Trematode Proteomics: Recent Advances and Future Directions
Abstract
:1. Trematodiases: A Major Global Health Concern
2. The Search for New Flukicidal Targets and Vaccine Candidates
Source of Infection | Target Host Organ | Symptoms and Disease Associated with Infection | Geographical Distribution | |
---|---|---|---|---|
Foodborne trematodes | ||||
Clonorchis sinensis | Ingesting freshwater fish | Bile ducts | Acute: malaise, weakness, anorexia, flatulence, nausea, vomiting, abdominal pain, and diarrhoea Chronic: cholelithiasis, cholestasis, cholangitis, cholecystitis, biliary and liver abscesses, cirrhosis, pancreatitis, hepatitis, cholangiocarcinoma | China, Korea, Russia, Taiwan, Vietnam |
Fasciola hepatica | Ingesting semi-aquatic vegetation, contaminated water or infected raw liver | Bile ducts | Acute: fever, abdominal pain, anorexia, flatulence, nausea, diarrhoea, urticaria, and coughing Chronic: cholelithiasis, jaundice, epigastric pain, nausea, fatty food intolerance, cholangitis, pancreatitis, cholecystitis | Worldwide (associated with the distribution of parasitised livestock) |
Opisthorchis viverrini | Ingesting freshwater fish | Bile ducts | Acute: malaise, weakness, anorexia, flatulence, nausea, vomiting, abdominal pain, and diarrhoea Chronic: pyogenic cholangitis, biliary calculi, cholecystitis, cirrhosis of the liver, pancreatitis, and cholangiocarcinoma | Cambodia, Laos, Malaysia, Myanmar, Thailand, Vietnam |
Paragonimus westermani | Ingesting crabs, crayfish or wild boar meat | Pulmonary tissue | Acute: cough, fever, bloody sputum, loss of appetite, chest pain, headache Chronic: consistent cough with brownish sputum, chest pain, night sweats | Cambodia, China, India, Japan, Korea, Laos, Malaysia, Nepal, Pakistan, Papua New Guinea, The Philippines, Southeast Siberia, Sri Lanka, Taiwan, Thailand, USA, Vietnam |
Fasciolopsis buski | Ingesting semi-aquatic vegetation | Small intestine | Acute: diarrhoea, constipation, headache, flatulence, poor appetite, vomiting, abdominal pain, fever Chronic: oedema, anaemia, anorexia, vomiting, gastric pain, pallor, malnutrition, abdominal pain, nausea, bitemporal headache | Bangladesh, Cambodia, China, India, Indonesia, Japan, Korea, Laos, Malaysia, Myanmar, Nepal, Pakistan, Singapore, Taiwan, Thailand, The Philippines, Vietnam |
Blood flukes | ||||
Schistosoma mansoni | Contact with infested water | Mesenteric veins | Acute: myalgia, abdominal pain in the right upper quadrant, diarrhoea, fatigue, malaise, fever Chronic: intestinal disease, hepatosplenomegaly | Brazil, Burkina Faso, Burundi, Cameroon, Chad, Congo, Ivory Coast, Egypt, Ethiopia, Gambia, Ghana, Guinea, Kenya, Liberia, Madagascar, Malawi, Mali, Mauritania, Mozambique, Namibia, Nigeria, Oman, Puerto Rico, Rwanda, Saudi Arabia, Senegal, Sierra Leone, South Africa, Sudan, Suriname, Tanzania, Togo, Venezuela, Uganda, Yemen, Zambia, Zimbabwe |
Schistosoma japonicum | Contact with infested water | Mesenteric veins | Acute: myalgia, abdominal pain in the right upper quadrant, diarrhoea, fatigue, malaise, fever Chronic: intestinal disease, hepatosplenomegaly | China, Indonesia, Taiwan, The Philippines |
Schistosoma haematobium | Contact with infested water | Venous plexous of the bladder | Acute: myalgia, abdominal pain in the right upper quadrant, diarrhoea, fatigue, malaise, fever, haematuria Chronic: bladder pathology, cancer (squamous cell carcinoma, bladder cancer, vaginal cancer) | Angola, Burundi, Burkina Faso, Cameroon, Central Africa, Chad, Congo, Ivory Coast, Egypt, Ethiopia, Gabon, Ghana, Iran, Iraq, Kenya, Lebanon, Madagascar, Malagasy, Mauritius, Morocco, Mozambique, Namibia, Nigeria, Northern Syria, Réunion, Rwanda, Saudi Arabia, Senegal, Sudan, Tanzania, Togo, Uganda, Yemen, Zambia, Zimbabwe |
