Why Does SARS-CoV-2 Infection Induce Autoantibody Production?
Abstract
:Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.; Xiao, M.; Zhang, S.; Xia, P.; Cao, W.; Jiang, W.; Chen, H.; Ding, X.; Zhao, H.; Zhang, H.; et al. Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19. N. Engl. J. Med. 2020, 382, e38. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Y.; Estes, S.K.; Gandhi, A.A.; Yalavarthi, S.; Ali, R.A.; Shi, H.; Sule, G.; Gockman, K.; Madison, J.A.; Zuo, M.; et al. Prothrombotic Antiphospholipid Antibodies in COVID-19. medRxiv 2020. [Google Scholar] [CrossRef]
- Bastard, P.; Rosen, L.B.; Zhang, Q.; Michailidis, E.; Hoffmann, H.H.; Zhang, Y.; Dorgham, K.; Philippot, Q.; Rosain, J.; Béziat, V.; et al. Autoantibodies against Type I IFNs in Patients with Life-Threatening COVID-19. Science 2020, 370, 6515. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Han, T.; Chen, J.; Hou, C.; Hua, L.; He, S.; Guo, Y.; Zhang, S.; Wang, Y.; Yuan, J.; et al. Clinical and Autoimmune Characteristics of Severe and Critical Cases of COVID-19. Clin. Transl Sci. 2020, 13, 1077–1086. [Google Scholar] [CrossRef]
- Wang, E.Y.; Mao, T.; Klein, J.; Dai, Y.; Huck, J.D.; Liu, F.; Zheng, N.S.; Zhou, T.; Israelow, B.; Wong, P.; et al. Diverse Functional Autoantibodies in Patients with COVID-19. medRxiv 2020. [Google Scholar] [CrossRef]
- Chang, S.E.; Feng, A.; Meng, W.; Apostolidis, S.A.; Mack, E.; Artandi, M.; Barman, L.; Bennett, K.; Chakraborty, S.; Chang, I.; et al. New-Onset IgG Autoantibodies in Hospitalized Patients with COVID-19. medRxiv 2021. [Google Scholar] [CrossRef]
- Pascolini, S.; Vannini, A.; Deleonardi, G.; Ciordinik, M.; Sensoli, A.; Carletti, I.; Veronesi, L.; Ricci, C.; Pronesti, A.; Mazzanti, L.; et al. COVID-19 and Immunological Dysregulation: Can Autoantibodies Be Useful? Clin. Transl. Sci. 2020. [Google Scholar] [CrossRef]
- Tay, M.Z.; Poh, C.M.; Rénia, L.; MacAry, P.A.; Ng, L.F.P. The trinity of COVID-19: Immunity, inflammation and intervention. Nat. Rev. Immunol. 2020, 20, 363–374. [Google Scholar] [CrossRef]
- Matz, H.; Munir, D.; Logue, J.; Dooley, H. The Immunoglobulins of Cartilaginous Fishes. Dev. Comp. Immunol. 2021, 115, 103873. [Google Scholar] [CrossRef] [PubMed]
- Tyler, A. Agglutination of Sea-Urchin Eggs by Means of a Substance Extracted from the Eggs. Proc. Natl. Acad. Sci. USA 1940, 26, 249–256. [Google Scholar] [CrossRef] [Green Version]
- Tyler, A. On Natural Auto-Antibodies as Evidenced by Anti-Venin in Serum and Liver Extract of the Gila Monster. Proc. Natl. Acad. Sci. USA 1946, 32, 195–201. [Google Scholar] [CrossRef] [Green Version]
- Boyden, S. Cellular recognition of foreign matter. Int. Rev. Exp. Pathol. 1963, 2, 311–356. [Google Scholar] [PubMed]
- Boyden, S. Natural Antibodies and the Immune Response. Adv. Immunol. 1966, 5, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Asherson, G.L.; Rose, M.E. Autoantibody Production in Rabbits III. The Effect of Infection with Eimeria Stiedae and Its Relation to Natural Antibody. Immunology 1963, 6, 207–216. [Google Scholar] [PubMed]
- Asherson, G.L.; Holborow, E.J. Autoantibody Production in Rabbits VII. Autoantibodies to Gut Produced by the Injection of Bacteria. Immunology 1966, 10, 161–167. [Google Scholar]
- Hammarström, S.; Perlmann, P.; Gustafsson, B.E.; Lagercrantz, R. Autoantibodies to Colon in Germfree Rats Monocontaminated with Clostridium Difficile. J. Exp. Med. 1969, 129, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Kubelkova, K.; Hudcovic, T.; Kozakova, H.; Pejchal, J.; Macela, A. Early Infection-Induced Natural Antibody Response. Sci. Rep. 2021, 11, 1541. [Google Scholar] [CrossRef]
