Replication of Rift Valley Fever Virus in Amphibian and Reptile-Derived Cell Lines
Abstract
:1. Introduction
2. Results
2.1. Generation of Primary Cell Lines
2.2. Virus Quantification
2.3. Validation of Temperature-Dependent Replication
3. Discussion
4. Materials and Methods
4.1. Cells and Viruses
4.2. Experimental Setup
4.3. Virus Quantification
4.4. Immunofluorescence Assay (IFA)
4.5. Validation of Temperature-Dependent Replication
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bouloy, M.; Weber, F. Molecular Biology of Rift Valley Fever Virus. Open Virol. J. 2010, 4, 8–14. [Google Scholar] [CrossRef]
- Bird, B.H.; Ksiazek, T.G.; Nichol, S.T.; MacLachlan, N.J. Rift Valley fever virus. J. Am. Veter-Med. Assoc. 2009, 234, 883–893. [Google Scholar] [CrossRef] [Green Version]
- Al-Hazmi, A.; Al-Rajhi, A.A.; Abboud, E.B.; Ayoola, E.A.; Al-Hazmi, M.; Saadi, R.; Ahmed, N. Ocular complications of Rift Valley fever outbreak in Saudi Arabia. Ophthalmology 2005, 112, 313–318. [Google Scholar] [CrossRef] [PubMed]
- LaBeaud, A.D.; Pfeil, S.; Muiruri, S.; Dahir, S.; Sutherland, L.J.; Traylor, Z.; Gildengorin, G.; Muchiri, E.M.; Morrill, J.; Peters, C.J.; et al. Factors Associated with Severe Human Rift Valley Fever in Sangailu, Garissa County, Kenya. PLoS Negl. Trop. Dis. 2015, 9, e0003548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chevalier, V.; Pépin, M.; Plée, L.; Lancelot, R. Rift Valley fever—A threat for Europe? Eurosurveillance 2010, 15, 19506. [Google Scholar] [CrossRef] [PubMed]
- Linthicum, K.J.; Davies, F.G.; Kairo, A.; Bailey, C.L. Rift Valley fever virus (family Bunyaviridae, genus Phlebovirus). Isolations from Diptera collected during an inter-epizootic period in Kenya. J. Hyg. 1985, 95, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Chevalier, V.; Rakotondrafara, T.; Jourdan, M.; Heraud, J.M.; Andriamanivo, H.R.; Durand, B.; Ravaomanana, J.; Rollin, P.E.; Rakotondravao, R. An unexpected recurrent transmission of Rift Valley fever virus in cattle in a temperate and mountainous area of Madagascar. PLoS Negl. Trop. Dis. 2011, 5, e1423. [Google Scholar] [CrossRef]
- Evans, A.; Gakuya, F.; Paweska, J.T.; Rostal, M.; Akoolo, L.; Van Vuren, P.J.; Manyibe, T.; Macharia, J.M.; Ksiazek, T.G.; Feikin, D.R.; et al. Prevalence of antibodies against Rift Valley fever virus in Kenyan wildlife. Epidemiol. Infect. 2007, 136, 1261–1269. [Google Scholar] [CrossRef] [PubMed]
- Fagbo, S.; Coetzer, J.A.; Venter, E.H. Seroprevalence of Rift Valley fever and lumpy skin disease in African buffalo (Syncerus caffer) in the Kruger National Park and Hluhluwe-iMfolozi Park, South Africa. J. S. Afr. Vet. Assoc. 2014, 85, e1–e7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kading, R.C.; Kityo, R.M.; Mossel, E.C.; Borland, E.; Nakayiki, T.; Nalikka, B.; Nyakarahuka, L.; Ledermann, J.P.; Panella, N.A.; Gilbert, A.T.; et al. Neutralizing antibodies against flaviviruses, Babanki virus, and Rift Valley fever virus in Ugandan bats. Infect. Ecol. Epidemiol. 2018, 8, 1439215. [Google Scholar] [CrossRef] [Green Version]