Schistosoma mekongi | Contact with infested water | Mesenteric veins | Acute: myalgia, abdominal pain in the right upper quadrant, diarrhoea, fatigue, malaise, fever Chronic: intestinal disease, hepatosplenomegaly | Cambodia, Laos |
3. A Closer Look at the Adult Fluke Secretome
4. Characterisation of the Proteins Secreted by Early Life Stages
5. Immunoproteomics Identifies Secreted Proteins Specifically Recognised by the Host
6. Insights from the Somatic Proteomes of Trematodes
7. Subproteome Level Analysis of Trematode Tissues
Trematode and Life Stage | Study | Proteomics Techniques | Reference |
---|---|---|---|
Adult Clonorchis sinensis | Characterisation the ESP, tegument, and tegumental surface proteins | Freeze–thaw enrichment of tegument proteins, biotinylation of tegument surface proteins, LC-MS/MS | [25] |
Adult Fasciola hepatica | Identification of plasminogen-binding proteins in the ESP | 2DE, ligand-blotting ESP with plasminogen, MALDI-TOF/TOF MS, LC-MS/MS | [32] |
Adult Fasciola hepatica | Characterisation of extracellular vesicle surface proteins | Biotinylation of extracellular vesicle surface proteins, LC-MS/MS | [38] |
Fasciola hepatica NEJs | Comparison of the ESP of NEJs at 1, 3, and 24 h post-excystment | SDS-PAGE, LC-MS/MS | [41] |
Fasciola hepatica immature flukes | Characterisation of the somatic proteome and ESP and comparison with the ESP of NEJs and adults. | LC-MS/MS | [42] |
The eggs of Schistosoma mansoni, Schistosoma japonicum and Schistosoma haematobium | Comparison of the ESP released by the eggs of the three species | LC-MS/MS | [49] |
Adult Fasciola hepatica | Identification of antigenic fluke proteins recognised by purified IgG obtained from Indonesian Thin Tail sheep at 4 weeks post-Fasciola gigantica infection | Immunoprecipitation, LC-MS/MS | [55] |
Adult Fasciola gigantica | Identification of antigenic ESP recognised by buffalo sera at 42, 70, and 98 days post-infection | Immunoprecipitation, LC-MS/MS | [56] |
Schistosoma mekongi eggs | Identification of somatic egg proteins recognised by infected mouse and human sera | 2DE-immunoblotting, LC-MS/MS | [57] |
Adult female Schistosoma japonicum | Comparison of somatic proteomes of flukes from single-sex and bisexual infections | iTRAQ-coupled LC-MS/MS | [58] |
Fasciola hepatica and Fasciola gigantica adults | MS-based identification of fluke species based on species-specific spectral profiles | MALDI-TOF MS | [62] |
Adult Fasciola hepatica | Identifying the binding partners of host galectins upregulated during infection | Detergent-based enrichment of tegumental proteins, glycoprotein capture with immobilised galectins, LC-MS/MS | [65] |
Adult male Schistosoma mansoni | Characterisation of oesophageal gland proteins | LC-MS/MS, QconCAT | [71] |
8. Future Directions in Trematode Proteomics Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- World Health Organisation. Schistosomiasis Fact Sheet; World Health Organisation: Geneva, Switzerland, 2019. [Google Scholar]
- World Health Organisation. Foodborne disease burden Epidemiology Reference Group. In WHO Estimates of the Global Burden of Foodborne Diseases; World Health Organisation: Geneva, Switzerland, 2015. [Google Scholar]
- Fürst, T.; Keiser, J.; Utzinger, J. Global burden of human food-borne trematodiasis: A systematic review and meta-analysis. Lancet Infect. Dis. 2012, 12, 210–221. [Google Scholar] [CrossRef]
- WHO|World Health Organization. Available online: http://www.who.int/neglected_diseases/diseases/en/ (accessed on 11 January 2021).