- Havlasová, J.; Hernychová, L.; Halada, P.; Pellantová, V.; Krejsek, J.; Stulík, J.; Macela, A.; Jungblut, P.R.; Larsson, P.; Forsman, M. Mapping of Immunoreactive Antigens of Francisella Tularensis Live Vaccine Strain. Proteomics 2002, 2, 857–867. [Google Scholar] [CrossRef]
- Havlasová, J.; Hernychová, L.; Brychta, M.; Hubálek, M.; Lenco, J.; Larsson, P.; Lundqvist, M.; Forsman, M.; Krocová, Z.; Stulík, J.; et al. Proteomic Analysis of Anti-Francisella Tularensis LVS Antibody Response in Murine Model of Tularemia. Proteomics 2005, 5, 2090–2103. [Google Scholar] [CrossRef]
- Eyles, J.E.; Unal, B.; Hartley, M.G.; Newstead, S.L.; Flick-Smith, H.; Prior, J.L.; Oyston, P.C.; Randall, A.; Mu, Y.; Hirst, S.; et al. Immunodominant Francisella Tularensis Antigens Identified Using Proteome Microarray. Proteomics 2007, 7, 2172–2183. [Google Scholar] [CrossRef] [PubMed]
- Janovská, S.; Pávková, I.; Reichelová, M.; Hubáleka, M.; Stulík, J.; Macela, A. Proteomic Analysis of Antibody Response in a Case of Laboratory-Acquired Infection with Francisella Tularensis Subsp. Tularensis. Folia Microbiol. 2007, 52, 194–198. [Google Scholar] [CrossRef]
- Janovská, S.; Pávková, I.; Hubálek, M.; Lenco, J.; Macela, A.; Stulík, J. Identification of Immunoreactive Antigens in Membrane Proteins Enriched Fraction from Francisella Tularensis LVS. Immunol. Lett. 2007, 108, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Baumgarth, N.; Waffarn, E.E.; Nguyen, T.T.T. Natural and Induced B-1 Cell Immunity to Infections Raises Questions of Nature versus Nurture. Ann. N. Y. Acad. Sci. 2015, 1362, 188–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwartz, J.T.; Barker, J.H.; Long, M.E.; Kaufman, J.; McCracken, J.; Allen, L.-A.H. Natural IgM Mediates Complement-Dependent Uptake of Francisella Tularensis by Human Neutrophils via CR1 and CR3 in Nonimmune Serum. J. Immunol. 2012, 189, 3064–3077. [Google Scholar] [CrossRef] [Green Version]
- Plzakova, L.; Krocova, Z.; Kubelkova, K.; Macela, A. Entry of Francisella Tularensis into Murine B Cells: The Role of B Cell Receptors and Complement Receptors. PLoS ONE 2015, 10, e0132571. [Google Scholar] [CrossRef] [Green Version]
- Geier, H.; Celli, J. Phagocytic Receptors Dictate Phagosomal Escape and Intracellular Proliferation of Francisella Tularensis. Infect. Immun. 2011, 79, 2204–2214. [Google Scholar] [CrossRef] [Green Version]
- Netea, M.G.; Quintin, J.; van der Meer, J.W. Trained Immunity: A Memory for Innate Host Defense. Cell Host Microbe 2011, 9, 355–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Netea, M.G.; Joosten, L.A.; Latz, E.; Mills, K.H.; Natoli, G.; Stunnenberg, H.G.; O’Neill, L.A.; Xavier, R.J. Trained Immunity: A Program of Innate Immune Memory in Health and Disease. Science 2016, 352, 6284. [Google Scholar] [CrossRef] [Green Version]
- Netea, M.G.; Domínguez-Andrés, J.; Barreiro, L.B.; Chavakis, T.; Divangahi, M.; Fuchs, E.; Joosten, L.A.B.; van der Meer, J.W.; Mhlanga, M.M.; Mulder, W.J.M.; et al. Defining Trained Immunity and Its Role in Health and Disease. Nat. Rev. Immunol. 2020, 20, 375–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffin, D.O.; Holodick, N.E.; Rothstein, T.L. Human B1 Cells in Umbilical Cord and Adult Peripheral Blood Express the Novel Phenotype CD20+ CD27+ CD43+ CD70-. J. Exp. Med. 2011, 208, 67–80, Erratum in 2011, 208, 871; Erratum in 2011, 208, 409; Erratum in 2011, 208, 67. [Google Scholar] [CrossRef]
- Griffin, D.O.; Rothstein, T.L. Human b1 Cell Frequency: Isolation and Analysis of Human b1 Cells. Front. Immunol. 2012, 3, 122. [Google Scholar] [CrossRef] [Green Version]
