Detection of Zoonotic Cryptosporidium ubiquitum in Alpine Wild Ruminants
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Area
4.2. Sampling
4.3. Immuno-Enzymatic and Molecular Analyses
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Malpica, J.M.; Sacristán, S.; Frail, A.; García-Arenal, F. Association and host selectivity in multi-host pathogens. PLoS ONE 2006, 1, e41. [Google Scholar] [CrossRef] [PubMed]
- Woolhouse, M.E. Population biology of emerging and re-emerging pathogens. Trends Microbiol. 2002, 10, s3–s7. [Google Scholar] [CrossRef]
- Dong, S.; Yang, Y.; Wang, Y.; Yang, D.; Yang, Y.; Shi, Y.; Li, C.; Li, L.; Chen, Y.; Jiang, Q.; et al. Prevalence of Cryptosporidium infection in the global population: A systematic review and meta-analysis. Acta Parasitol. 2020, 65, 882–889. [Google Scholar] [CrossRef] [PubMed]
- Zahedi, A.; Paparini, A.; Jian, F.; Robertson, I.; Ryan, U. Public health significance of zoonotic Cryptosporidium species in wildlife: Critical insights into better drinking water management. Int. J. Parasitol. Parasites Wildl. 2016, 5, 88–109. [Google Scholar] [CrossRef] [Green Version]
- Hatam-Nahavandi, K.; Ahmadpour, E.; Carmena, D.; Spotin, A.; Bangoura, B.; Xiao, L. Cryptosporidium infections in terrestrial ungulates with focus on livestock: A systematic review and meta-analysis. Parasites Vectors 2019, 12, 1–23. [Google Scholar] [CrossRef]
- Zahedi, A.; Ryan, U. Cryptosporidium–An update with an emphasis on foodborne and waterborne transmission. Res. Vet. Sci. 2020, 132, 500–512. [Google Scholar] [CrossRef]
- Betancourt, W.Q.; Rose, J.B. Drinking water treatment processes for removal of Cryptosporidium and Giardia. Vet. Parasitol. 2004, 126, 219–234. [Google Scholar] [CrossRef]
- Kato, S.; Jenkins, M.; Fogarty, E.; Bowman, D. Cryptosporidium parvum oocyst inactivation in field soil and its relation to soil characteristics: Analyses using the geographic information systems. Sci. Total Environ. 2004, 321, 47–58. [Google Scholar] [CrossRef]
- Skotarczak, B. Progress in the molecular methods for the detection and genetic characterization of Cryptosporidium in water samples. Ann. Agric. Environ. Med. 2010, 17, 1–8. [Google Scholar]
- Fayer, R.; Santín, M.; Macarisin, D. Cryptosporidium ubiquitum n. sp. in animals and humans. Vet. Parasitol. 2010, 172, 23–32. [Google Scholar] [CrossRef]
- Baldursson, S.; Karanis, P. Waterborne transmission of protozoan parasites: Review of worldwide outbreaks–an update 2004–2010. Water Res. 2011, 45, 6603–6614. [Google Scholar] [CrossRef]
- Burnet, J.B.; Penny, C.; Ogorzaly, L.; Cauchie, H.M. Spatial and temporal distribution of Cryptosporidium and Giardia in a drinking water resource: Implications for monitoring and risk assessment. Sci. Total Environ. 2014, 472, 1023–1035. [Google Scholar] [CrossRef] [PubMed]
- Ghazy, A.A.; Abdel-Shafy, S.; Shaapan, R.M. Cryptosporidiosis in animals and man: 1. Taxonomic classification, life cycle, epidemiology and zoonotic importance. Asian J. Epidemiol. 2015, 8, 48. [Google Scholar] [CrossRef] [Green Version]
- Robinson, G.; Chalmers, R.M.; Stapleton, C.; Palmer, S.R.; Watkins, J.; Francis, C.; Kay, D. A whole water catchment approach to investigating the origin and distribution of Cryptosporidium species. J. Appl. Microbiol. 2011, 111, 717–730. [Google Scholar] [CrossRef]
- Li, N.; Xiao, L.; Alderisio, K.; Elwin, K.; Cebelinski, E.; Chalmers, R.; Santin, M.; Fayer, R.; Kvac, M.; Ryan, U. Subtyping Cryptosporidium ubiquitum, a zoonotic pathogen emerging in humans. Emerg. Infect. Dis. 2014, 20, 217–224. [Google Scholar] [CrossRef]