- van Tong, H.; Brindley, P.J.; Meyer, C.G.; Velavan, T.P. Parasite infection, carcinogenesis and human malignancy. EBioMedicine 2017, 15, 12–23. [Google Scholar] [CrossRef]
- Despommier, D.D.; Griffin, D.O.; Gwadz, R.W.; Hotez, P.J.; Knirsch, C.A. Parasitic Diseases, 7th ed.; Springer: New York, NY, USA, 2019. [Google Scholar]
- Harrington, D.; Lamberton, P.H.L.; McGregor, A. Human liver flukes. Lancet Gastroenterol. Hepatol. 2017, 2, 680–689. [Google Scholar] [CrossRef]
- Nation, C.S.; Da’dara, A.A.; Marchant, J.K.; Skelly, P.J. Schistosome migration in the definitive host. PLoS Negl. Trop. Dis. 2020, 14, e0007951. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Sessler, F.; Holroyd, N.; Hahnel, S.; Quack, T.; Berriman, M.; Grevelding, C.G. Schistosome sex matters: A deep view into gonad-specific and pairing-dependent transcriptomes reveals a complex gender interplay. Sci. Rep. 2016, 6, 31150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwartz, C.; Fallon, P.G. Schistosoma “eggs-iting” the host: Granuloma formation and egg excretion. Front. Immunol. 2018, 9, 2492. [Google Scholar] [CrossRef] [Green Version]
- Carson, J.P.; Ramm, G.A.; Robinson, M.W.; McManus, D.P.; Gobert, G.N. Schistosome-induced fibrotic disease: The role of hepatic stellate cells. Trends Parasitol. 2018, 34, 524–540. [Google Scholar] [CrossRef] [PubMed]
- Fairweather, I.; Brennan, G.P.; Hanna, R.E.B.; Robinson, M.W.; Skuce, P.J. Drug resistance in liver flukes. Int. J. Parasitol. Drugs drug Resist. 2020, 12, 39–59. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-K.; Marchant, J.S. The journey to discovering a flatworm target of praziquantel: A long TRP. Trends Parasitol. 2020, 36, 182–194. [Google Scholar] [CrossRef]
- McManus, D.P. Recent progress in the development of liver fluke and blood fluke vaccines. Vaccines 2020, 8, 553. [Google Scholar] [CrossRef]
- Molina-Hernández, V.; Mulcahy, G.; Pérez, J.; Martínez-Moreno, A.; Donnelly, S.; O’Neill, S.M.; Dalton, J.P.; Cwiklinski, K. Fasciola hepatica vaccine: We may not be there yet but we’re on the right road. Vet. Parasitol. 2015, 208, 101–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cwiklinski, K.; Dalton, J.P. Advances in Fasciola hepatica research using “omics” technologies. Int. J. Parasitol. 2018, 48, 321–331. [Google Scholar] [CrossRef] [Green Version]
- Suttiprapa, S.; Sotillo, J.; Smout, M.; Suyapoh, W.; Chaiyadet, S.; Tripathi, T.; Laha, T.; Loukas, A. Opisthorchis viverrini proteome and host-parasite interactions. Adv. Parasitol. 2018, 102, 45–72. [Google Scholar] [CrossRef] [PubMed]
- Prasopdee, S.; Thitapakorn, V.; Sathavornmanee, T.; Tesana, S. A comprehensive review of omics and host-parasite interplays studies, towards control of Opisthorchis viverrini infection for prevention of cholangiocarcinoma. Acta Trop. 2019, 196, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Sotillo, J.; Doolan, D.; Loukas, A. Recent advances in proteomic applications for schistosomiasis research: Potential clinical impact. Expert Rev. Proteom. 2017, 14, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Sotillo, J.; Pearson, M.S.; Loukas, A. Trematode genomics and proteomics. Adv. Exp. Med. Biol. 2019, 1154, 411–436. [Google Scholar] [CrossRef]
- Limpanont, Y.; Phuphisut, O.; Reamtong, O.; Adisakwattana, P. Recent advances in Schistosoma mekongi ecology, transcriptomics and proteomics of relevance to snail control. Acta Trop. 2020, 202, 105244. [Google Scholar] [CrossRef]
- Chai, J.-Y.; Jung, B.-K. Epidemiology of trematode infections: An update. Adv. Exp. Med. Biol. 2019, 1154, 359–409. [Google Scholar] [CrossRef]
- Keiser, J.; Utzinger, J. Food-borne trematodiases. Clin. Microbiol. Rev. 2009, 22, 466–483. [Google Scholar] [CrossRef] [Green Version]
- McManus, D.P.; Dunne, D.W.; Sacko, M.; Utzinger, J.; Vennervald, B.J.; Zhou, X.-N. Schistosomiasis. Nat. Rev. Dis. Prim. 2018, 4, 13. [Google Scholar] [CrossRef]
