Detection of Rhodococcus fascians, the Causative Agent of Lily Fasciation in South Korea
Abstract
:1. Introduction
2. Results and Discussion
2.1. Detection of R. fascians Virulence Gene in Symptomatic Lily Plants
2.2. Development of Genome-Based PCR Primers for Detection of Pathogenic R. fascians
2.3. Isolation of R. fascians from Symptomatic Lily Plants
2.4. Pathogenicity of YWS Isolates on Tobacco Plants
3. Materials and Methods
3.1. Sample Collection and Bacterial Isolation
3.2. Molecular Identification of R. fascians
3.3. Phylogenetic Analysis
3.4. Plant Inoculation Assays
3.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Sorkhoh, N.A.; Ghannoum, M.A.; Ibrahim, A.S.; Stretton, R.J.; Radwan, S.S. Crude oil and hydrocarbon-degrading strains of Rhodococcus rhodochrous isolated from soil and marine environments in Kuwait. Environ. Pollut. 1990, 65, 1–17. [Google Scholar] [CrossRef]
- Cappelletti, M.; Presentato, A.; Piacenza, E.; Firrincieli, A.; Turner, R.J.; Zannoni, D. Biotechnology of Rhodococcus for the production of valuable compounds. Appl. Microbiol. Biotechnol. 2020, 104, 8567–8594. [Google Scholar] [CrossRef] [PubMed]
- Larkin, M.J.; Kulakov, L.A.; Allen, C.C. Biodegradation and Rhodococcus--masters of catabolic versatility. Curr. Opin. Biotechnol. 2005, 16, 282–290. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho, C.C.; Costa, S.S.; Fernandes, P.; Couto, I.; Viveiros, M. Membrane transport systems and the biodegradation potential and pathogenicity of genus Rhodococcus. Front. Physiol. 2014, 5, 133. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.E.; Jeong, H.; Jo, S.H.; Jeong, J.C.; Kwon, S.Y.; An, D.; Park, J.M. A Leaf-Inhabiting Endophytic Bacterium, Rhodococcus sp. KB6, Enhances Sweet Potato Resistance to Black Rot Disease Caused by Ceratocystis fimbriata. J. Microbiol. Biotechnol. 2016, 26, 488–492. [Google Scholar] [CrossRef]
- Yaish, M.W.; Antony, I.; Glick, B.R. Isolation and characterization of endophytic plant growth-promoting bacteria from date palm tree (Phoenix dactylifera L.) and their potential role in salinity tolerance. Antonie Van Leeuwenhoek 2015, 107, 1519–1532. [Google Scholar] [CrossRef]
- Trivedi, P.; Pandey, A.; Sa, T. Chromate reducing and plant growth promoting activities of psychrotrophic Rhodococcus erythropolis MtCC 7,905. J. Basic Microbiol. 2007, 47, 513–517. [Google Scholar] [CrossRef]
- Prescott, J.F. Rhodococcus equi: An animal and human pathogen. Clin. Microbiol. Rev. 1991, 4, 20–34. [Google Scholar] [CrossRef]
- Letek, M.; Gonzalez, P.; Macarthur, I.; Rodriguez, H.; Freeman, T.C.; Valero-Rello, A.; Blanco, M.; Buckley, T.; Cherevach, I.; Fahey, R.; et al. The genome of a pathogenic rhodococcus: Cooptive virulence underpinned by key gene acquisitions. PLoS Genet. 2010, 6, e1001145. [Google Scholar] [CrossRef] [Green Version]
- Cornelis, K.; Ritsema, T.; Nijsse, J.; Holsters, M.; Goethals, K.; Jaziri, M. The plant pathogen Rhodococcus fascians colonizes the exterior and interior of the aerial parts of plants. Mol. Plant Microbe Interact. 2001, 14, 599–608. [Google Scholar] [CrossRef] [Green Version]
