First Evidence of Ehrlichia minasensis Infection in Horses from Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Tick and Blood Sample Collection and Sera Preparation
2.3. Hematological and biochemical Analyses
2.4. DNA Extraction and Molecular Detection of Anaplasmataceae Bacteria
2.5. Serologic Analysis
2.6. Statistical Analysis
3. Results
3.1. Health Status of the Equidae Used in the Study
3.2. Tick Infestation
3.3. Hematological Parameters of Blood Samples
3.4. Molecular Detection of Anaplasmataceae Bacteria
3.5. Detection of Anti-Ehrlichia IgG
3.6. Association between Exposure to Ehrlichia Infection and Clinical and Hematological Manifestations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dumler, J.S.; Barbet, A.F.; Bekker, C.P.J.; Dasch, G.A.; Palmer, G.H.; Ray, S.C.; Rikihisa, Y.; Rurangirwa, F.R. Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: Unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions of six new species combinations and designation of Ehrlichia equi and HGE agent as subjective synonyms of Ehrlichia phagocytophila. Int. J. Syst. Evol. Microbiol. 2001, 51, 2145–2165. [Google Scholar] [CrossRef] [Green Version]
- Cabezas-Cruz, A.; Zweygarth, R.; Vancova, M.; Broniszewska, M.; Grubhoffer, L.; Passos, L.M.F.; Ribeiro, M.F.B.; Alberdi, P.; de la Fuente, J. Ehrlichia minasensis sp. nov., isolated from the tick Rhipicephalus microplus. Int. J. Syst. Evol. Microbiol. 2016, 66, 1426–1430. [Google Scholar] [CrossRef] [Green Version]
- Duell, J.R.; Carmichael, R.; Herrin, B.H.; Holbrook, T.C.; Talley, J.; Little, S.E. Prevalence and species of ticks on horses in Central Oklahoma. J. Med. Entomol. 2013, 50, 1330–1333. [Google Scholar] [CrossRef] [Green Version]
- Carmichael, R.C.; Duell, J.R.; Holbrook, T.C.; Herrin, B.H.; Leutenegger, C.M.; O’onnor, T.P.; Little, S.R. Antibodies reactive to Ehrlichia spp. are common in Oklahoma horses. Vector Borne Zoonotic Dis. 2014, 14, 552–556. [Google Scholar] [CrossRef]
- O’Nion, V.L.; Montilla, H.J.; Qurollo, B.A.; Maggi, R.G.; Hegarty, B.C.; Tornquist, S.J.; Breitschwerdt, E.B. Potentially novel Ehrlichia species in horses Nicaragua. Emerg. Infect. Dis. 2015, 21, 335–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allsopp, B.A. Natural history of Ehrlichia ruminantium. Vet. Parasitol. 2010, 167, 23–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabezas-Cruz, A.; Zweygarth, R.; Ribeiro, M.F.B.; Silveira, J.A.G.; de la Fuente, J.; Grubhoffer, L.; Valdés, J.J.; Passos, L.M.F. New species of Ehrlichia isolated from Rhipicephalus (Boophilus) microplus shows an ortholog of the E. canis major immunogenic glycoprotein gp36 with a new sequence of tandem repeats. Parasit. Vectors 2012, 5, 291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieira, T.S.; Vieira, R.F.; Krawczak, F.S.; Soares, H.S.; Guimarães, A.M.; Barros-Filho, I.R.; Marcondes, M.; Labruna, M.B.; Biondo, A.W.; Vidotto, O. Ehrlichia