- Mulvenna, J.; Sripa, B.; Brindley, P.J.; Gorman, J.; Jones, M.K.; Colgrave, M.L.; Jones, A.; Nawaratna, S.; Laha, T.; Suttiprapa, S.; et al. The secreted and surface proteomes of the adult stage of the carcinogenic human liver fluke Opisthorchis Viverrini. Proteomics 2010, 10, 1063–1078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Y.; Yu, K.; Liang, A.; Huang, Y.; Ou, F.; Wei, H.; Wan, X.; Yang, Y.; Zhang, W.; Jiang, Z. Identification and analysis of the tegument protein and excretory-secretory products of the carcinogenic liver fluke Clonorchis sinensis. Front. Microbiol. 2020, 11, 555730. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.W.; Menon, R.; Donnelly, S.M.; Dalton, J.P.; Ranganathan, S. An integrated transcriptomics and proteomics analysis of the secretome of the helminth pathogen Fasciola hepatica: Proteins associated with invasion and infection of the mammalian host. Mol. Cell. Proteom. 2009, 8, 1891–1907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cwiklinski, K.; Donnelly, S.; Drysdale, O.; Jewhurst, H.; Smith, D.; De Marco Verissimo, C.; Pritsch, I.C.; O’Neill, S.; Dalton, J.P.; Robinson, M.W. The cathepsin-like cysteine peptidases of trematodes of the genus Fasciola. Adv. Parasitol. 2019, 104, 113–164. [Google Scholar] [CrossRef] [PubMed]
- Lvova, M.; Zhukova, M.; Kiseleva, E.; Mayboroda, O.; Hensbergen, P.; Kizilova, E.; Ogienko, A.; Besprozvannykh, V.; Sripa, B.; Katokhin, A.; et al. Hemozoin is a product of heme detoxification in the gut of the most medically important species of the family Opisthorchiidae. Int. J. Parasitol. 2016, 46, 147–156. [Google Scholar] [CrossRef]
- Li, S.; Chen, X.; Zhou, J.; Xie, Z.; Shang, M.; He, L.; Liang, P.; Chen, T.; Mao, Q.; Liang, C.; et al. Amino acids serve as an important energy source for adult flukes of Clonorchis sinensis. PLoS Negl. Trop. Dis. 2020, 14, e0008287. [Google Scholar] [CrossRef]
- Mas-Coma, S.; Agramunt, V.H.; Valero, M.A. Neurological and ocular fascioliasis in humans. Adv. Parasitol. 2014, 84, 27–149. [Google Scholar] [CrossRef] [PubMed]
- González-Miguel, J.; Valero, M.A.; Reguera-Gomez, M.; Mas-Bargues, C.; Bargues, M.D.; Simón, F.; Mas-Coma, S. Numerous Fasciola plasminogen-binding proteins may underlie blood-brain barrier leakage and explain neurological disorder complexity and heterogeneity in the acute and chronic phases of human fascioliasis. Parasitology 2019, 146, 284–298. [Google Scholar] [CrossRef] [Green Version]
- Erickson, M.A.; Wilson, M.L.; Banks, W.A. In vitro modeling of blood-brain barrier and interface functions in neuroimmune communication. Fluids Barriers CNS 2020, 17, 26. [Google Scholar] [CrossRef]
- Marcilla, A.; Trelis, M.; Cortés, A.; Sotillo, J.; Cantalapiedra, F.; Minguez, M.T.; Valero, M.L.; Sánchez del Pino, M.M.; Muñoz-Antoli, C.; Toledo, R.; et al. Extracellular vesicles from parasitic helminths contain specific excretory/secretory proteins and are internalized in intestinal host cells. PLoS ONE 2012, 7, e45974. [Google Scholar] [CrossRef]
- Kifle, D.W.; Pearson, M.S.; Becker, L.; Pickering, D.; Loukas, A.; Sotillo, J. Proteomic analysis of two populations of Schistosoma mansoni-derived extracellular vesicles: 15k pellet and 120k pellet vesicles. Mol. Biochem. Parasitol. 2020, 236, 111264. [Google Scholar] [CrossRef] [PubMed]
- Cwiklinski, K.; de la Torre-Escudero, E.; Trelis, M.; Bernal, D.; Dufresne, P.J.; Brennan, G.P.; O’Neill, S.; Tort, J.; Paterson, S.; Marcilla, A.; et al. The extracellular vesicles of the helminth pathogen, Fasciola hepatica: Biogenesis pathways and cargo molecules involved in parasite pathogenesis. Mol. Cell. Proteom. 2015, 14, 3258–3273. [Google Scholar] [CrossRef] [Green Version]
- Mekonnen, G.G.; Tedla, B.A.; Pickering, D.; Becker, L.; Wang, L.; Zhan, B.; Bottazzi, M.E.; Loukas, A.; Sotillo, J.; Pearson, M.S. Schistosoma haematobium extracellular vesicle proteins confer protection in a heterologous model of schistosomiasis. Vaccines 2020, 8, 416. [Google Scholar] [CrossRef] [PubMed]
