Investigating the Presence of SARS CoV-2 in Free-Living and Captive Animals
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Sample Collection and Preparation
4.2. Detection of Specific Anti-SARS CoV-2 Antibodies by Enzyme-Linked Immunosorbent Assay (ELISA)
4.3. Detection of SARS-CoV-2 Neutralizing Antibodies by a Surrogate Virus Neutralization Test (sVNT)
4.4. RNA Extraction and SARS CoV-2 Detection by Real-Time RT–PCR
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, L.F.; Eaton, B.T. Bats, civets and the emergence of SARS. Curr. Top. Microbiol. Immunol. 2007, 315, 325–344. [Google Scholar] [CrossRef]
- Cowley, J.A.; Walker, P.J.; Flegel, T.W.; Lightner, D.V.; Bonami, J.R.; Snjider, E.J.; De Groot, R.J. Family—Coronaviridae. In Virus Taxonomy, Ninth Report of the International Committee on Taxonomy of Viruses; King, A.M.Q., Lefkowitz, E.J., Adams, M.J., Carstens, E.B., Lefkowitz, E.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2011; pp. 806–828. [Google Scholar]
- Monchatre-Leroy, E.; Boué, F.; Boucher, J.M.; Renault, C.; Moutou, F.; Gouilh, M.A.R.; Umhang, G. Identification of alpha and beta coronavirus in wildlife species in France: Bats, rodents, rabbits, and hedgehogs. Viruses 2017, 9, 364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fehr, A.R.; Perlman, S. Coronaviruses: An overview of their replication and pathogenesis. Meth. Mol. Biol. 2015, 1282, 1–23. [Google Scholar]
- Qiu, M.; Shi, Y.; Guo, Z.; Chen, Z.; He, R.; Chen, R.; Zhou, D.; Dai, E.; Wang, X.; Si, B.; et al. Antibody responses to individual proteins of SARS coronavirus and their neutralization activities. Microbes Infect. 2005, 7, 882–889. [Google Scholar] [CrossRef]
- Batra, M.; Tian, R.; Zhang, C.; Clarence, E.; Sacher, C.S.; Miranda, J.N.; De La Fuente, J.R.O.; Mathew, M.; Green, D.; Patel, S.; et al. Role of IgG against N-protein of SARS-CoV2 in COVID19 clinical outcomes. Sci. Rep. 2021, 11, 3455. [Google Scholar] [CrossRef]
- Yan, R.; Zhang, Y.; Li, Y.; Xia, L.; Guo, Y.; Zhou, Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science 2020, 367, 1444–1448. [Google Scholar] [CrossRef] [Green Version]
- Brochot, E.; Demey, B.; Touzé, A.; Belouzard, S.; Dubuisson, J.; Schmit, J.L.; Duverlie, G.; Francois, C.; Castelain, S.; Helle, F. Anti-spike, anti-nucleocapsid and neutralizing antibodies in SARS-CoV-2 inpatients and asymptomatic individuals. Front. Microbiol. 2020, 19, 584251. [Google Scholar] [CrossRef]
- Naik, R.R.; Shakya, A.K. Therapeutic strategies in the management of COVID-19. Front. Mol. Biosci. 2021, 7, 636738. [Google Scholar] [CrossRef]
- Hofmann, H.; Pyrc, K.; Van Der Hoek, L.; Geier, M.; Berkhout, B.; Pohlmann, S. Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc. Natl. Acad. Sci. USA 2005, 102, 7988–7993. [Google Scholar] [CrossRef] [Green Version]
- Medina-Enríquez, M.M.; Lopez-León, S.; Carlos-Escalante, J.A.; Aponte-Torres, Z.; Cuapio, A.; Wegman-Ostrosky, T. ACE2: The molecular doorway to SARS-CoV-2. Cell Biosci. 2020, 10, 148. [Google Scholar] [CrossRef]