sp. infection in carthorses of low-income owners, Southern Brazil. Comp. Immunol. Microbiol. Infect. Dis. 2016, 48, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieira, R.F.C.; Biondo, A.W.; Guimaraes, A.M.S.; Santos, A.P.; Santos, R.P.; Dutra, L.H.; Diniz, P.P.V.P.; Morais, H.A.; Messick, J.B.; Labruna, M.B.; et al. Ehrlichiosis in Brazil. Rev. Bras. Parasitol. Vet. 2011, 20, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguiar, D.M.; Ziliani, T.F.; Zhang, X.; Melo, A.L.T.; Braga, I.A.; Witter, R.; Freitas, L.C.; Rondelli, A.L.H.; Luis, M.A.; Sortee, E.C.B.; et al. A novel Ehrlichia genotype strain distinguished by the TRP36 gene naturally infects cattle in Brazil and causes clinical manifestations. Ticks Tick Borne Dis. 2014, 5, 537–544. [Google Scholar] [CrossRef]
- Lobanov, V.A.; Gajadhar, A.A.; Al-Adhami, B.; Schwantje, H.M. Molecular Study of Free-ranging Mule Deer and White-tailed Deer from British Columbia, Canada, for Evidence of Anaplasma spp. and Ehrlichia spp. Transbound. Emerg. Dis. 2012, 59, 233–243. [Google Scholar] [CrossRef]
- Carvalho, I.T.S.; Melo, A.L.T.; Freitas, L.C.; Verçoza, R.V.; Alves, A.S.; Costa, J.S.; Chitarra, C.S.; Nakazato, L.; Dutra, V.; Pacheco, R.C.; et al. Minimum infection rate of Ehrlichia minasensis in Rhipicephalus microplus and Amblyomma sculptum ticks in Brazil. Ticks Tick Borne Dis. 2016, 7, 849–852. [Google Scholar] [CrossRef] [PubMed]
- Iweriebor, B.C.; Mmbaga, E.J.; Adegborioye, A.; Igwaran, A.; Obi, L.C.; Okoh, A.I. Genetic profiling for Anaplasma and Ehrlichia species in ticks collected in the Eastern Cape Province of South Africa. BMC Microbiol. 2017, 17, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cicculli, V.; Masse, S.; Capai, L.; de Lamballerie, X.; Charrel, R.; Falchi, A. First detection of Ehrlichia minasensis in Hyalomma marginatum ticks collected from cattle in Corsica, France. Vet. Med. Sci. 2019, 5, 243–248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rehman, A.; Conraths, F.J.; Sauter-Louis, C.; Krücken, J.; Nijhof, A.M. Epidemiology of tick-borne pathogens in the semi-arid and the arid agro-ecological zones of Punjab province, Pakistan. Transbound. Emerg. Dis. 2019, 66, 526–536. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Liu, X.; Mu, J.; Yu, X.; Fei, Y.; Chang, J.; Bi, Y.; Zhou, Y.; Ding, Z.; Yin, R. Emergence of a Novel Ehrlichia minasensis Strain, Harboring the Major Immunogenic Glycoprotein trp36 with Unique Tandem Repeat and C-Terminal Region Sequences, in Haemaphysalis hystricis Ticks Removed from Free-Ranging Sheep in Hainan Province, China. Microorganisms 2019, 7, 369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Labruna, M.B.; Kerber, C.E.; Ferreira, F.; Faccini, J.L.H.; Waal, D.T.; Gennari, S.M. Risk factors to tick infestations and their occurrence on horses in the state of São Paulo, Brazil. Vet. Parasitol. 2001, 97, 1–14. [Google Scholar] [CrossRef]