- Zhou, P.; Yang, X.-L.; Wang, X.-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.-R.; Zhu, Y.; Li, B.; Huang, C.-L.; et al. A Pneumonia Outbreak Associated with a New Coronavirus of Probable Bat Origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [Green Version]
- Bourgonje, A.R.; Abdulle, A.E.; Timens, W.; Hillebrands, J.L.; Navis, G.J.; Gordijn, S.J.; Bolling, M.C.; Dijkstra, G.; Voors, A.A.; Osterhaus, A.D.; et al. Angiotensin-Converting Enzyme 2 (ACE2), SARS-CoV-2 and the Pathophysiology of Coronavirus Disease 2019 (COVID-19). J. Pathol. 2020, 251, 228–248. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Y.; Wu, L.; Niu, S.; Song, C.; Zhang, Z.; Lu, G.; Qiao, C.; Hu, Y.; Yuen, K.Y.; et al. Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2. Cell 2020, 181, 894–904.e9. [Google Scholar] [CrossRef] [PubMed]
- Gheblawi, M.; Wang, K.; Viveiros, A.; Nguyen, Q.; Zhong, J.-C.; Turner, A.J.; Raizada, M.K.; Grant, M.B.; Oudit, G.Y. Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System. Circ. Res. 2020, 126. [Google Scholar] [CrossRef] [PubMed]
- Mahmudpour, M.; Roozbeh, J.; Keshavarz, M.; Farrokhi, S.; Nabipour, I. COVID-19 Cytokine Storm: The Anger of Inflammation. Cytokine 2020, 133, 155151. [Google Scholar] [CrossRef]
- Ragab, D.; Salah Eldin, H.; Taeimah, M.; Khattab, R.; Salem, R. The COVID-19 Cytokine Storm; What We Know So Far. Front. Immunol. 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Ye, Q.; Wang, B.; Mao, J. The Pathogenesis and Treatment of the ‘Cytokine Storm’ in COVID-19. J. Infect. 2020, 80, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Zhang, X.; Qu, J. Coronavirus Disease 2019 (COVID-19): A Clinical Update. Front. Med. 2020, 14, 126–135. [Google Scholar] [CrossRef] [Green Version]
- Kubelkova, K.; Macela, A. Innate Immune Recognition: An Issue More Complex Than Expected. Front. Cell Infect. Microbiol. 2019, 9, 241. [Google Scholar] [CrossRef] [Green Version]
- Wu, K.E.; Fazal, F.M.; Parker, K.R.; Zou, J.; Chang, H.Y. RNA-GPS Predicts SARS-CoV-2 RNA Residency to Host Mitochondria and Nucleolus. Cell Syst. 2020, 11, 102–108.e3. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.W.; Zhang, H.N.; Meng, Q.F.; Xie, J.; Li, Y.; Chen, H.; Zheng, Y.X.; Wang, X.N.; Qi, H.; Zhang, J.; et al. SARS-CoV-2 Orf9b Suppresses Type I Interferon Responses by Targeting TOM70. Cell Mol. Immunol. 2020, 17, 998–1000. [Google Scholar] [CrossRef]
- Battagello, D.S.; Dragunas, G.; Klein, M.O.; Ayub, A.L.P.; Velloso, F.J.; Correa, R.G. Unpuzzling COVID-19: Tissue-Related Signaling Pathways Associated with SARS-CoV-2 Infection and Transmission. Clin. Sci. 2020, 134, 2137–2160. [Google Scholar] [CrossRef]
- Gurung, P.; Lukens, J.R.; Kanneganti, T.D. Mitochondria: Diversity in the Regulation of the NLRP3 Inflammasome. Trends Mol. Med. 2015, 21, 193–201. [Google Scholar] [CrossRef] [Green Version]
- Burtscher, J.; Cappellano, G.; Omori, A.; Koshiba, T.; Millet, G.P. Mitochondria: In the Cross Fire of SARS-CoV-2 and Immunity. Science 2020, 23, 101631. [Google Scholar] [CrossRef] [PubMed]
- Wood, E.; Hall, K.H.; Tate, W. Role of Mitochondria, Oxidative Stress and the Response to Antioxidants in Myalgic Encephalomyelitis/chronic Fatigue Syndrome: A Possible Approach to SARS-CoV-2 “Long-Haulers”? Chronic Dis. Transl. Med. 2020. [Google Scholar] [CrossRef]
- Marino Gammazza, A.; Légaré, S.; Lo Bosco, G.; Fucarino, A.; Angileri, F.; Conway de Macario, E.; Macario, A.J.; Cappello, F. Human Molecular Chaperones Share with SARS-CoV-2 Antigenic Epitopes Potentially Capable of Eliciting Autoimmunity against Endothelial Cells: Possible Role of Molecular Mimicry in COVID-19. Cell Stress Chaperones 2020, 25, 737–741. [Google Scholar] [CrossRef]