- Perz, J.F.; LeBlancq, S.M. Cryptosporidium parvum infection involving novel genotypes in wildlife from lower New York state. Appl. Environ. Microbiol. 2001, 67, 1154–1162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kellnerová, K.; Holubová, N.; Jandová, A.; Vejčík, A.; McEvoy, J.; Sak, B.; Kváč, M. First description of Cryptosporidium ubiquitum XIIa subtype family in farmed fur animals. Eur. J. Protistol. 2017, 59, 108–113. [Google Scholar] [CrossRef]
- Prediger, J.; Horčičková, M.; Hofmannova, L.; Sak, B.; Ferrari, N.; Mazzamuto, M.V.; Romeo, C.; Wauters, L.A.; McEvoy, J.; Kváč, M. Native and introduced squirrels in Italy host different Cryptosporidium spp. Eur. J. Protistol. 2017, 61, 64–75. [Google Scholar] [CrossRef]
- Kváč, M.; Myšková, E.; Holubová, N.; Kellnerová, K.; Kicia, M.; Rajský, D.; McEvoy, J.; Feng, Y.; Hanzal, V.; Sak, B. Occurrence and genetic diversity of Cryptosporidium spp. in wild foxes, wolves, jackals, and bears in central Europe. Folia Parasitol. 2021, 68, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Innes, E.A.; Chalmers, R.M.; Wells, B.; Pawlowic, M.C. A one health approach to tackle cryptosporidiosis. Trends Parasitol. 2020, 36, 290–303. [Google Scholar] [CrossRef] [Green Version]
- Checkley, W.; White, A.C., Jr.; Jaganath, D.; Arrowood, M.J.; Chalmers, R.M.; Chen, X.M.; Fayer, R.; Griffiths, J.K.; Guerrant, R.L.; Hedstrom, L.; et al. A review of the global burden, novel diagnostics, therapeutics, and vaccine targets for Cryptosporidium. Lancet Infect. Dis 2015, 15, 85–94. [Google Scholar] [CrossRef] [Green Version]
- Santin, M. Cryptosporidium and Giardia in ruminants. Vet. Clin. Food Anim. Pract. 2020, 36, 223–238. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.A.; Palmer, C.S.; O’Handley, R. The public health and clinical significance of Giardia and Cryptosporidium in domestic animals. Vet. J. 2008, 177, 18–25. [Google Scholar] [CrossRef]
- Santin, M. Clinical and subclinical infections with Cryptosporidium in animals. N. Z. Vet. J. 2013, 61, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Marreros, N.; Frey, C.F.; Willisch, C.S.; Signer, C.; Ryser-Degiorgis, M.P. Coprological analyses on apparently healthy Alpine ibex (Capra ibex ibex) from two Swiss colonies. Vet. Parasitol. 2012, 186, 382–389. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Wang, J.; Sun, M.; Dang, H.; Feng, Y.; Ning, C.; Jian, F.; Zhang, L.; Xiao, L. Molecular characterization of the Cryptosporidium cervine genotype from a sika deer (Cervus nippon Temminck) in Zhengzhou, China and literature review. Parasitol. Res. 2008, 103, 859–865. [Google Scholar] [CrossRef] [PubMed]
- Kotková, M.; Němejc, K.; Sak, B.; Hanzal, V.; Květoňová, D.; Hlásková, L.; Čondlová, S.; McEvoy, J.; Kváč, M. Cryptosporidium ubiquitum, C. muris and Cryptosporidium deer genotype in wild cervids and caprines in the Czech Republic. Folia Parasitol. 2016, 63, 003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramanzin, M.; Amici, A.; Casoli, C.; Esposito, L.; Lupi, P.; Marsico, G.; Mattiello, S.; Olivieri, O.; Ponzetta, M.P.; Russo, C.; et al. Meat from wild ungulates: Ensuring quality and hygiene of an increasing resource. It. J. Anim. Sci. 2010, 9, e61. [Google Scholar]
- Fratamico, P.M.; Bagi, L.K.; Pepe, T. A multiplex polymerase chain reaction assay for rapid detection and identification of Escherichia coli O157:H7 in foods and bovine feces. J. Food Prot. 2000, 63, 1032–1037. [Google Scholar] [CrossRef]