- Chan-Yeung, M.; Xu, R.H. SARS: Epidemiology. Respirology 2003, 8, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Zumla, A.; Hui, D.S.; Perlman, S. Middle East respiratory syndrome. Lancet 2015, 386, 995–1007. [Google Scholar] [CrossRef] [Green Version]
- Hemida, M.G.; Chu, D.K.; Poon, L.L.; Perera, R.A.; Alhammadi, M.A.; Ng, H.Y.; Siu, L.Y.; Guan, Y.; Alnaeem, A.; Peiris, M. MERS coronavirus in dromedary camel herd, Saudi Arabia. Emerg. Infect. Dis. 2014, 20, 1231–1234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lau, S.K.P.; Luk, H.K.H.; Wong, A.C.P.; Li, K.S.M.; Zhu, L.; He, Z.; Fung, J.; Chan, T.T.Y.; Fung, K.S.C.; Woo, P.C.Y. Possible bat origin of severe acute respiratory syndrome coronavirus 2. Emerg. Infect. Dis. 2020, 26. [Google Scholar] [CrossRef]
- Zhou, P.; Yang, X.-L.; Wang, X.-G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.-R.; Zhu, Y.; Li, B.; Huang, C.-L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersen, K.G.; Rambaut, A.; Lipkin, W.I.; Holmes, E.C.; Garry, R.F. The proximal origin of SARS-CoV-2. Nat. Med. 2020, 26, 450–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lam, T.-Y.; Jia, N.A.; Zhang, Y.-W.; Shum, M.-H.; Jiang, J.-F.; Zhu, H.-C.; Tong, Y.-G.; Shi, Y.-X.; Ni, X.-B.; Liao, Y.-S.; et al. Identifying SARS-CoV-2 related coronaviruses in Malayan pangolins. Nature 2020, 583, 282–285. [Google Scholar] [CrossRef] [Green Version]
- Xiao, K.; Zhai, J.; Feng, Y.; Zhou, N.; Zhang, X.; Zou, J.-J.; Li, N.; Guo, Y.; Li, X.; Shen, X.; et al. Isolation and characterization of 2019-nCoV-like coronavirus from Malayan pangolins. bioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Zhai, X.; Sun, J.; Yan, Z.; Zhang, J.; Zhao, J.; Zhao, Z.; Gao, Q.; He, W.-T.; Veit, M.; Su, S. Comparison of SARS-CoV-2 spike protein binding to human, pet, farm animals, and putative intermediate hosts ACE2 and ACE2 receptors. bioRxiv 2020. [Google Scholar] [CrossRef]
- OIE. Considerations for Sampling, Testing, and Reporting of SARSCoV-2 in Animals. World Organisation for Animal Health (OIE). 2020. Available online: https://www.oie.int/fileadmin/Home/eng/our_scientific_expertise/docs/pdf/COV-19/Sampling_Testing_and_Reporting_of_SARS-CoV-2_in_animals_final_7May_2020.pdf (accessed on 10 May 2021).
- Bosco-Lauth, A.M.; Hartwig, A.E.; Porter, S.M.; Gordy, P.W.; Nehring, M.; Byas, A.D.; Vande Woude, S.; Ragan, I.K.; Maison, R.M.; Bowen, R.A. Pathogenesis, transmission and response to re-exposure of SARS-CoV-2 in domestic cats. bioRxiv 2020. [Google Scholar] [CrossRef]
- Shi, J.; Wen, Z.; Zhong, G.; Yang, H.; Wang, C.; Huang, B.; Liu, R.; He, X.; Shuai, L.; Sun, Z.; et al. Susceptibility of ferrets, cats, dogs, and other domesticated animals to SARS–coronavirus 2. Science 2020, 368, 1016–1020. [Google Scholar] [CrossRef] [Green Version]
- WAHIS. SARS-CoV-2/COVID-19. United States of America: Immediate Notification—Zoo. World Animal Health Information Database (WAHIS). 2020. Available online: https://www.oie.int/wahis_2/public/wahid.php/Reviewreport/Review?reportid=33885 (accessed on 12 November 2020).