- Tirosh-Levy, S.; Gottlieb, Y.; Apanaskevich, D.A.; Mumcuoglu, K.Y.; Steinman, A. Species distribution and seasonal dynamics of equine tick infestation in two Mediterranean climate niches in Israel. Parasit. Vectors 2018, 11, 546. [Google Scholar] [CrossRef] [Green Version]
- Grandi, G.; Chitimia-Dobler, L.; Choklikitumnuey, P.; Strube, C.; Springer, A.; Albihn, A.; Jaenson, T.G.T.; Omazic, A. First records of adult Hyalomma marginatum and H. rufipes ticks (Acari: Ixodidae) in Sweden. Ticks Tick Borne Dis. 2020, 11, 101403. [Google Scholar] [CrossRef]
- Vieira, R.F.; Vieira, T.S.; Nascimento, D.A.; Martins, T.F.; Krawczak, F.S.; Labruna, M.B.; Chandrashekar, R.; Marcondes, M.; Biondo, A.W.; Vidotto, O. Serological survey of Ehrlichia species in dogs, horses and humans: Zoonotic scenery in a rural settlement from southern Brazil. Rev. Inst. Med. Trop. São Paulo 2013, 55, 335–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barros, E.M.; Braga, I.A.; Santos, L.G.F.; Ziiliane, T.F.; Melo, A.L.T.; Borges, A.M.C.M.; Silva, L.G.; Aguiar, D.M. Detecção de Theileria equi e Babesia caballi e anticorpos anti-Ehrlichia spp. em equídeos do Pantanal Mato-Grossense, Brasil. Arq. Bras. Med. Vet. Zootec. 2015, 67, 716–722. [Google Scholar] [CrossRef] [Green Version]
- Vieira, T.S.W.J.; Qurollo, B.A.; Mongruel, A.C.B.; Baggio, R.A.; Vidotto, O.; Breitschwerdt, E.B.; Vieira, R.F.C. Potentially same novel Ehrlichia species in Horses in Nicaragua and Brazil. Emerg. Infect. Dis. 2018, 24, 953. [Google Scholar] [CrossRef] [Green Version]
- Barros-Battesti, D.M.; Arzua, M.; Bechara, G.H. Carrapatos de importância médico-veterinária da Região Neotropical: Um guia ilustrado para identificação de espécies; Vox/International Consortium on Ticks and Tick-borne Diseases/Butantan: São Paulo, SP, Brazil, 2006; 223p. [Google Scholar]
- Martins, T.F.; Onofrio, V.C.; Barros-Battesti, D.M.; Labruna, M.B. Nymphs of the genus Amblyomma (Acari: Ixodidae) of Brazil: Descriptions, redescriptions, and identification key. Ticks Tick Borne Dis. 2010, 1, 75–99. [Google Scholar] [CrossRef]
- Martins, T.F.; Barbieri, A.R.; Costa, F.B.; Terassini, F.A.; Camargo, L.M.; Peterka, C.R.; Pacheco, R.C.; Dias, R.A.; Nunes, P.H.; Marcili, A.; et al. Geographical distribution of Amblyomma cajennense (sensu lato) ticks (Parasitiformes: Ixodidae) in Brazil, with description of the nymph of A. cajennense (sensu stricto). Parasites Vectors 2016, 9, 186. [Google Scholar] [CrossRef] [PubMed]
- Jain, N.C. Essentials of Veterinary Hematology; Lea & Febiger: Philadelphia, PA, USA, 1993; 417p. [Google Scholar]