- Ahmed, S.A.; Karanis, P. Comparison of current methods used to detect Cryptosporidium oocysts in stools. Int. J. Hyg. Environ. Health 2018, 221, 743–763. [Google Scholar] [CrossRef] [PubMed]
- Geurden, T.; Thomas, P.; Casaert, S.; Vercruysse, J.; Claerebout, E. Prevalence and molecular characterisation of Cryptosporidium and Giardia in lambs and goat kids in Belgium. Vet. Parasitol. 2008, 155, 142–145. [Google Scholar] [CrossRef] [PubMed]
- Karanis, P.; Plutzer, J.; Halim, N.A.; Igori, K.; Nagasawa, H.; Ongerth, J.; Liqing, M. Molecular characterization of Cryptosporidium from animal sources in Qinghai province of China. Parasitol. Res. 2007, 101, 1575. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Xu, J.; Xiao, M.; Cao, J.; Jiang, Y.; Huang, H.; Zheng, B.; Shen, Y. Prevalence and characterization of Cryptosporidium species and genotypes in four farmed deer species in the Northeast of China. Front. Vet. Sci 2020, 7, 430. [Google Scholar] [CrossRef] [PubMed]
- Ryan, U.; Xiao, L.; Read, C.; Zhou, L.; Lal, A.A.; Pavlasek, I. Identification of novel Cryptosporidium genotypes from the Czech Republic. Appl. Environ. Microbiol. 2003, 69, 4302–4307. [Google Scholar]
- Appelbee, A.J.; Thompson, R.A.; Olson, M.E. Giardia and Cryptosporidium in mammalian wildlife–Current status and future needs. Trends Parasitol. 2005, 21, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Hamnes, I.S.; Gjerde, B.; Robertson, L.; Vikøren, T.; Handeland, K. Prevalence of Cryptosporidium and Giardia in free-ranging wild cervids in Norway. Vet. Parasitol. 2006, 141, 30–41. [Google Scholar] [CrossRef] [PubMed]
- Castro-Hermida, J.A.; García-Presedo, I.; González-Warleta, M.; Mezo, M. Prevalence of Cryptosporidium and Giardia in roe deer (Capreolus capreolus) and wild boars (Sus scrofa) in Galicia (NW, Spain). Vet. Parasitol. 2011, 179, 216–219. [Google Scholar] [CrossRef]
- de Graaf, D.C.; Vanopdenbosch, E.; Ortega-Mora, L.M.; Abbassi, H.; Peeters, J.E. A review of the importance of cryptosporidiosis in farm animals. Int. J. Parasitol. 1999, 29, 1269–1287. [Google Scholar] [CrossRef]
- Paraud, C.; Pors, I.; Rieux, A.; Brunet, S. High excretion of Cryptosporidium ubiquitum by peri-parturient goats in one flock in western France. Vet. Parasitol. 2014, 202, 301–304. [Google Scholar] [CrossRef]
- Wang, R.; Li, G.; Cui, B.; Huang, J.; Cui, Z.; Zhang, S.; Dong, H.; Yue, D.; Zhang, L.; Ning, C.; et al. Prevalence, molecular characterization and zoonotic potential of Cryptosporidium spp. in goats in Henan and Chongqing, China. Exp. Parasitol. 2014, 142, 11–16. [Google Scholar] [CrossRef]
- Nic Lochlainn, L.M.; Sane, J.; Schimmer, B.; Mooij, S.; Roelfsema, J.; Van Pelt, W.; Kortbeek, T. Risk factors for sporadic Cryptosporidiosis in the Netherlands: Analysis of a 3-year population based case-control study coupled with genotyping, 2013–2016. J. Inf. Dis. 2019, 219, 1121–1129. [Google Scholar] [CrossRef] [PubMed]
- Hunter, P.R.; Thompson, R.A. The zoonotic transmission of Giardia and Cryptosporidium. Int. J. Parasitol. 2005, 35, 1181–1190. [Google Scholar] [CrossRef] [PubMed]
- Carnevali, L.; Pedrotti, L.; Riga, F.; Toso, S. Banca Dati Ungulati. Status, Distribuzione, Consistenza, Gestione e Prelievo Venatorio Delle Popolazioni di Ungulati in Italia. ISPRA. 2009. Available online: https://www.isprambiente.gov.it/files/pubblicazioni/documenti-tecnici/4327_banca_dati_ungulati1.pdf (accessed on 20 April 2021).