- Oreshkova, N.; Molenaar, R.-J.; Vreman, S.; Harders, F.; Oude Munnink, B.B.; Hakze-vd Honing, R.W.; Gerhards, N.; Tolsma, P.; Bouwstra, R.; Sikkema, R.; et al. SARS-CoV2 infection in farmed mink, Netherlands. bioRxiv 2020. [Google Scholar] [CrossRef]
- Fenollar, F.; Mediannikov, O.; Maurin, M.; Devaux, C.; Colson, P.; Levasseur, A.; Fournier, P.-E.; Raoult, D. Mink, SARS-CoV-2, and the Human Animal Interface. Front. Microbiol. 2021, 12, 663815. [Google Scholar] [CrossRef]
- Shriner, S.A.; Ellis, J.W.; Root, J.; Roug, A.; Stopak, S.R.; Wiscomb, G.W.; DeLiberto, T.J. SARS-CoV-2 Exposure in escaped mink, Utah, USA. Emerg. Infect. Dis. 2021, 27, 988–990. [Google Scholar] [CrossRef]
- Damas, J.; Hughes, G.M.; Keough, K.C.; Painter, C.A.; Persky, N.S.; Corbo, M.; Hiller, M.; Koepfli, K.-P.; Pfenning, A.R.; Zhao, H.; et al. Broad host range of SARS-CoV-2 predicted by comparative and structural analysis of ACE2 in vertebrates. bioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Martínez-Hernández, F.; Isaak-Delgado, A.B.; Alfonso-Toledo, J.A.; Muñoz-García, C.I.; Villalobos, G.; Aréchiga-Ceballo, N.; Rendón-Francon, E. Assessing the SARS-CoV-2 threat to wildlife: Potential risk to a broad range of mammals. Perspect. Ecol. Conserv. 2020, 18, 223–234. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, E.C.; Reid, T.J. Animals and SARS-CoV-2: Species susceptibility and viral transmission in experimental and natural conditions, and the potential implications for community transmission. Transbound. Emerg. Dis. 2020, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Sun, J.; Zhu, J.; Ding, X.; Lan, T.; Zhu, L.; Xiang, R.; Ding, P.; Wang, H.; Wang, X.; et al. Single-cell screening of SARS-CoV-2 target cells in pets, livestock, poultry and wildlife. bioRxiv 2020. [Google Scholar] [CrossRef]
- Zhai, S.-L.; Wei, W.-K.; Lv, D.-H.; Xu, Z.-H.; Chen, Q.-L.; Sun, M.-F.; Liao, M.; Li, F.; Wang, D. Where did SARS-CoV-2 come from? Vet. Rec. 2020, 186, 254. [Google Scholar] [CrossRef] [Green Version]
- Deng, J.; Jin, Y.; Liu, Y.; Sun, J.; Hao, L.; Bai, J.; Huang, T.; Lin, D.; Jin, Y.; Tian, K. Serological survey of SARS-CoV-2 for experimental, domestic, companion and wild animals excludes intermediate hosts of 35 different species of animals. Transbound. Emerg. Dis. 2020, 67, 1745–1749. [Google Scholar] [CrossRef] [PubMed]
- Maurin, M.; Fenollar, F.; Mediannikov, O.; Davoust, B.; Devaux, C.; Raoult, D. Current status of putative animal sources of SARS-COV-2 infection in humans: Wildlife, domestic animals and pets. Microorganisms 2021, 9, 868. [Google Scholar] [CrossRef]
- Webster, R.G. The importance of animal influenza for human disease. Vaccine 2002, 15, S16–S20. [Google Scholar] [CrossRef]
- Zhao, Y. Epidemics and Wildlife: How Ebola affects Gorillas and Chimpanzees. Animal 2020, 20. Available online: https://news.cgtn.com/news/2020-02-09/How-Ebola-affects-gorillas-and-chimpanzees--NW4XUMFBJe/index.html (accessed on 9 February 2020).
