Rapid and Efficient Cell-to-Cell Transmission of Avian Influenza H5N1 Virus in MDCK Cells Is Achieved by Trogocytosis
Abstract
:1. Introduction
2. Results
2.1. Cell-to-Cell Transmission of Avian Influenza H5N1 Virus
2.2. Cell-to-Cell Transmission Rate of H5N1 Virus Is Faster Than H1N1 Virus
2.3. H5N1 Virus Induces Higher Levels of Trogocytosis Than H1N1 Virus
2.4. Tunneling Nanotubes (TNTs) Are Formed between Donor and Recipient Cells after Trogocytosis
2.5. Cell-to-Cell Transmission of H5N1 Virus Requires Actin Polymerization
2.6. Trogocytosis in A549 Human Lung Epithelial Cell Co-Cultures Is Associated with the Infection Rate of H5N1 Virus
3. Discussion
4. Materials and Methods
4.1. Cell Line and Viruses
4.2. Cell Membrane Labeling
4.3. Co-Culture and Transwell Assay
4.4. Live-Cell Imaging
4.5. Immunofluorescence Assay
4.6. Flow Cytometry
4.7. Quantification of NP Gene Expression by Strand-Specific RT–qPCR
4.8. Plaque Assay
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Zhong, P.; Agosto, L.M.; Munro, J.B.; Mothes, W. Cell-to-Cell Transmission of Viruses. Curr. Opin. Virol. 2013, 3, 44–50. [Google Scholar] [CrossRef] [Green Version]
- Mothes, W.; Sherer, N.M.; Jin, J.; Zhong, P. Virus Cell-to-Cell Transmission. J. Virol. 2010, 84, 8360–8368. [Google Scholar] [CrossRef] [Green Version]
- Sattentau, Q. Avoiding the Void: Cell-to-Cell Spread of Human Viruses. Nat. Rev. Microbiol. 2008, 6, 815–826. [Google Scholar] [CrossRef]
- Cifuentes-Muñoz, N.; Dutch, R.E.; Cattaneo, R. Direct Cell-to-Cell Transmission of Respiratory Viruses: The Fast Lanes. PLoS Pathog. 2018, 14, e1007015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pique, C.; Jones, K.S. Pathways of Cell-Cell Transmission of Htlv-1. Front. Microbiol. 2012, 3, 378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gross, C.; Thoma-Kress, A.K. Molecular Mechanisms of Htlv-1 Cell-to-Cell Transmission. Viruses 2016, 8, 74. [Google Scholar] [CrossRef]
- Sowinski, S.; Jolly, C.; Berninghausen, O.; Purbhoo, M.A.; Chauveau, A.; Kohler, K.; Oddos, S.; Eissmann, P.; Brodsky, F.M.; Hopkins, C.; et al. Membrane Nanotubes Physically Connect T Cells over Long Distances Presenting a Novel Route for HIV-1 Transmission. Nat. Cell Biol. 2008, 10, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Brimacombe, L.C.; Grove, J.; Meredith, L.W.; Hu, K.; Syder, A.J.; Flores, M.V.; Timpe, J.M.; Krieger, S.E.; Baumert, T.F.; Tellinghuisen, T.L.; et al. Neutralizing Antibody-Resistant Hepatitis C Virus Cell-to-Cell Transmission. J. Virol. 2011, 85, 596–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, F.; Fofana, I.; Heydmann, L.; Barth, H.; Soulier, E.; Habersetzer, F.; Doffoël, M.; Bukh, J.; Patel, A.H.; Zeisel, M.B.; et al. Hepatitis C Virus Cell-Cell Transmission and Resistance to Direct-Acting Antiviral Agents. PLoS Pathog. 2014, 10, e1004128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiendl, H. Fast Track to Becoming a Regulatory T Cell: “Trogocytosis” of Immune-Tolerogenic Hla-G. Blood 2007, 109, 1796–1797. [Google Scholar] [CrossRef] [Green Version]
- Joly, E.; Hudrisier, D. What Is Trogocytosis and What Is Its Purpose? Nat. Immunol. 2003, 4, 815. [Google Scholar] [CrossRef]
- Steele, S.; Radlinski, L.; Taft-Benz, S.; Brunton, J.; Kawula, T.H. Trogocytosis-Associated Cell to Cell Spread of Intracellular Bacterial Pathogens. eLife 2016, 5, e10625. [Google Scholar] [CrossRef] [PubMed]