- Kanduc, D.; Shoenfeld, Y. Molecular Mimicry between SARS-CoV-2 Spike Glycoprotein and Mammalian Proteomes: Implications for the Vaccine. Immunol. Res. 2020, 68, 310–313. [Google Scholar] [CrossRef]
- Lucchese, G.; Flöel, A. Molecular Mimicry between SARS-CoV-2 and Respiratory Pacemaker Neurons. Autoimmun. Rev. 2020, 19, 102556. [Google Scholar] [CrossRef]
- Grifoni, A.; Weiskopf, D.; Ramirez, S.I.; Mateus, J.; Dan, J.M.; Moderbacher, C.R.; Rawlings, S.A.; Sutherland, A.; Premkumar, L.; Jadi, R.S.; et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals. Cell 2020, 181, 1489–1501.e15. [Google Scholar] [CrossRef]
- Fu, Y.; Cheng, Y.; Wu, Y. Understanding SARS-CoV-2-Mediated Inflammatory Responses: From Mechanisms to Potential Therapeutic Tools. Virol. Sin. 2020, 35, 266–271. [Google Scholar] [CrossRef] [Green Version]
- Mahevas, M.; Tran, V.T.; Roumier, M.; Chabrol, A.; Paule, R.; Guillaud, C.; Gallien, S.; Lepeule, R.; Szwebel, T.A.; Lescure, X.; et al. Autoinflammatory and autoimmune conditions at the crossroad of COVID-19. J. Autoimmun. 2020, 114, 102506. [Google Scholar] [CrossRef]
- Platanias, L. Mechanisms of Type-I- and Type-II-Interferon-Mediated Signalling. Nat. Rev. Immunol. 2005, 5, 375–386. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Liu, J.; Cao, X. Regulation of Type I Interferon Signaling in Immunity and Inflammation: A Comprehensive Review. J. Autoimmun. 2017, 83, 1–11. [Google Scholar] [CrossRef]
- Dias Junior, A.G.; Sampaio, N.G.; Rehwinkel, J. A Balancing Act: MDA5 in Antiviral Immunity and Autoinflammation. Trends Microbiol. 2019, 27, 75–85. [Google Scholar] [CrossRef] [Green Version]
- Li, M.Y.; Li, L.; Zhang, Y.; Wang, X.S. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect. Dis. Poverty 2020, 9, 45. [Google Scholar] [CrossRef]
- Kanduc, D. From Anti-SARS-CoV-2 Immune Responses to COVID-19 via Molecular Mimicry. Antibodies 2020, 9, 33. [Google Scholar] [CrossRef]
- Cappello, F.; Gammazza, A.M.; Dieli, F.; Conway de Macario, E.; Macario, A.J. Does SARS-CoV-2 Trigger Stress-InducedAutoimmunity by Molecular Mimicry? A Hypothesis. J. Clin. Med. 2020, 9, 2038. [Google Scholar] [CrossRef]
- Amiral, J.; Vissac, A.M.; Seghatchian, J. Covid-19, induced activation of hemostasis, and immune reactions: Can an auto-immune reaction contribute to the delayed severe complications observed in some patients? Transfus. Apher. Sci. 2020, 59, 102804. [Google Scholar] [CrossRef]
- Townsend, A. Autoimmunity to ACE2 as a possible cause of tissue inflammation in Covid-19. Med. Hypotheses 2020, 144, 110043. [Google Scholar] [CrossRef]
- Woodruff, M.C.; Ramonell, R.P.; Eun-Hyung Lee, F.; Sanz, I. Clinically identifiable autoreactivity is common in severe SARS-CoV-2 Infection. medRxiv 2020. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macela, A.; Kubelkova, K. Why Does SARS-CoV-2 Infection Induce Autoantibody Production? Pathogens 2021, 10, 380. https://doi.org/10.3390/pathogens10030380
Macela A, Kubelkova K. Why Does SARS-CoV-2 Infection Induce Autoantibody Production? Pathogens. 2021; 10(3):380. https://doi.org/10.3390/pathogens10030380
Chicago/Turabian StyleMacela, Ales, and Klara Kubelkova. 2021. "Why Does SARS-CoV-2 Infection Induce Autoantibody Production?" Pathogens 10, no. 3: 380. https://doi.org/10.3390/pathogens10030380
APA StyleMacela, A., & Kubelkova, K. (2021). Why Does SARS-CoV-2 Infection Induce Autoantibody Production? Pathogens, 10(3), 380. https://doi.org/10.3390/pathogens10030380