- Jemeršić, L.; Prpić, J.; Brnić, D.; Keros, T.; Pandak, N.; Đaković Rode, O. Genetic diversity of hepatitis E virus (HEV) strains derived from humans, swine and wild boars in Croatia from 2010 to 2017. BMC Infect. Dis. 2019, 19, 269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stavrinides, J.; Guttman, D.S. Mosaic evolution of the severe acute respiratory syndrome coronavirus. J. Virol. 2004, 78, 76–82. [Google Scholar] [CrossRef] [Green Version]
- Kitajima, M.; Ahmed, W.; Bibby, K.; Carducci, A.; Gerba, C.P.; Hamilton, K.A.; Haramoto, E.; Joan, B.; Rose, J.B. SARS-CoV-2 in wastewater: State of the knowledge and research needs. Scien. Total Environ. 2020, 739, 139076. [Google Scholar] [CrossRef]
- Agrawal, S.; Orschler, L.; Lackner, S. Long-term monitoring of SARS-CoV-2 RNA in wastewater of the Frankfurt metropolitan area in Southern Germany. Sci. Rep. 2021, 11, 5372. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Kahn, R.E.; Richt, J.A. The pig as a mixing vessel for influenza viruses: Human and veterinary implications. J. Mol. Gen. Med. Int. J. Biomed. Res. 2008, 3, 158–166. [Google Scholar]
- Pickering, B.S.; Smith, G.; Pinette, M.M.; Embury-Hyatt, C.; Moffat, E.; Marszal, P.; Lewis, C.E. Susceptibility of Domestic Swine to Experimental Infection with Severe Acute Respiratory Syndrome Coronavirus 2. Emerg. Infect. Dis. 2021, 27, 104–112. [Google Scholar] [CrossRef]
- Mykytyn, A.Z.; Lamers, M.M.; Okba, N.M.; Breugem, T.I.; Schipper, D.; Doel, P.B.V.D.; Van Run, P.; Van Amerongen, G.; De Waal, L.; Koopmans, M.P.; et al. Susceptibility of rabbits to SARS-CoV-2. Emerg. Microb. Infect. 2020, 10, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Davidson, W.R.; Appel, M.J.; Doster, G.L.; Baker, O.E.; Brown, J.F. Diseases and parasites of red foxes, gray foxes, and coyotes from commercial sources selling to fox-chasing enclosures. J. Wildl. Dis. 1992, 28, 581–589. [Google Scholar] [CrossRef]
- Luan, J.; Lu, Y.; Jin, X.; Zhang, L. Spike protein recognition of mammalian ACE2 predicts the host range and an optimized ACE2 for SARS-CoV-2 infection. Biochem. Biophys. Res. Commun. 2020, 526, 165–169. [Google Scholar] [CrossRef] [PubMed]
- Goller, K.V.; Fickel, J.; Hofer, H.; Beier, S.; East, M.L. Coronavirus genotype diversity and prevalence of infection in wild carnivores in the Serengeti National Park, Tanzania. Arch. Virol. 2013, 158, 729–734. [Google Scholar] [CrossRef] [Green Version]
- Sit, T.H.C.; Brackman, C.J.; Ip, S.M.; Tam, K.W.S.; Law, P.Y.T.; To, E.M.W.; Yu, V.Y.T.; Sims, L.D.; Tsang, D.N.C.; Chu, D.K.W.; et al. Infection of dogs with SARS-CoV-2. Nature 2020, 586, 776–778. [Google Scholar] [CrossRef]
- Stevanovic, V.; Vilibic-Cavlek, T.; Tabain, T.; Benvin, I.; Kovac, S.; Hruskar, Ž.; Mauric, M.; Milasincic, L.J.; Antolasic, L.J.; Skrinjaric, A.; et al. Seroprevalence of SARSCoV2 infection among pet animals in Croatia and potential public health impact. Transbound. Emerg. Dis. 2020. [CrossRef]