- Massanella, M.; Puigdomènech, I.; Cabrera, C.; Fernandez-Figueras, M.T.; Aucher, A.; Gaibelet, G.; Hudrisier, D.; García, E.; Bofill, M.; Clotet, B.; et al. Antigp41 Antibodies Fail to Block Early Events of Virological Synapses but Inhibit HIV Spread between T Cells. AIDS 2009, 23, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Puigdomènech, I.; Massanella, M.; Cabrera, C.; Clotet, B.; Blanco, J. On the Steps of Cell-to-Cell HIV Transmission between Cd4 T Cells. Retrovirology 2009, 6, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mori, K.; Haruyama, T.; Nagata, K. Tamiflu-Resistant but Ha-Mediated Cell-to-Cell Transmission through Apical Membranes of Cell-Associated Influenza Viruses. PLoS ONE 2011, 6, e28178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, L.K.; Manicassamy, B.; Lamb, R.A. Influenza a Virus Uses Intercellular Connections to Spread to Neighboring Cells. J. Virol. 2015, 89, 1537–1549. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Kim, J.H.; Ranjan, P.; Metcalfe, M.G.; Cao, W.; Mishina, M.; Gangappa, S.; Guo, Z.; Boyden, E.S.; Zaki, S.; et al. Influenza Virus Exploits Tunneling Nanotubes for Cell-to-Cell Spread. Sci. Rep. 2017, 7, 40360. [Google Scholar] [CrossRef]
- Peiris, J.S.M.; de Jong, M.D.; Guan, Y. Avian Influenza Virus (H5n1): A Threat to Human Health. Clin. Microbiol. Rev. 2007, 20, 243–267. [Google Scholar] [CrossRef] [Green Version]
- Simon, P.F.; de la Vega, M.-A.; Paradis, É.; Mendoza, E.; Coombs, K.M.; Kobasa, D.; Beauchemin, C.A.A. Avian Influenza Viruses That Cause Highly Virulent Infections in Humans Exhibit Distinct Replicative Properties in Contrast to Human H1n1 Viruses. Sci. Rep. 2016, 6, 24154. [Google Scholar] [CrossRef] [Green Version]
- Rafii, A.; Mirshahi, P.; Poupot, M.; Faussat, A.-M.; Simon, A.; Ducros, E.; Mery, E.; Couderc, B.; Lis, R.; Capdet, J.; et al. Oncologic Trogocytosis of an Original Stromal Cells Induces Chemoresistance of Ovarian Tumours. PLoS ONE 2008, 3, e3894. [Google Scholar] [CrossRef] [Green Version]
- Waschbisch, A.; Meuth, S.G.; Herrmann, A.M.; Wrobel, B.; Schwab, N.; Lochmüller, H.; Wiendl, H. Intercellular Exchanges of Membrane Fragments (Trogocytosis) between Human Muscle Cells and Immune Cells: A Potential Mechanism for the Modulation of Muscular Immune Responses. J. Neuroimmunol. 2009, 209, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Mori, K.; Murano, K.; Ohniwa, R.L.; Kawaguchi, A.; Nagata, K. Oseltamivir Expands Quasispecies of Influenza Virus through Cell-to-Cell Transmission. Sci. Rep. 2015, 5, 9163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwami, S.; Takeuchi, J.S.; Nakaoka, S.; Mammano, F.; Clavel, F.; Inaba, H.; Kobayashi, T.; Misawa, N.; Aihara, K.; Koyanagi, Y.; et al. Cell-to-Cell Infection by HIV Contributes over Half of Virus Infection. eLife 2015, 4, e08150. [Google Scholar] [CrossRef] [PubMed]
- Boullé, M.; Müller, T.G.; Dähling, S.; Ganga, Y.; Jackson, L.; Mahamed, D.; Oom, L.; Lustig, G.; Neher, R.A.; Sigal, A. HIV Cell-to-Cell Spread Results in Earlier Onset of Viral Gene Expression by Multiple Infections Per Cell. PLoS Pathog. 2016, 12, e1005964. [Google Scholar] [CrossRef] [PubMed]
- Jolly, C. Cell-to-Cell Transmission of Retroviruses: Innate Immunity and Interfer-on-Induced Restriction Factors. Virology 2011, 411, 251–259. [Google Scholar] [CrossRef] [Green Version]
- Jolly, C. T Cell Polarization at the Virological Synapse. Viruses 2010, 2, 1261–1278. [Google Scholar] [CrossRef] [PubMed]