- Sangioni, L.A.; Horta, M.C.; Vianna, M.C.; Gennari, S.M.; Soares, R.M.; Galvão, M.A.; Schumaker, T.T.; Ferreira, F.; Vidotto, O.; Labruna, M.B. Rickettsial Infection in Animals and Brazilian Spotted Fever Endemicity. Emerg. Infect. Dis. 2005, 11, 265–270. [Google Scholar] [CrossRef]
- Braga, I.A.; Ramos, D.G.S.; Marcili, A.; Melo, A.L.T.; Taques, I.I.G.G.; Amude, A.M.; Chitarra, C.S.; Nakazato, L.; Dutra, V.; Pacheco, R.C.; et al. Molecular detection of tick-borne protozoan parasites in a population of domestic cats in midwestern Brazil. Ticks Tick. Borne Dis. 2012, 7, 1004–1009. [Google Scholar] [CrossRef] [PubMed]
- Mangold, A.J.; Bargues, M.D.; Mas-Coma, S. Mitochondrial 16S rDNA sequences and phylogenetic relationships of species of Rhipicephalus and other tick genera among Metastriata (Acari: Ixodidae). Parasitol. Res. 1998, 84, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, D.M.; Hagiwara, M.K.; Labruna, M.B. In vitro isolation and molecular characterization of an Ehrlichia canis strain from São Paulo, Brazil. Braz. J. Microbiol. 2008, 39, 489–493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almeida, A.P.; Souza, T.D.; Marcili, A.; Labruna, M.B. Novel Ehrlichia and Hepatozoon agents infecting the crab-eating fox (Cerdocyon thous) in southeastern Brazil. J. Med. Entomol. 2013, 50, 640–646. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.M.; Kim, S.W.; Kim, D.M.; Yoon, N.R.; Jha, P.; Jang, S.J.; Ahn, Y.J.; Lim, D.; Lee, S.H.; Hwang, S.D.; et al. Case Report: Polymerase Chain Reaction Testing of Tick Bite Site Samples for the Diagnosis of Human Granulocytic Anaplasmosis. Am. J. Trop. Med. Hyg. 2017, 97, 403–406. [Google Scholar] [CrossRef]
- Gofton, A.W.; Doggett, S.; Ratchford, A.; Ryan, U.; Irwin, P. Phylogenetic characterisation of two novel Anaplasmataceae from Australian Ixodes holocyclus ticks: “Candidatus Neoehrlichia australis” and “Candidatus Neoehrlichia arcana”. Int. J. Syst. Evol. Microbiol. 2016, 66, 4256–4261. [Google Scholar] [CrossRef] [PubMed]
- Müller, A.; Monti, G.; Otth, C.; Sepúlveda, P.; Bittencourt, P.; Nachum-Biala, Y.; Gutiérrez, R.; Harrus, S. “Candidatus Neoehrlichia chilensis” sp. nov.: Molecular detection and characterization of a novel Anaplasmataceae in wild rodents from Valdivia, southern Chile. Transbound. Emerg. Dis. 2018, 65, 357–362. [Google Scholar] [CrossRef]
- Aguiar, D.M.; Zhang, X.; Melo, A.L.; Pacheco, T.A.; Meneses, A.M.; Zanutto, M.S.; Horta, M.C.; Santarém, V.A.; Camargo, L.M.; McBride, J.W.; et al. Genetic diversity of Ehrlichia canis in Brazil. Vet. Microbiol. 2013, 164, 315–321. [Google Scholar] [CrossRef]
- Gajadhar, A.A.; Lobanov, V.; Scandrett, W.B.; Campbell, J.; Al-Adhami, B. A novel Ehrlichia genotype detected in naturally infected cattle in North America Vet. Parasitol. 2010, 173, 324–329. [Google Scholar] [CrossRef]