- Goethals, K.; Vereecke, D.; Jaziri, M.; Van Montagu, M.; Holsters, M. Leafy gall formation by Rhodococcus fascians. Annu. Rev. Phytopathol. 2001, 39, 27–52. [Google Scholar] [CrossRef] [PubMed]
- Putnam, M.L.; Miller, M.L. Rhodococcus fascians in Herbaceous Perennials. Plant Dis. 2007, 91, 1064–1076. [Google Scholar] [CrossRef] [Green Version]
- Escobar, M.A.; Dandekar, A.M. Agrobacterium tumefaciens as an agent of disease. Trends Plant Sci. 2003, 8, 380–386. [Google Scholar] [CrossRef]
- Lee, C.W.; Efetova, M.; Engelmann, J.C.; Kramell, R.; Wasternack, C.; Ludwig-Muller, J.; Hedrich, R.; Deeken, R. Agrobacterium tumefaciens promotes tumor induction by modulating pathogen defense in Arabidopsis thaliana. Plant Cell 2009, 21, 2948–2962. [Google Scholar] [CrossRef]
- Kado, C.I.; Heskett, M.G. Selective media for isolation of Agrobacterium, Corynebacterium, Erwinia, Pseudomonas, and Xanthomonas. Phytopathology 1970, 60, 969–976. [Google Scholar] [CrossRef]
- Stamler, R.A.; Kilcrease, J.; Kallsen, C.; Fichtner, E.J.; Cooke, P.; Heerema, R.J.; Randall, J.J. First Report of Rhodococcus Isolates Causing Pistachio Bushy Top Syndrome on ‘UCB-1’ Rootstock in California and Arizona. Plant Dis. 2015, 99, 1468–1476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serdani, M.; Curtis, M.; Miller, M.L.; Kraus, J.; Putnam, M.L. Loop-Mediated Isothermal Amplification and Polymerase Chain Reaction Methods for Specific and Rapid Detection of Rhodococcus fascians. Plant Dis. 2013, 97, 517–529. [Google Scholar] [CrossRef] [Green Version]
- Nikolaeva, E.V.; Park, S.Y.; Kang, S.; Olson, T.N.; Kim, S.H. Ratios of Cells With and Without Virulence Genes in Rhodococcus fascians Populations Correlate with Degrees of Symptom Development. Plant Dis. 2009, 93, 499–506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savory, E.A.; Fuller, S.L.; Weisberg, A.J.; Thomas, W.J.; Gordon, M.I.; Stevens, D.M.; Creason, A.L.; Belcher, M.S.; Serdani, M.; Wiseman, M.S.; et al. Evolutionary transitions between beneficial and phytopathogenic Rhodococcus challenge disease management. eLife 2017, 6. [Google Scholar] [CrossRef] [Green Version]
- Crespi, M.; Messens, E.; Caplan, A.B.; van Montagu, M.; Desomer, J. Fasciation induction by the phytopathogen Rhodococcus fascians depends upon a linear plasmid encoding a cytokinin synthase gene. EMBO J. 1992, 11, 795–804. [Google Scholar] [CrossRef]
- Maes, T.; Vereecke, D.; Ritsema, T.; Cornelis, K.; Thu, H.N.; Van Montagu, M.; Holsters, M.; Goethals, K. The att locus of Rhodococcus fascians strain D188 is essential for full virulence on tobacco through the production of an autoregulatory compound. Mol. Microbiol. 2001, 42, 13–28. [Google Scholar] [CrossRef] [Green Version]
- Francis, I.; De Keyser, A.; De Backer, P.; Simon-Mateo, C.; Kalkus, J.; Pertry, I.; Ardiles-Diaz, W.; De Rycke, R.; Vandeputte, O.M.; El Jaziri, M.; et al. pFiD188, the linear virulence plasmid of Rhodococcus fascians D188. Mol. Plant Microbe Interact. 2012, 25, 637–647. [Google Scholar] [CrossRef] [Green Version]