- Bedeković, T.; Lemo, N.; Lojkić, I.; Mihaljević, Z.; Jungić, A.; Cvetnić, Z.; Cač, Z.; Hostnik, P. Modification of the fluorescent antibody virus neutralisation test—Elimination of the cytotoxic effect for the detection of rabies virus neutralising antibodies. J. Virol. Methods 2013, 189, 204–208. [Google Scholar] [CrossRef] [PubMed]
- Okba, N.M.A.; Müller, M.A.; Li, W.; Wang, C.; Geurtsvan Kessel, C.H.; Corman, V.M.; Haagmans, B.L. Severe acute respiratory syndrome coronavirus 2-specific antibody responses in coronavirus disease 2019 patients. Emerg. Inf. Dis. 2020, 26, 1478–1488. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.W.; Chia, W.N.; Qin, X.; Pei, L.; Chen, M.I.-C.; Tiu, C.; Hu, Z.; Chen, V.; Young, B.E.; Rong Sia, W.; et al. A SARS-CoV-2 surrogate virus neutralization test based on antibody-mediated blockage of ACE2–spike protein–protein interaction. Nat. Biotechnol. 2020, 38, 1073–1078. [Google Scholar] [CrossRef]
- Meekins, D.A.; Morozov, I.; Trujillo, J.D.; Gaudreault, N.N.; Bold, D.; Carossino, M.; Artiaga, B.L.; Indran, S.V.; Kwon, T.; Balaraman, V.; et al. Susceptibility of swine cells and domestic pigs to SARS-CoV-2. Emerg. Microb. Inf. 2020, 9, 2278–2288. [Google Scholar] [CrossRef]
- Munnink, B.B.O.; Sikkema, R.S.; Nieuwenhuijse, D.F.; Molenaa, R.J.; Munger, E.; Molenkamp, R.; van der Spek, A.; Tolsma, P.; Rietveld, A.; Brouwer, M.; et al. Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans. Science 2021, 371, 172–177. [Google Scholar] [CrossRef]
- Bonilauri, P.; Rugna, G. Animal Coronaviruses and SARS-COV-2 in animals, what do we actually know? Life 2021, 11, 123. [Google Scholar] [CrossRef] [PubMed]
- Delahay, R.J.; de la Fuente, J.; Smith, G.C.; Sharun, K.; Snary, E.L.; Flores Girón, L.; Nziza, J.; Fooks, A.R.; Brookes, S.M.; Lean, F.; et al. Assessing the risks of SARS-CoV-2 in wildlife. One Health Outlook 2021, 3, 7. [Google Scholar] [CrossRef] [PubMed]
- Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.W.; Bleicker, T.; Brünink, S.; Schneider, J.; Schmidt, M.L.; et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance 2020, 25, 2000045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Number of Tested Animals | Sampling Period within 2020 | Testing Results (absolute Numbers and %) | ||
---|---|---|---|---|
ELISA | sVNT | |||
| 111 | November | Neg. | Neg. |
| 153 | June–December | 6 (3.9%; 95% CI = 1.5%–8.3%) | Neg. |
| 204 | June–November | 6 (2.9%; 95% CI=1.0%–6.2%) | Neg. |
| 65 | June–October | 3 (4.6%; 95% CI = 0.9%–12.9%) | Neg. |
∑ | 533 | June–December | 15 (2.8%; 95% CI = 1.7%–4.5%) | Neg. |
Species | Age (Years) | Gender (M—Male, F—Female), Mixed—Pool | |
---|---|---|---|
1 | Big hairy armadillo (Chetophractus villosus) | 3–15 | Pool |
2 | Southern three-banded armadillo (Tolypeutes matacus) | 1–3 | Pool |