- Li, K.; Li, Z.; Zeng, Z.; Li, A.; Mehmood, K.; Shahzad, M.; Gao, K.; Li, J. Prevalence and molecular characterization of Cryptosporidium spp. in yaks (Bos grunniens) in Naqu, China. Microb. Pathog. 2020, 144, 104190. [Google Scholar] [CrossRef]
- Lalonde, L.F.; Gajadhar, A.A. Effect of storage media, temperature, and time on preservation of Cryptosporidium parvum oocysts for PCR analysis. Vet. Parasitol. 2009, 160, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Traversa, D.; Iorio, R.; Otranto, D.; Modrý, D.; Šlapeta, J. Cryptosporidium from tortoises: Genetic characterisation, phylogeny and zoonotic implications. Mol. Cell. Probes 2008, 22, 122–128. [Google Scholar] [CrossRef]
- Sulaiman, I.M.; Hira, P.R.; Zhou, L.; Al-Ali, F.M.; Al-Shelahi, F.A.; Shweiki, H.M.; Iqbal, J.; Khalid, N.; Xiao, L. Unique endemicity of cryptosporidiosis in children in Kuwait. J. Clin. Microbiol. 2005, 43, 2805–2809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Chamois | Red Deer | Roe Deer | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Campaign | Area | Nr | Pos | P (%) CI 95% | Nr | Pos | P (%) CI 95% | Nr | Pos | P (%) CI 95% |
First | Protected area | 47 | 2 | 4.25% (1.17–14.2) | - | - | - | - | - | - |
Second | Protected area | 55 | 2* | 3.63% (1–12.3) | 70 | 0 | 0% | 6 | 0 | 0% |
Hunting district | 91 | 1 | 1.09% (0.1–5.9) | 53 | 0 | 0% | 64 | 3* | 4.68% (1.6–12.9) | |
Third | Protected area | 24 | 0 | 0% | 20 | 0 | 0% | - | - | - |
Hunting district | 76 | 0 | 0% | 53 | 1 | 1.88% (0.3–9.94) | 49 | 1 * | 2.04% (0.3–10.6) | |
Total | 293 | 5 | 1.70% (0.7–3.9) | 196 | 1 | 0.51% (0–2.8) | 119 | 4 | 3.36% (1.3–8.3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trogu, T.; Formenti, N.; Marangi, M.; Viganò, R.; Bionda, R.; Giangaspero, A.; Lanfranchi, P.; Ferrari, N. Detection of Zoonotic Cryptosporidium ubiquitum in Alpine Wild Ruminants. Pathogens 2021, 10, 655. https://doi.org/10.3390/pathogens10060655
Trogu T, Formenti N, Marangi M, Viganò R, Bionda R, Giangaspero A, Lanfranchi P, Ferrari N. Detection of Zoonotic Cryptosporidium ubiquitum in Alpine Wild Ruminants. Pathogens. 2021; 10(6):655. https://doi.org/10.3390/pathogens10060655
Chicago/Turabian StyleTrogu, Tiziana, Nicoletta Formenti, Marianna Marangi, Roberto Viganò, Radames Bionda, Annunziata Giangaspero, Paolo Lanfranchi, and Nicola Ferrari. 2021. "Detection of Zoonotic Cryptosporidium ubiquitum in Alpine Wild Ruminants" Pathogens 10, no. 6: 655. https://doi.org/10.3390/pathogens10060655
APA StyleTrogu, T., Formenti, N., Marangi, M., Viganò, R., Bionda, R., Giangaspero, A., Lanfranchi, P., & Ferrari, N. (2021). Detection of Zoonotic Cryptosporidium ubiquitum in Alpine Wild Ruminants. Pathogens, 10(6), 655. https://doi.org/10.3390/pathogens10060655