- Vereecke, D.; Cornelis, K.; Temmerman, W.; Jaziri, M.; Van Montagu, M.; Holsters, M.; Goethals, K. Chromosomal locus that affects pathogenicity of Rhodococcus fascians. J. Bacteriol. 2002, 184, 1112–1120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Creason, A.L.; Vandeputte, O.M.; Savory, E.A.; Davis, E.W., 2nd; Putnam, M.L.; Hu, E.; Swader-Hines, D.; Mol, A.; Baucher, M.; Prinsen, E.; et al. Analysis of genome sequences from plant pathogenic Rhodococcus reveals genetic novelties in virulence loci. PLoS ONE 2014, 9, e101996. [Google Scholar] [CrossRef]
- Yeon-Jeong, L.; Kong, H.G.; Lee, Y.H.; Kim, H.R.; Park, D.H. First Report of Rhodococcus fascians Causing Fasciation of Lilies (Lilium longiflorum Thunb.) in South Korea. Plant Dis. 2020. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.; Kim, S. Analysis of the economic value of the production of lily bulbs in Korea. KJOAS 2016, 43, 481–495. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [CrossRef]
Strain | Gene | Accession Number | Length (bp) | Sequence Homology | ||
---|---|---|---|---|---|---|
Description | Identity | Accession | ||||
YWS 1-1 | 16S rRNA | MW394216 | 1518 | R. fascians D188, complete genome | 99.9% | CP015235 |
fasD | MW394220 | 573 | R. fascians D188 plasmid pFiD188 | 100.0% | CP015236 | |
vicA | MW394212 | 694 | R. fascians D188, complete genome | 97.8% | CP015235 | |
YWS 3-1 | 16S rRNA | MW394217 | 1517 | R.fascians D188, complete genome | 99.8% | CP015235 |
fasD | MW394221 | 573 | R. fascians D188 plasmid pFiD188 | 100.0% | CP015236 | |
vicA | MW394213 | 694 | R. fascians D188, complete genome | 99.1% | CP015235 | |
YWS 4-1 | 16S rRNA | MW394218 | 1517 | R. fascians D188, complete genome | 99.4% | CP015235 |
fasD | MW394222 | 573 | R. fascians D188 plasmid pFiD188 | 100.0% | CP015236 | |
vicA | MW394214 | 694 | R. fascians D188, complete genome | 96.4% | CP015235 | |
YWS 8-2 | 16S rRNA | MW394219 | 1517 | R. fascians D188, complete genome | 99.8% | CP015235 |
fasD | MW394223 | 573 | R. fascians D188 plasmid pFiD188 | 100.0% | CP015236 | |
vicA | MW394215 | 694 | R. fascians D188, complete genome | 99.0% | CP015235 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.M.; Koo, J.; Kang, S.W.; Jo, S.H.; Park, J.M. Detection of Rhodococcus fascians, the Causative Agent of Lily Fasciation in South Korea. Pathogens 2021, 10, 241. https://doi.org/10.3390/pathogens10020241
Park JM, Koo J, Kang SW, Jo SH, Park JM. Detection of Rhodococcus fascians, the Causative Agent of Lily Fasciation in South Korea. Pathogens. 2021; 10(2):241. https://doi.org/10.3390/pathogens10020241
Chicago/Turabian StylePark, Joon Moh, Jachoon Koo, Se Won Kang, Sung Hee Jo, and Jeong Mee Park. 2021. "Detection of Rhodococcus fascians, the Causative Agent of Lily Fasciation in South Korea" Pathogens 10, no. 2: 241. https://doi.org/10.3390/pathogens10020241
APA StylePark, J. M., Koo, J., Kang, S. W., Jo, S. H., & Park, J. M. (2021). Detection of Rhodococcus fascians, the Causative Agent of Lily Fasciation in South Korea. Pathogens, 10(2), 241. https://doi.org/10.3390/pathogens10020241