- de la Torre-Escudero, E.; Gerlach, J.Q.; Bennett, A.P.S.; Cwiklinski, K.; Jewhurst, H.L.; Huson, K.M.; Joshi, L.; Kilcoyne, M.; O’Neill, S.; Dalton, J.P.; et al. Surface molecules of extracellular vesicles secreted by the helminth pathogen Fasciola hepatica direct their internalisation by host cells. PLoS Negl. Trop. Dis. 2019, 13, e0007087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennett, A.P.S.; de la Torre-Escudero, E.; Oliver, N.A.M.; Huson, K.M.; Robinson, M.W. The cellular and molecular origins of extracellular vesicles released by the helminth pathogen, Fasciola hepatica. Int. J. Parasitol. 2020, 50, 671–683. [Google Scholar] [CrossRef]
- Robinson, M.W.; Alvarado, R.; To, J.; Hutchinson, A.T.; Dowdell, S.N.; Lund, M.; Turnbull, L.; Whitchurch, C.B.; O’Brien, B.A.; Dalton, J.P.; et al. A helminth cathelicidin-like protein suppresses antigen processing and presentation in macrophages via inhibition of lysosomal vATPase. FASEB J. 2012, 26, 4614–4627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cwiklinski, K.; Jewhurst, H.; McVeigh, P.; Barbour, T.; Maule, A.G.; Tort, J.; O’Neill, S.M.; Robinson, M.W.; Donnelly, S.; Dalton, J.P. Infection by the helminth parasite Fasciola hepatica requires rapid regulation of metabolic, virulence, and invasive factors to adjust to its mammalian host. Mol. Cell. Proteom. 2018, 17, 792–809. [Google Scholar] [CrossRef] [Green Version]
- Cwiklinski, K.; Robinson, M.W.; Donnelly, S.; Dalton, J.P. Complementary transcriptomic and proteomic analyses reveal the cellular and molecular processes that drive growth and development of Fasciola hepatica in the host liver. BMC Genom. 2021, 22, 46. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.W.; Corvo, I.; Jones, P.M.; George, A.M.; Padula, M.P.; To, J.; Cancela, M.; Rinaldi, G.; Tort, J.F.; Roche, L.; et al. Collagenolytic activities of the major secreted cathepsin L peptidases involved in the virulence of the helminth pathogen, Fasciola hepatica. PLoS Negl. Trop. Dis. 2011, 5, e1012. [Google Scholar] [CrossRef] [Green Version]
- Donnelly, S.; Stack, C.M.; O’Neill, S.M.; Sayed, A.A.; Williams, D.L.; Dalton, J.P. Helminth 2-Cys peroxiredoxin drives Th2 responses through a mechanism involving alternatively activated macrophages. FASEB J. 2008, 22, 4022–4032. [Google Scholar] [CrossRef] [Green Version]
- Donnelly, S.; O’Neill, S.M.; Sekiya, M.; Mulcahy, G.; Dalton, J.P. Thioredoxin peroxidase secreted by Fasciola hepatica induces the alternative activation of macrophages. Infect. Immun. 2005, 73, 166–173. [Google Scholar] [CrossRef] [Green Version]
- Robinson, M.W.; Dalton, J.P. Zoonotic helminth infections with particular emphasis on fasciolosis and other trematodiases. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2763–2776. [Google Scholar] [CrossRef] [Green Version]
- Stack, C.M.; Caffrey, C.R.; Donnelly, S.M.; Seshaadri, A.; Lowther, J.; Tort, J.F.; Collins, P.R.; Robinson, M.W.; Xu, W.; McKerrow, J.H.; et al. Structural and functional relationships in the virulence-associated cathepsin L proteases of the parasitic liver fluke, Fasciola hepatica. J. Biol. Chem. 2008, 283, 9896–9908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowther, J.; Robinson, M.W.; Donnelly, S.M.; Xu, W.; Stack, C.M.; Matthews, J.M.; Dalton, J.P. The importance of pH in regulating the function of the Fasciola hepatica cathepsin L1 cysteine protease. PLoS Negl. Trop. Dis. 2009, 3, e369. [Google Scholar] [CrossRef] [Green Version]