3 | Tufted capuchin (Sapajus apella paella) | 0.5–19 | Pool |
4 | Black howler (Alluata caraya) | 6–12 | Pool |
5 | Mantled guereza (Colobus guereza) | 6–14 | Pool |
6 | Northern plains gray langur (Semnopithecus entellus) | 0.8–19 | Pool |
7 | Lar gibbon (Hylobates lar) | 0.8–21 | Pool |
8 | Chimpanzee (Pan troglodytes) | 0.9–21 | Pool |
9 | Crowned lemur (Eulemur coronatus) | 0.9–4 | Pool |
10 | Ring-tailed lemur (Lemur catta) | 7–23 | Pool |
11 | Black-and-white ruffed lemur (Varecia variegata variegate) | 0.8–12 | Pool |
12 | Egyptian fruit bat (Rousettus aegyptiacus) | n.d. | Pool |
13 | Common noctule (Nyctalus noctula) | n.d. | F |
14 | Nathusius’s pipistrelle (Pipistrellus nathusi) | n.d. | M |
15 | Serval (Laptailurus serval) | 18 | F |
16 | Lynx (Lynx lynks) | 22 | F |
17 | African Lion (Panthera leo) | 5–16 | Pool |
18 | Chinese leopard (Panthera pardus japonensis) | 2–5 | Pool |
19 | Common dwarf mongoose (Helogale parvula) | 0.4–4 | Pool |
20 | Meerkat (Suricata suricatta) | 0.5–6 | Pool |
21 | European wolf (Canis lupus) | 3–7 | Pool |
22 | Brown bear (Ursus arctos) | 33 | F |
23 | Asian small-clawed otter (Aonyx cinereus) | 9–11 | Pool |
24 | Red panda (Ailurus fulgenis) | 6.5 | F |
25 | Göttingen dwarf pig (Sus scrofa domestic) | 7 | F |
26 | Collared peccary (Pecari tajacu) | 7–21 | Pool |
27 | Pygmy hippopotamus (Hexaprotodon liberiensis) | 6–21 | Pool |
28 | Bactrian camel (Camelus bactrianus) | 11–18 | Pool |
29 | Alpaca (Lama pacos) | 16 | Pool |
30 | Llama (Lama glama) | 3–5 | Pool |
31 | American pygmy goat (Capra hircus) | 8–9 | Pool |
32 | Sheep (Ovis aries domestic) | 4–9 | Pool |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jemeršić, L.; Lojkić, I.; Krešić, N.; Keros, T.; Zelenika, T.A.; Jurinović, L.; Skok, D.; Bata, I.; Boras, J.; Habrun, B.; et al. Investigating the Presence of SARS CoV-2 in Free-Living and Captive Animals. Pathogens 2021, 10, 635. https://doi.org/10.3390/pathogens10060635
Jemeršić L, Lojkić I, Krešić N, Keros T, Zelenika TA, Jurinović L, Skok D, Bata I, Boras J, Habrun B, et al. Investigating the Presence of SARS CoV-2 in Free-Living and Captive Animals. Pathogens. 2021; 10(6):635. https://doi.org/10.3390/pathogens10060635
Chicago/Turabian StyleJemeršić, Lorena, Ivana Lojkić, Nina Krešić, Tomislav Keros, Tajana Amšel Zelenika, Luka Jurinović, Damir Skok, Ingeborg Bata, Jadranko Boras, Boris Habrun, and et al. 2021. "Investigating the Presence of SARS CoV-2 in Free-Living and Captive Animals" Pathogens 10, no. 6: 635. https://doi.org/10.3390/pathogens10060635
APA StyleJemeršić, L., Lojkić, I., Krešić, N., Keros, T., Zelenika, T. A., Jurinović, L., Skok, D., Bata, I., Boras, J., Habrun, B., & Brnić, D. (2021). Investigating the Presence of SARS CoV-2 in Free-Living and Captive Animals. Pathogens, 10(6), 635. https://doi.org/10.3390/pathogens10060635