- Rudnicka, D.; Feldmann, J.; Porrot, F.; Wietgrefe, S.; Guadagnini, S.; Prévost, M.-C.; Estaquier, J.; Haase, A.T.; Sol-Foulon, N.; Schwartz, O. Simultaneous Cell-to-Cell Transmission of Human Immunodeficiency Virus to Multiple Targets through Polysynapses. J. Virol. 2009, 83, 6234–6246. [Google Scholar] [CrossRef] [Green Version]
- Duncan, C.J.A.; Williams, J.P.; Schiffner, T.; Gärtner, K.; Ochsenbauer, C.; Kappes, J.; Russell, R.A.; Frater, J.; Sattentau, Q.J. High-Multiplicity HIV-1 Infection and Neutralizing Antibody Evasion Mediated by the Macrophage-T Cell Virological Synapse. J. Virol. 2014, 88, 2025–2034. [Google Scholar] [CrossRef] [Green Version]
- Jin, J.; Sherer, N.M.; Heidecker, G.; Derse, D.; Mothes, W. Assem-bly of the Murine Leukemia Virus Is Directed towards Sites of Cell–Cell Contact. PLoS Biol. 2009, 7, e1000163. [Google Scholar] [CrossRef] [Green Version]
- Tabiasco, J.; Vercellone, A.; Meggetto, F.; Hudrisier, D.; Brousset, P.; Fournié, J.-J. Acquisition of Viral Receptor by Nk Cells through Immunological Synapse. J. Immunol. 2003, 170, 5993–5998. [Google Scholar] [CrossRef] [Green Version]
- Aucher, A.; Puigdomenech, I.; Joly, E.; Clotet, B.; Hudrisier, D.; Blanco, J. Could Cd4 Capture by Cd8+ T Cells Play a Role in HIV Spreading? J. Biomed. Biotechnol. 2010. [Google Scholar] [CrossRef] [Green Version]
- Kongsomros, S.; Thanunchai, M.; Manopwisedjaroen, S.; Na-Ek, P.; Wang, S.-F.; Taechalertpaisarn, T.; Thitithanyanont, A. Trogocytosis with Monocytes Associated with Increased A2,3 Sialic Acid Expression on B Cells during H5n1 Influenza Virus Infection. PLoS ONE 2020, 15, e0239488. [Google Scholar] [CrossRef] [PubMed]
- Bettadapur, A.; Miller, H.W.; Ralston, K.S. Biting Off What Can Be Chewed: Trogocytosis in Health, Infection, and Disease. Infect. Immun. 2020, 88. [Google Scholar] [CrossRef]
- Morrissey, A.M.; Williamson, A.P.; Steinbach, A.M.; Roberts, E.W.; Kern, N.; Headley, M.B.; Vale, R.D. Chimeric Antigen Receptors That Trigger Phagocytosis. eLife 2018, 7, e36688. [Google Scholar] [CrossRef]
- Eierhoff, T.; Hrincius, E.R.; Rescher, U.; Ludwig, S.; Ehrhardt, C. The Epidermal Growth Factor Receptor (Egfr) Promotes Uptake of Influenza a Viruses (Iav) into Host Cells. PLoS Pathog. 2010, 6, e1001099. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Zhu, L.; Yang, X.; Lin, J.; Yang, Q. The Epidermal Growth Factor Receptor Regulates Cofilin Activity and Promotes Transmissible Gastroenteritis Virus Entry into Intestinal Epithelial Cells. Oncotarget 2016, 7, 12206. [Google Scholar] [CrossRef] [Green Version]
- Jun, C.-D.; Kim, H.-R. T Cell Microvilli: Sensors or Senders? Front. Immunol. 2019, 10, 1753. [Google Scholar]
- Önfelt, B.; Nedvetzki, S.; Yanagi, K.; Davis, D.M. Cutting Edge: Membrane Nanotubes Connect Immune Cells. J. Immunol. 2004, 173, 1511–1513. [Google Scholar] [CrossRef] [Green Version]
- Rainy, N.; Chetrit, D.; Rouger, V.; Vernitsky, H.; Rechavi, O.; Marguet, D.; Goldstein, I.; Ehrlich, M.; Kloog, Y. H-Ras Transfers from B to T Cells via Tunneling Nanotubes. Cell Death Dis. 2013, 4, e726. [Google Scholar] [CrossRef]
- Önfelt, B.; Nedvetzki, S.; Benninger, R.K.P.; Purbhoo, M.A.; Sowinski, S.; Hume, A.N.; Seabra, M.C.; Neil, M.A.A.; French, P.M.W.; Davis, D.M. Structurally Distinct Membrane Nanotubes between Human Macrophages Support Long-Distance Vesicular Traffic or Surfing of Bacteria. J. Immunol. 2006, 177, 8476–8483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolba, M.D.; Dudka, W.; Zaręba-Kozioł, M.; Kominek, A.; Ronchi, P.; Turos, L.; Wlodarczyk, J.; Schwab, Y.; Cysewski, D.; Srpan, K. Tunneling Nanotubes Contribute to the Stroma-Mediated Imatinib Resistance of Leukemic Cells. bioRxiv 2018. [Google Scholar] [CrossRef]