- Carson, J.P.; Robinson, M.W.; Hsieh, M.H.; Cody, J.; Le, L.; You, H.; McManus, D.P.; Gobert, G.N. A comparative proteomics analysis of the egg secretions of three major schistosome species. Mol. Biochem. Parasitol. 2020, 240, 111322. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-López, C.M.; Trelis, M.; Jara, L.; Cantalapiedra, F.; Marcilla, A.; Bernal, D. Diversity of extracellular vesicles from different developmental stages of Fasciola hepatica. Int. J. Parasitol. 2020, 50, 663–669. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Wang, S.; Lin, Y.; Jiang, P.; Cui, X.; Wang, X.; Zhang, Y.; Pan, W. Release of extracellular vesicles containing small RNAs from the eggs of Schistosoma japonicum. Parasites Vectors 2016, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Murphy, A.; Cwiklinski, K.; Lalor, R.; O’Connell, B.; Robinson, M.W.; Gerlach, J.; Joshi, L.; Kilcoyne, M.; Dalton, J.P.; O’Neill, S.M. Fasciola hepatica extracellular vesicles isolated from excretory-secretory products using a gravity flow method modulate dendritic cell phenotype and activity. PLoS Negl. Trop. Dis. 2020, 14, e0008626. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.N.; Phillips, H.; Tomes, J.J.; Swain, M.T.; Wilkinson, T.J.; Brophy, P.M.; Morphew, R.M. The importance of extracellular vesicle purification for downstream analysis: A comparison of differential centrifugation and size exclusion chromatography for helminth pathogens. PLoS Negl. Trop. Dis. 2019, 13, e0007191. [Google Scholar] [CrossRef] [PubMed]
- Piedrafita, D.; Estuningsih, E.; Pleasance, J.; Prowse, R.; Raadsma, H.W.; Meeusen, E.N.T.; Spithill, T.W. Peritoneal lavage cells of Indonesian thin-tail sheep mediate antibody-dependent superoxide radical cytotoxicity in vitro against newly excysted juvenile Fasciola gigantica but not juvenile Fasciola hepatica. Infect. Immun. 2007, 75, 1954–1963. [Google Scholar] [CrossRef] [Green Version]
- Cameron, T.C.; Cooke, I.; Faou, P.; Toet, H.; Piedrafita, D.; Young, N.; Rathinasamy, V.; Beddoe, T.; Anderson, G.; Dempster, R.; et al. A novel ex vivo immunoproteomic approach characterising Fasciola hepatica tegumental antigens identified using immune antibody from resistant sheep. Int. J. Parasitol. 2017, 47, 555–567. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.Y.; Yue, D.M.; Hou, J.L.; Zhang, X.X.; Zhang, F.K.; Wang, C.R.; Zhu, X.Q. Proteomic analysis of Fasciola gigantica excretory and secretory products (FgESPs) interacting with buffalo serum of different infection periods by shotgun LC-MS/MS. Parasitol. Res. 2019, 118, 453–460. [Google Scholar] [CrossRef] [PubMed]
- Thiangtrongjit, T.; Adisakwattana, P.; Limpanont, Y.; Dekumyoy, P.; Nuamtanong, S.; Chusongsang, P.; Chusongsang, Y.; Reamtong, O. Proteomic and immunomic analysis of Schistosoma mekongi egg proteins. Exp. Parasitol. 2018, 191, 88–96. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Qiao, H.; Qin, F.; Cheng, G.; Liu, J.; Li, H.; Gu, S.; Jin, Y. Comparative analysis of iTRAQ-based proteome profiles of Schistosoma japonicum female worms coming from single-sex infections and bisexual infections. J. Proteom. 2020, 213, 103597. [Google Scholar] [CrossRef]
- Kasahara, S.; Ohari, Y.; Jin, S.; Calvopina, M.; Takagi, H.; Sugiyama, H.; Itagaki, T. Molecular characterization revealed Fasciola specimens in Ecuador are all Fasciola hepatica, none at all of Fasciola gigantica or parthenogenic Fasciola species. Parasitol. Int. 2021, 80, 102215. [Google Scholar] [CrossRef]
- Angeletti, S. Matrix assisted laser desorption time of flight mass spectrometry (MALDI-TOF MS) in clinical microbiology. J. Microbiol. Methods 2017, 138, 20–29. [Google Scholar] [CrossRef] [PubMed]
- Clark, A.E.; Kaleta, E.J.; Arora, A.; Wolk, D.M. Matrix-assisted laser desorption ionization-time of flight mass spectrometry: A fundamental shift in the routine practice of clinical microbiology. Clin. Microbiol. Rev. 2013, 26, 547–603. [Google Scholar] [CrossRef] [Green Version]
- Sy, I.; Margardt, L.; Ngbede, E.O.; Adah, M.I.; Yusuf, S.T.; Keiser, J.; Rehner, J.; Utzinger, J.; Poppert, S.; Becker, S.L. Identification of adult Fasciola spp. using matrix-assisted laser/desorption ionization time-of-flight (MALDI-TOF) mass spectrometry. Microorganisms 2020, 9, 82. [Google Scholar] [CrossRef]