- Aguiar, D.M.; Junior, J.P.A.; Nakazato, L.; Bard, E.; Aguilar-Bultet, L.; Vorimore, F.; Popov, V.L.; Colodel, E.M.; Cabezas-Cruz, A. Isolation and Characterization of a Novel Pathogenic Strain of Ehrlichia minasensis. Microorganisms 2019, 7, 528. [Google Scholar] [CrossRef] [Green Version]
- Cabezas-Cruz, A.; Zweygarth, E.; Broniszweska, M.; Passos, L.M.F.; Ribeiro, M.F.B.; Manrique, M.; Tobes, R.; de la Fuente, J. Complete genome sequence of Ehrlichia mineirensis, a novel organism closely related to Ehrlichia canis with a new host association. Genome Announc. 2015, 3, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Hailemariam, Z.; Krücken, J.; Baumann, M.; Ahmed, J.S.; Clausen, P.-H.; Nijhof, A.M. Molecular detection of tick-borne pathogens in cattle from Southwestern Ethiopia. PLoS ONE 2017, 12, e0188248. [Google Scholar] [CrossRef] [Green Version]
- Thomson, K.; Yaaran, T.; Belshaw, A.; Curson, L.; Tisi, L.; Maurice, S.; Kiddle, G. A new TaqMan method for the reliable diagnosis of Ehrlichia spp. in canine whole blood. Parasit. Vectors 2018, 11, 350. [Google Scholar] [CrossRef] [PubMed]
- Dawson, J.E.; Anderson, B.E.; Fishbein, D.B.; Sanchez, J.L.; Goldsmith, C.S.; Wilson, K.H.; Duntley, W. Isolation and characterization of an Ehrlichia sp.: From a patient diagnosed with human ehrlichiosis. J. Clin. Microbiol. 1991, 29, 2741–2745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrus, S.; Waner, T.; Avidar, Y.; Bogin, E.; Peh, H.; Bark, H. Serum protein alterations in canine ehrlichiosis. Vet. Parasitol. 1996, 66, 241–249. [Google Scholar] [CrossRef]
- Borges, A.S.; Divers, T.J.; Stokol, T.; Mohammed, O.H. Serum iron and plasma fibrinogen concentrations as indicators of systemic inflammatory diseases in horses. J. Vet. Inter. Med. 2007, 21, 489–494. [Google Scholar] [CrossRef]
- Kaneko, J.J.; Harvey, J.W.; Bruss, M.L. Clinical Biochemistry of Domestic Animals, 5th ed.; Academic Press: London, UK, 1997; 932p. [Google Scholar]
- Hultén, C.; Demmers, S. Serum amyloid A (SAA) as an aid in the management of infectious disease in the foal: Comparison with total leucocyte count, neutrophil count and fibrinogen. Equine Vet. J. 2002, 34, 693–698. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, S.; Andersen, P.H. The acute phase protein serum amyloid A (SAA) as a marker of inflammation in horses. Equine Vet. Educ. 2007, 19, 38–46. [Google Scholar] [CrossRef]
Genes | Primer Identification | Sequence (5′–3′) | Annealing Temperature | Bp | References |
---|---|---|---|---|---|
16S rRNA * | Ge2F2 | GTTAGTGGCAGACGGGTGAGT | 58.0 °C | 360 | [30] |
He3 | TATAGGTACCGTCATTATCTTCCCTAT | ||||
dsb * | DSB330 F 1 | GATGATGTTTGAAGATATSAAACAAAT | 50.0 °C | 349 | [31] |
DSB720 R 1,2 | CTATTTTTACTTCTTAAAGTTGATAWATC | ||||
DSB380F 2 | ATTTTTAGRGATTTCCAATACTTTGG | 50.4 °C | |||
groEL * | GRO 607 F 1 | GAAGATGCWGTWGGWTGTACKGC | 57.0 °C | 445 | [32] |