- LaBeaud, A.D.; Cross, P.C.; Getz, W.M.; Glinka, A.; King, C.H. Rift Valley fever virus infection in African buffalo (Syncerus caffer) herds in rural South Africa: Evi-dence of interepidemic transmission. Am. J. Trop. Med. Hyg. 2011, 84, 641–646. [Google Scholar] [CrossRef]
- Olive, M.-M.; Goodman, S.M.; Reynes, J.-M. The role of wild mammals in the maintenance of rift valley fever virus. J. Wildl. Dis. 2012, 48, 241–266. [Google Scholar] [CrossRef] [PubMed]
- Bingham, A.M.; Hassan, H.K.; Unnasch, T.R.; Graham, S.P.; Burkett-Cadena, N.D.; White, G.S. Detection of Eastern Equine Encephalomyelitis Virus RNA in North American Snakes. Am. J. Trop. Med. Hyg. 2012, 87, 1140–1144. [Google Scholar] [CrossRef] [Green Version]
- Bosco-Lauth, A.M.; Hartwig, A.E.; Bowen, R.A. Reptiles and Amphibians as Potential Reservoir Hosts of Chikungunya Virus. Am. J. Trop. Med. Hyg. 2018, 98, 841–844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burton, A.N.; McLintock, J.; Rempel, J.G. Western Equine Encephalitis Virus in Saskatchewan Garter Snakes and Leopard Frogs. Science 1966, 154, 1029–1031. [Google Scholar] [CrossRef] [PubMed]
- Dahlin, C.; Hughes, D.; Meshaka, W.; Coleman, C.; Henning, J. Wild snakes harbor West Nile virus. One Health 2016, 2, 136–138. [Google Scholar] [CrossRef] [Green Version]
- Doi, R.; Oya, A.; Shirasaka, A.; Yabe, S.; Sasa, M. Studies on Japanese encephalitis virus infection of reptiles. II. Role of lizards on hibernation of Japanese en-cephalitis virus. Jpn. J. Exp. Med. 1983, 53, 125–134. [Google Scholar]
- Ragan, I.K.; Blizzard, E.L.; Gordy, P.; Bowen, R.A. Investigating the Potential Role of North American Animals as Hosts for Zika Virus. Vector-Borne Zoonotic Dis. 2017, 17, 161–164. [Google Scholar] [CrossRef] [PubMed]
- Findlay, G. Rift valley fever or enzootic hepatitis. Trans. R. Soc. Trop. Med. Hyg. 1932, 25, IN3–IN11. [Google Scholar] [CrossRef]
- Crabtree, M.B.; Kading, R.C.; Mutebi, J.-P.; Lutwama, J.J.; Miller, B.R. Identification of host blood from engorged mosquitoes collected in western uganda using cytochrome oxidase i gene sequences. J. Wildl. Dis. 2013, 49, 611–626. [Google Scholar] [CrossRef] [Green Version]
- Lutomiah, J.; Omondi, D.; Masiga, D.; Mutai, C.; Mireji, P.O.; Ongus, J.; Linthicum, K.J.; Sang, R. Blood Meal Analysis and Virus Detection in Blood-Fed Mosquitoes Collected During the 2006–2007 Rift Valley Fever Outbreak in Kenya. Vector Borne Zoonotic Dis. 2014, 14, 656–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaudreault, N.N.; Indran, S.V.; Bryant, P.K.; Richt, J.A.; Wilson, W.C. Comparison of Rift Valley fever virus replication in North American livestock and wildlife cell lines. Front. Microbiol. 2015, 6, 664. [Google Scholar] [CrossRef] [PubMed]