- Caravedo, M.A.; Cabada, M.M. Human fascioliasis: Current epidemiological status and strategies for diagnosis, treatment, and control. Res. Rep. Trop. Med. 2020, 11, 149–158. [Google Scholar] [CrossRef]
- Mas-Coma, S.; Bargues, M.D.; Valero, M.A. Diagnosis of human fascioliasis by stool and blood techniques: Update for the present global scenario. Parasitology 2014, 141, 1918–1946. [Google Scholar] [CrossRef]
- Swan, J.; Sakthivel, D.; Cameron, T.C.; Faou, P.; Downs, R.; Rajapaksha, H.; Piedrafita, D.; Beddoe, T. Proteomic identification of galectin-11 and -14 ligands from Fasciola hepatica. Int. J. Parasitol. 2019, 49, 921–932. [Google Scholar] [CrossRef]
- Ravidà, A.; Aldridge, A.M.; Driessen, N.N.; Heus, F.A.H.; Hokke, C.H.; O’Neill, S.M. Fasciola hepatica surface coat glycoproteins contain mannosylated and phosphorylated N-glycans and exhibit immune modulatory properties independent of the mannose receptor. PLoS Negl. Trop. Dis. 2016, 10, e0004601. [Google Scholar] [CrossRef] [Green Version]
- Thiemann, S.; Baum, L.G. Galectins and immune responses-just how do they do those things they do? Annu. Rev. Immunol. 2016, 34, 243–264. [Google Scholar] [CrossRef]
- Young, A.R.; Barcham, G.J.; McWilliam, H.E.; Piedrafita, D.M.; Meeusen, E.N. Galectin secretion and binding to adult Fasciola hepatica during chronic liver fluke infection of sheep. Vet. Immunol. Immunopathol. 2012, 145, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.A.; Wright, J.M.; de Castro-Borges, W.; Parker-Manuel, S.J.; Dowle, A.A.; Ashton, P.D.; Young, N.D.; Gasser, R.B.; Spithill, T.W. Exploring the Fasciola hepatica tegument proteome. Int. J. Parasitol. 2011, 41, 1347–1359. [Google Scholar] [CrossRef] [Green Version]
- Magalhães, G.S.; Lopes-Ferreira, M.; Junqueira-De-Azevedo, I.L.M.; Spencer, P.J.; Araújo, M.S.; Portaro, F.C.V.; Ma, L.; Valente, R.H.; Juliano, L.; Fox, J.W.; et al. Natterins, a new class of proteins with kininogenase activity characterized from Thalassophryne nattereri fish venom. Biochimie 2005, 87, 687–699. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.A.; Langermans, J.A.M.; van Dam, G.J.; Vervenne, R.A.; Hall, S.L.; Borges, W.C.; Dillon, G.P.; Thomas, A.W.; Coulson, P.S. Elimination of Schistosoma mansoni adult worms by rhesus macaques: Basis for a therapeutic vaccine? PLoS Negl. Trop. Dis. 2008, 2, e290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neves, L.X.; Sanson, A.L.; Wilson, R.A.; Castro-Borges, W. What’s in SWAP? Abundance of the principal constituents in a soluble extract of Schistosoma mansoni revealed by shotgun proteomics. Parasit. Vectors 2015, 8, 337. [Google Scholar] [CrossRef] [Green Version]
- Neves, L.X.; Wilson, R.A.; Brownridge, P.; Harman, V.M.; Holman, S.W.; Beynon, R.J.; Eyers, C.E.; DeMarco, R.; Castro-Borges, W. Quantitative proteomics of enriched esophageal and gut tissues from the human blood fluke Schistosoma mansoni pinpoints secreted proteins for vaccine development. J. Proteome Res. 2020, 19, 314–326. [Google Scholar] [CrossRef]
- Pratt, J.M.; Simpson, D.M.; Doherty, M.K.; Rivers, J.; Gaskell, S.J.; Beynon, R.J. Multiplexed absolute quantification for proteomics using concatenated signature peptides encoded by QconCAT genes. Nat. Protoc. 2006, 1, 1029–1043. [Google Scholar] [CrossRef]
- Nawaratna, S.S.K.; McManus, D.P.; Moertel, L.; Gobert, G.N.; Jones, M.K. Gene atlasing of digestive and reproductive tissues in Schistosoma mansoni. PLoS Negl. Trop. Dis. 2011, 5, e1043. [Google Scholar] [CrossRef] [PubMed]
