; Heinzmann, B.M.; Vargas, A.C.; Baldisserotto, B. Lippia alba essential oil promotes survival of silver catfish (Rhamdia quelen) infected with Aeromonas sp. An. Acad. Bras. Ciências 2015, 87, 95–100. [Google Scholar] [CrossRef] [Green Version]
- Schiewe, M.H.; Trust, T.J.; Crosa, J.H. Vibrio ordalii sp. nov.: A causative agent of vibriosis in fish. Curr. Microbiol. 1981, 6, 343–348. [Google Scholar] [CrossRef]
- Domínguez-Borbor, C.; Sánchez-Rodríguez, A.; Sonnenholzner, S.; Rodríguez, J. Essential oils mediated anti-virulence therapy against vibriosis in Penaeus vannamei. Aquaculture 2020, 529, 735639. [Google Scholar] [CrossRef]
- Navarrete, P.; Toledo, I.; Mardones, P.; Opazo, R.; Espejo, R.; Romero, J. Effect of Thymus vulgaris essential oil on intestinal bacterial microbiota of rainbow trout, Oncorhynchus mykiss (Walbaum) and bacterial isolates. Aquac. Res. 2010, 41, e667–e678. [Google Scholar] [CrossRef]
- Stefanakis, M.K.; Touloupakis, E.; Anastasopoulos, E.; Ghanotakis, D.; Katerinopoulos, H.E.; Makridis, P. Anti-bacterial activity of essential oils from plants of the genus origanum. Food Control 2013, 34, 539–546. [Google Scholar] [CrossRef]
- Öntaş, C.; Baba, E.; Kaplaner, E.; Küçükaydin, S.; Öztürk, M.; Ercan, M.D. Antibacterial activity of citrus limon peel essential oil and Argania spinosa oil against fish pathogenic bacteria. Kafkas Üniversitesi Vet. Fakültesi Derg. 2016, 22, 741–749. [Google Scholar]
- Shehata, S.; Mohamed, M.; Abd, E.S.S. Antibacterial activity of essential oils and their effects on Nile tilapia fingerlings performance. J. Med Sci. 2013, 13, 367. [Google Scholar] [CrossRef] [Green Version]
- Tanekhy, M.; Matsuda, S.; Itano, T.; Kawakami, H.; Kono, T.; Sakai, M. Expression of cytokine genes in head kidney and spleen cells of Japanese flounder (Paralichthys olivaceus) infected with Nocardia seriolae. Veter. Immunol. Immunopathol. 2010, 134, 178–183. [Google Scholar] [CrossRef]
- Ismail, T.; Yoshida, T. In vitro activity of some essential oils alone and in combination against the fish pathogen Nocardia seriolae. Pol. J. Vet. Sci. 2017, 20, 559–566. [Google Scholar] [CrossRef] [Green Version]
- Ostrand, S.L.; Glenn, R.A.; Gannam, A.L.; Hanson, K.C. Inhibitory Effects of Rosemary Oil on the In Vitro Growth of Six Common Finfish Pathogens. North Am. J. Aquac. 2012, 74, 230–234. [Google Scholar] [CrossRef]
- Rattanachaikunsopon, P.; Phumkhachorn, P. Potential of chinese chive oil as a natural antimicrobial for controlling Flavobacterium columnare infection in Nile tilapia Oreochromis niloticus. Fish. Sci. 2009, 75, 1431. [Google Scholar] [CrossRef]
- Majolo, C.; Pilarski, F.; Chaves, F.C.M.; Bizzo, H.R.; Chagas, E.C. Antimicrobial activity of some essential oils against Streptococcus agalactiae, an important pathogen for fish farming in Brazil. J. Essent. Oil Res. 2018, 30, 388–397. [Google Scholar] [CrossRef] [Green Version]
- Vazirzadeh, A.; Jalali, S.; Farhadi, A. Antibacterial activity of Oliveria decumbens against Streptococcus iniae in Nile tilapia (Oreochromis niloticus) and its effects on serum and mucosal immunity and antioxidant status. Fish Shellfish. Immunol. 2019, 94, 407–416. [Google Scholar] [CrossRef]
- Soltani, M.; Ghodratnama, M.; Ebrahimzadeh-Mosavi, H.A.; Nikbakht-Brujeni, G.; Mohamadian, S.; Ghasemian, M. Shirazi thyme (Zataria multiflora Boiss) and Rosemary (Rosmarinus officinalis) essential oils repress expression of saga, a streptolysin s-related gene in Streptococcus iniae. Aquaculture 2014, 430, 248–252. [Google Scholar] [CrossRef]