GRO 1294 R 1 | AGMGCTTCWCCTTCWACRTCYTC | ||||
GRO 677 F 2 | ATTACTCAGAGTGCTTCTCARTG | 57.0 °C | |||
GRO 1121 R 2 | TGCATACCRTCAGTYTTTTCAAC | ||||
TRP36 ** | TRP36F2 1 | TTTAAAACAAAATTAACACACTA | 52.0 °C | 800 | [35] |
TRP36R1 1,2 | AAGATTAACTTAATACTCAATATTACT | ||||
TRP36DF 2 | CACACTAAAATGTATAATAAAGC | 57.0 °C | [10] | ||
gltA ** | F4b 1 | CCGGGTTTTATGTCTACTGC | 55.0 °C | 650 | [34] |
R1B 1 | CGATGACCAAAACCCAT | [33] | |||
EHRCS136F 2 | TTYATGTCYACTGCTGCKTG | 55.0 °C | |||
EHR778R 2 | GCNCCMCCATGMGCTGG |
Parameters | Number of Animals | % |
---|---|---|
Origin | ||
Rural | 65 | 43.9 |
Urban | 83 | 56.1 |
Clinical manifestations | ||
Apathy | 2 | 1.35 |
Fever | 1 | 0.7 |
Pale mucous membranes | 3 | 2.03 |
Bleeding | 0 | 0.0 |
Lymphadenomegaly | 0 | 0.0 |
Bloody diarrhea | 0 | 0.0 |
Tick infestation | 89 | 60.14 |
Tick Species | Number of Ticks | ||||
---|---|---|---|---|---|
Male | Female | Nymph | Total | % | |
Amblyomma sculptum | 37 | 41 | 0 | 78 | 8.7 |
Dermacentor nitens | 83 | 460 | 278 | 821 | 91.1 |
Rhipicephalus microplus | 2 | 0 | 0 | 2 | 0.2 |
Variables | Equidae | χ2 | ||||
---|---|---|---|---|---|---|
Tested | Positive * | % | Odds Ratio | IC 95% | p | |
Species | ||||||
Mule | 6 | 3 | 50 | 1.4 | 0.18–11.16 | 0.69 |
Horse | 142 | 58 | 40.8 | |||
Sex | ||||||
Female | 78 | 32 | 41.0 | 1.01 | 0.5–2.0 | 0.9 |
Male | 70 | 29 | 41.4 | |||
Origin ** | ||||||
Urban | 83 | 17 | 20.5 | 3.6–18.3 | 0.0001/0.04 | |
Rural | 65 | 44 | 67.7 | 7.9 | ||
Ticks infestation | 89 | 43 | 48.3 | 2.1 | 1.0–4.5 | 0.03 |
Apathy | 2 | 1 | 50.0 | 1.4 | 0.01–113.7 | 1 |
Fever | 1 | 0 | 0 | 0 | 0.0–55.57 | 1 |
Pale mucous membranes | 3 | 2 | 66.7 | 2.9 | 0.14–173.7 | 0.5 |
Bleeding | 0 | 0 | 0 | - | - | - |
Lymphadenomegaly | 0 | 0 | 0 | - | - | - |
Diarrhea with blood | 0 | 0 | 0 | - | - | - |
Anemia | 101 | 35 | 34.65 | --- | --- | 0.01 |
Parameter | Equidae | ||||
---|---|---|---|---|---|
N | PCR (%) | p | IFA (%) | p | |
Hematocrit (%) <37 37–55 >55 | 97 50 1 | 3 (2.03) 0 (0) 0 (0) | 0.55 0.18 1.0 | 35 (36.1) 26 (52.0) 0 (0) | 0.08 0.05 1.0 |
Erythrocytes (× 106/µL) <5.5 5.5–9.5 >9.5 | 14 113 21 | 0 (0) 3 (2.6) 0 (0) | 1.0 1.0 1.0 | 6 (42.8) 49 (43.4) 6 (28.6) | 0.89 0.34 0.20 |
Hemoglobin (g/dL) <12 12–18 >18 | 95 52 1 | 2 (2.1) 1 (1.9) 0 (0) | 1.0 1.0 1.0 | 34 (35.8) 27 (51.9) 0 (78.6) | 0.07 0.05 1.0 |
Leukocyte count (× 103 µL) <6.0 6.0–12.0 >12.0 | 2 106 40 | 0 (0) 1 (0.9) 2 (5.0) | 1.0 0.19 0.16 | 1 (50.0) 43 (40.6) 17 (42.5) | 1.0 0.79 0.72 |
Neutrophils (× 103 µL) <2.1 2.1–9.0 >9.0 | 0 137 11 | 0 (0) 3 (2.2) 0 (0) | 1.0 1.0 | 0 (0) 58 (42.3) 3 (27.3) | 0.11 0.11 |
Lymphocytes (× 103 µL) <0.9 0.9–6.0 >6.0 | 2 120 26 | 0 (0) 3 (2.5) 0 (0) | 1.0 1.0 1.0 | 2 (100.0) 49 (40.8) 10 (38.5) | 0.16 0.70 0.89 |
Monocytes (× 103 µL) < 0.12 0.12–1.2 >1.2 | 97 50 1 | 2 (2.1) 1 (2.0) 0 (0) | 1.0 1.0 1.0 | 41 (42.3) 20 (40.0) 0 (0) | 0.72 0.85 1.0 |