- Gobert, G.N.; McManus, D.P.; Nawaratna, S.; Moertel, L.; Mulvenna, J.; Jones, M.K. Tissue specific profiling of females of Schistosoma japonicum by integrated laser microdissection microscopy and microarray analysis. PLoS Negl. Trop. Dis. 2009, 3, e469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roudnický, P.; Potěšil, D.; Zdráhal, Z.; Gelnar, M.; Kašný, M. Laser capture microdissection in combination with mass spectrometry: Approach to characterization of tissue-specific proteomes of Eudiplozoon nipponicum (Monogenea, Polyopisthocotylea). PLoS ONE 2020, 15, e0231681. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Nanes Sarfati, D.; Xue, Y.; Yu, X.; Tarashansky, A.J.; Quake, S.R.; Wang, B. Single-cell analysis of Schistosoma mansoni identifies a conserved genetic program controlling germline stem cell fate. Nat. Commun. 2021, 12, 485. [Google Scholar] [CrossRef] [PubMed]
- Diaz Soria, C.L.; Lee, J.; Chong, T.; Coghlan, A.; Tracey, A.; Young, M.D.; Andrews, T.; Hall, C.; Ng, B.L.; Rawlinson, K.; et al. Single-cell atlas of the first intra-mammalian developmental stage of the human parasite Schistosoma mansoni. Nat. Commun. 2020, 11, 6411. [Google Scholar] [CrossRef] [PubMed]
- Wendt, G.; Zhao, L.; Chen, R.; Liu, C.; O’Donoghue, A.J.; Caffrey, C.R.; Reese, M.L.; Collins, J.J. A single-cell RNA-seq atlas of Schistosoma mansoni identifies a key regulator of blood feeding. Science 2020, 369, 1644–1649. [Google Scholar] [CrossRef]
- Labib, M.; Kelley, S.O. Single-cell analysis targeting the proteome. Nat. Rev. Chem. 2020, 4, 143–158. [Google Scholar] [CrossRef]
- Barylyuk, K.; Koreny, L.; Ke, H.; Butterworth, S.; Crook, O.M.; Lassadi, I.; Gupta, V.; Tromer, E.; Mourier, T.; Stevens, T.J.; et al. A comprehensive subcellular atlas of the Toxoplasma proteome via hyperLOPIT provides spatial context for protein functions. Cell Host Microbe 2020, 28, 752–766. [Google Scholar] [CrossRef]
- International Molecular Helminthology Annotation Network (IMHAN); Palevich, N.; Britton, C.; Kamenetzky, L.; Mitreva, M.; de Moraes Mourão, M.; Bennuru, S.; Quack, T.; Scholte, L.L.S. Tackling hypotheticals in helminth genomes. Trends Parasitol. 2018, 34, 179–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Freitas, D.; Kim, H.S.; Fabijanic, K.; Li, Z.; Chen, H.; Mark, M.T.; Molina, H.; Martin, A.B.; Bojmar, L.; et al. Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat. Cell Biol. 2018, 20, 332–343. [Google Scholar] [CrossRef]
- Bennett, A.P.S.; de la Torre-Escudero, E.; Robinson, M.W. Helminth genome analysis reveals conservation of extracellular vesicle biogenesis pathways but divergence of RNA loading machinery between phyla. Int. J. Parasitol. 2020, 50, 655–661. [Google Scholar] [CrossRef] [PubMed]
- McVeigh, P.; McCusker, P.; Robb, E.; Wells, D.; Gardiner, E.; Mousley, A.; Marks, N.J.; Maule, A.G. Reasons to be nervous about flukicide discovery. Trends Parasitol. 2018, 34, 184–196. [Google Scholar] [CrossRef] [PubMed]
- Ittiprasert, W.; Mann, V.H.; Karinshak, S.E.; Coghlan, A.; Rinaldi, G.; Sankaranarayanan, G.; Chaidee, A.; Tanno, T.; Kumkhaek, C.; Prangtaworn, P.; et al. Programmed genome editing of the omega-1 ribonuclease of the blood fluke, Schistosoma mansoni. elife 2019, 8. [Google Scholar] [CrossRef]
- Arunsan, P.; Ittiprasert, W.; Smout, M.J.; Cochran, C.J.; Mann, V.H.; Chaiyadet, S.; Karinshak, S.E.; Sripa, B.; Young, N.D.; Sotillo, J.; et al. Programmed knockout mutation of liver fluke granulin attenuates virulence of infection-induced hepatobiliary morbidity. elife 2019, 8. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bennett, A.P.S.; Robinson, M.W. Trematode Proteomics: Recent Advances and Future Directions. Pathogens 2021, 10, 348. https://doi.org/10.3390/pathogens10030348
Bennett APS, Robinson MW. Trematode Proteomics: Recent Advances and Future Directions. Pathogens. 2021; 10(3):348. https://doi.org/10.3390/pathogens10030348
Chicago/Turabian StyleBennett, Adam P. S., and Mark W. Robinson. 2021. "Trematode Proteomics: Recent Advances and Future Directions" Pathogens 10, no. 3: 348. https://doi.org/10.3390/pathogens10030348
APA StyleBennett, A. P. S., & Robinson, M. W. (2021). Trematode Proteomics: Recent Advances and Future Directions. Pathogens, 10(3), 348. https://doi.org/10.3390/pathogens10030348