- Roomiani, L.; Soltani, M.; Akhondzadeh, B.A.; Mahmoodi, A.; Taheri, M.A.; Yadollahi, F. Evaluation of the chemical composition and in vitro antimicrobial activity of Rosmarinus officinalis, Zataria multiflora, Anethum graveolens and Eucalyptus globulus against Streptococcus iniae; the cause of zoonotic disease in farmed fish. Iran. J. Fish. Sci. 2013, 12, 702–716. [Google Scholar]
- Rattanachaikunsopon, P.; Phumkhachorn, P. Potential of cinnamon (Cinnamomum verum) oil to control Streptococcus iniae infection in tilapia (Oreochromis niloticus). Fish. Sci. 2010, 76, 287–293. [Google Scholar] [CrossRef]
- Pirbalouti, G.; Broujeni, N.; Momeni, M.; Poor, M.; Hamedi, B. Antibacterial activity of Iranian medicinal plants against Streptococcus iniae isolated from rainbow trout (Oncorhynchus mykiss). Arch. Biol. Sci. 2011, 63, 59–66. [Google Scholar] [CrossRef]
- Goudarzi, M.; Hamedi, B.; Malekpoor, F.; Abdizadeh, R.; Pirbalouti, A.G.; Raissy, M. Sensitivity of Lactococcus garvieae isolated from rainbow trout to some Iranian medicinal herbs. J. Med. Plants Res. 2011, 5, 3067–3073. [Google Scholar]
- Soltani, M.; Mohamadian, S.; Ebrahimzahe-Mousavi, H.A.; Mirzargar, S.; Taheri-Mirghaed, A.; Rouholahi, S.; Ghodratnama, M. Shirazi thyme (Zataria multiflora) essential oil suppresses the expression of the epsd capsule gene in Lactococcus garvieae, the cause of Lactococcosis in farmed fish. Aquaculture 2014, 433, 143–147. [Google Scholar] [CrossRef]
- Fereidouni, M.S.; Akhlaghi, M.; Alhosseini, A.K. Antibacterial effects of medicinal plant extracts against Lactococcus garvieae, the etiological agent of rainbow trout Lactococcosis. Int. J. Aquat. Biol. 2013, 1, 119–124. [Google Scholar]
- Mahmoodi, A.; Roomiani, L.; Soltani, M.; Basti, A.A.; Kamali, A.; Taheri, S. Chemical composition and antibacterial activity of essential oils and extracts from Rosmarinus officinalis, Zataria multiflora, Anethum graveolens and Eucalyptus globulus. Glob. Vet. 2012, 9, 73–79. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dawood, M.A.O.; El Basuini, M.F.; Zaineldin, A.I.; Yilmaz, S.; Hasan, M.T.; Ahmadifar, E.; El Asely, A.M.; Abdel-Latif, H.M.R.; Alagawany, M.; Abu-Elala, N.M.; et al. Antiparasitic and Antibacterial Functionality of Essential Oils: An Alternative Approach for Sustainable Aquaculture. Pathogens 2021, 10, 185. https://doi.org/10.3390/pathogens10020185
Dawood MAO, El Basuini MF, Zaineldin AI, Yilmaz S, Hasan MT, Ahmadifar E, El Asely AM, Abdel-Latif HMR, Alagawany M, Abu-Elala NM, et al. Antiparasitic and Antibacterial Functionality of Essential Oils: An Alternative Approach for Sustainable Aquaculture. Pathogens. 2021; 10(2):185. https://doi.org/10.3390/pathogens10020185
Chicago/Turabian StyleDawood, Mahmoud A. O., Mohammed F. El Basuini, Amr I. Zaineldin, Sevdan Yilmaz, Md. Tawheed Hasan, Ehsan Ahmadifar, Amel M. El Asely, Hany M. R. Abdel-Latif, Mahmoud Alagawany, Nermeen M. Abu-Elala, and et al. 2021. "Antiparasitic and Antibacterial Functionality of Essential Oils: An Alternative Approach for Sustainable Aquaculture" Pathogens 10, no. 2: 185. https://doi.org/10.3390/pathogens10020185
APA StyleDawood, M. A. O., El Basuini, M. F., Zaineldin, A. I., Yilmaz, S., Hasan, M. T., Ahmadifar, E., El Asely, A. M., Abdel-Latif, H. M. R., Alagawany, M., Abu-Elala, N. M., Van Doan, H., & Sewilam, H. (2021). Antiparasitic and Antibacterial Functionality of Essential Oils: An Alternative Approach for Sustainable Aquaculture. Pathogens, 10(2), 185. https://doi.org/10.3390/pathogens10020185