- Miyake, K.; Shiozawa, N.; Nagao, T.; Yoshikawa, S.; Yamanishi, Y.; Karasuyama, H. Trogocytosis of Peptide–Mhc Class Ii Complexes from Dendritic Cells Confers Antigen-Presenting Ability on Basophils. Proc. Natl. Acad. Sci. USA 2017, 114, 1111–1116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osteikoetxea-Molnár, A.; Szabó-Meleg, E.; Tóth, E.A.; Oszvald, Á.; Izsépi, E.; Kremlitzka, M.; Biri, B.; Nyitray, L.; Bozó, T.; Németh, P.; et al. The Growth Determinants and Transport Properties of Tunneling Nanotube Networks be-tween B Lymphocytes. Cell. Mol. Life Sci. 2016, 73, 4531–4545. [Google Scholar] [CrossRef] [PubMed]
- Kandun, I.N.; Tresnaningsih, E.; Purba, W.H.; Lee, V.; Samaan, G.; Harun, S.; Soni, E.; Septiawati, C.; Setiawati, T.; Sariwati, E. Factors Associated with Case Fatality of Human H5N1 Virus Infections in Indonesia: A Case Series. Lancet 2008, 372, 744–749. [Google Scholar] [CrossRef]
- Smith, J.R. Oseltamivir in Human Avian Influenza Infection. J. Antimicrob. Chemother. 2010, 65, ii25–ii33. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.M.-Y.; Yen, H.-L. Targeting the Host or the Virus: Current and Novel Concepts for Antiviral Approaches against Influenza Virus Infection. Antivir. Res. 2012, 96, 391–404. [Google Scholar] [CrossRef]
- Duval, X.; van der Werf, S.; Blanchon, T.; Mosnier, A.; Bouscambert-Duchamp, M.; Tibi, A.; Enouf, V.; Charlois-Ou, C.; Vincent, C.; Andreoletti, L. Efficacy of Oseltamivir-Zanamivir Combination Compared to Each Monotherapy for Seasonal Influenza: A Randomized Placebo-Controlled Trial. PLoS Med. 2010, 7, e1000362. [Google Scholar] [CrossRef]
- Kawakami, E.; Watanabe, T.; Fujii, K.; Goto, H.; Watanabe, S.; Noda, T.; Kawaoka, Y. Strand-Specific Real-Time Rt-Pcr for Distinguishing Influenza Vrna, Crna, and Mrna. J. Virol. Methods 2011, 173, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J. Analysis of Relative Gene Expres-Kj and Schmittgen Td: Analysis of Relative Gene Expres-Td: Analysis of Relative Gene Expression Data Using Real-Time Quantitative Pcr and the 2–ΔΔCT Method. Methods 2011, 25, 40. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kongsomros, S.; Manopwisedjaroen, S.; Chaopreecha, J.; Wang, S.-F.; Borwornpinyo, S.; Thitithanyanont, A. Rapid and Efficient Cell-to-Cell Transmission of Avian Influenza H5N1 Virus in MDCK Cells Is Achieved by Trogocytosis. Pathogens 2021, 10, 483. https://doi.org/10.3390/pathogens10040483
Kongsomros S, Manopwisedjaroen S, Chaopreecha J, Wang S-F, Borwornpinyo S, Thitithanyanont A. Rapid and Efficient Cell-to-Cell Transmission of Avian Influenza H5N1 Virus in MDCK Cells Is Achieved by Trogocytosis. Pathogens. 2021; 10(4):483. https://doi.org/10.3390/pathogens10040483
Chicago/Turabian StyleKongsomros, Supasek, Suwimon Manopwisedjaroen, Jarinya Chaopreecha, Sheng-Fan Wang, Suparerk Borwornpinyo, and Arunee Thitithanyanont. 2021. "Rapid and Efficient Cell-to-Cell Transmission of Avian Influenza H5N1 Virus in MDCK Cells Is Achieved by Trogocytosis" Pathogens 10, no. 4: 483. https://doi.org/10.3390/pathogens10040483
APA StyleKongsomros, S., Manopwisedjaroen, S., Chaopreecha, J., Wang, S. -F., Borwornpinyo, S., & Thitithanyanont, A. (2021). Rapid and Efficient Cell-to-Cell Transmission of Avian Influenza H5N1 Virus in MDCK Cells Is Achieved by Trogocytosis. Pathogens, 10(4), 483. https://doi.org/10.3390/pathogens10040483