Eosinophils (× 103 µL) <0.12 0.12–1.44 >1.44 | 32 115 1 | 0 (0) 3 (23.5) 0 (0) | 1.0 1.0 1.0 | 12 (37.5) 49 (70.6) 0 (0) | 0.62 0.52 1.0 |
Platelets (× 103 µL) <100 100–350 > 350 | 11 132 5 | 0 (0) 3 (2.3) 0 (0) | 1.0 1.0 1.0 | 4 (36.4) 55 (41.7) 2 (4) | 1.0 0.74 1.0 |
PPT * <6.5 6.5–8.0 >8 | 6 95 47 | 0 (0) 0 (0) 3 (6.4) | 1.0 0.04 0.03 | 1 (16.7) 28 (29.5) 32 (68.1) | 0.40 0.0001 0.00001 |
Fibrinogen ** <100 100–400 >400 | 0 88 59 | 0 (0) 0 (0) 3 (5.1) | 0.08 0.06 | 0 (0) 31 (35.2) 29 (49.2) | 0.13 0.11 |
Biochemicals | Equidae | ||||
---|---|---|---|---|---|
N | PCR (%) | P | IFA (%) | P | |
AST * | |||||
<152 152–294 >294 | 6 65 77 | 0 (0) 0 (0) 3 (3.9) | 1.0 0.41 0.24 | 3 (50.0) 27 (54.0) 31 (40.3) | 1.0 0.61 0.80 |
ALP ** <143 143–395 >395 | 19 120 9 | 0 (0) 3 (2.5) 0 (0) | 1.0 1.0 1.0 | 7 (36.8) 52 (43.3) 2 (22.2) | 0.67 0.27 0.30 |
Urea nitrogen <21.4 21.4-51.3 >51.3 | 10 130 8 | 0 (0) 3 (2.3) 0 (0) | 1.0 1.0 1.0 | 2 (20.0) 55 (42.3) 4 (50.0) | 0.19 0.46 0.71 |
Creatinine <1.2 1.2–1.9 >1.9 | 29 105 14 | 1 (3.4) 2 (1.9) 0 (0) | 0.41 1.0 1.0 | 12 (41.4) 45 (42.9) 4 (28.6) | 0.96 0.52 0.31 |
PT *** <5.2 5.2–7.9 >7.9 | 21 91 36 | 0 (0) 2 (2.3) 1 (2.8) | 1.0 1.0 0.56 | 6 (28.6) 37 (40.7) 18 (50.0) | 0.20 0.97 0.20 |
Albumin <2.6 2.6–3.7 >3.7 | 36 101 11 | 1 (2.8) 2 (2.0) 0 (0) | 0.56 1.0 1.0 | 9 (25.0) 47 (46.5) 5 (45.5) | 0.02 0.05 0.76 |
Globulin | |||||
<2.6 2.6–4.0 >4.0 | 26 50 72 | 0 (0) 2 (4.0) 1 (1.4) | 1.0 0.23 1.0 | 6 (23.1) 22 (44.0) 33 (45.8) | 0.03 0.52 0.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muraro, L.S.; Souza, A.d.O.; Leite, T.N.S.; Cândido, S.L.; Melo, A.L.T.; Toma, H.S.; Carvalho, M.B.; Dutra, V.; Nakazato, L.; Cabezas-Cruz, A.; et al. First Evidence of Ehrlichia minasensis Infection in Horses from Brazil. Pathogens 2021, 10, 265. https://doi.org/10.3390/pathogens10030265
Muraro LS, Souza AdO, Leite TNS, Cândido SL, Melo ALT, Toma HS, Carvalho MB, Dutra V, Nakazato L, Cabezas-Cruz A, et al. First Evidence of Ehrlichia minasensis Infection in Horses from Brazil. Pathogens. 2021; 10(3):265. https://doi.org/10.3390/pathogens10030265
Chicago/Turabian StyleMuraro, Lívia S., Aneliza de O. Souza, Tamyres N. S. Leite, Stefhano L. Cândido, Andréia L. T. Melo, Hugo S. Toma, Mariana B. Carvalho, Valéria Dutra, Luciano Nakazato, Alejandro Cabezas-Cruz, and et al. 2021. "First Evidence of Ehrlichia minasensis Infection in Horses from Brazil" Pathogens 10, no. 3: 265. https://doi.org/10.3390/pathogens10030265
APA StyleMuraro, L. S., Souza, A. d. O., Leite, T. N. S., Cândido, S. L., Melo, A. L. T., Toma, H. S., Carvalho, M. B., Dutra, V., Nakazato, L., Cabezas-Cruz, A., & Aguiar, D. M. d. (2021). First Evidence of Ehrlichia minasensis Infection in Horses from Brazil. Pathogens, 10(3), 265. https://doi.org/10.3390/pathogens10030265