- Rissmann, M.; Kley, N.; Ulrich, R.; Stoek, F.; Balkema-Buschmann, A.; Eiden, M.; Groschup, M.H. Competency of Amphibians and Reptiles and Their Potential Role as Reservoir Hosts for Rift Valley Fever Virus. Viruses 2020, 12, 1206. [Google Scholar] [CrossRef]
- Marschang, R.E. Viruses Infecting Reptiles. Viruses 2011, 3, 2087–2126. [Google Scholar] [CrossRef] [Green Version]
- Oya, A.; Doi, R.; Shirasaka, A.; Yabe, S.; Sasa, M. Studies on Japanese encephalitis virus infection of reptiles. I. Experimental infection of snakes and lizards. Jpn. J. Exp. Med. 1983, 53, 117–123. [Google Scholar]
- Muller, R.; Turell, M.; Saluzzo, J.-F.; Dreier, T.; Bouloy, M.; Smith, J.; Lopez, N. Characterization of Clone 13, a Naturally Attenuated Avirulent Isolate of Rift Valley Fever Virus, which is Altered in the Small Segment. Am. J. Trop. Med. Hyg. 1995, 53, 405–411. [Google Scholar] [CrossRef]
- Burkett-Cadena, N.D.; Eubanks, M.D.; Hassan, H.K.; Unnasch, T.R.; Guyer, C.; Graham, S.P.; Katholi, C.R. Blood Feeding Patterns of Potential Arbovirus Vectors of the Genus Culex Targeting Ectothermic Hosts. Am. J. Trop. Med. Hyg. 2008, 79, 809–815. [Google Scholar] [CrossRef]
- Ehlen, L.; Tödtmann, J.; Specht, S.; Kallies, R.; Papies, J.; Müller, M.A.; Junglen, S.; Drosten, C.; Eckerle, I. Epithelial cell lines of the cotton rat (Sigmodon hispidus) are highly susceptible in vitro models to zoonotic Bunya-, Rhabdo-, and Flaviviruses. Virol. J. 2016, 13, 74. [Google Scholar] [CrossRef] [Green Version]
- Miller, K. Effect of Temperature on Sprint Performance in the Frog Xenopus laevis and the Salamander Necturus maculosus. Copeia 1982, 1982, 695–698. [Google Scholar] [CrossRef]
- Van Marken Lichtenbelt, W.D.; Vogel, J.T.; Wesselingh, R.A. Energetic Consequences of Field Body Temperatures in the Green Iguana. Ecology 1997, 78, 297–307. [Google Scholar] [CrossRef]
- Kluger, M.; Ringler, D.; Anver, M.; VanderVen, B.C.; Harder, J.D.; Crick, D.C.; Belisle, J.T. Fever and survival. Science 1975, 188, 166–168. [Google Scholar] [CrossRef] [PubMed]
- Kitano, T.; Umetsu, K.; Tian, W.; Osawa, M. Two universal primer sets for species identification among vertebrates. Int. J. Leg. Med. 2007, 121, 423–427. [Google Scholar] [CrossRef] [PubMed]
- Kärber, G. Beitrag zur kollektiven Behandlung pharmakologischer Reihenversuche. Naunyn Schmiedebergs Arch. Pharmacol. 1931, 162, 480–483. [Google Scholar] [CrossRef]
- Bird, B.H.; Bawiec, D.A.; Ksiazek, T.G.; Shoemaker, T.R.; Nichol, S.T. Highly Sensitive and Broadly Reactive Quantitative Reverse Transcription-PCR Assay for High-Throughput Detection of Rift Valley Fever Virus. J. Clin. Microbiol. 2007, 45, 3506–3513. [Google Scholar] [CrossRef] [Green Version]
- Jäckel, S.; Eiden, M.; El Mamy, B.O.; Isselmou, K.; Rodríguez, A.V.; Doumbia, B.; Groschup, M.H. Molecular and Serological Studies on the Rift Valley Fever Outbreak in Mauritania in 2010. Transbound. Emerg. Dis. 2013, 60, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Jäckel, S.; Eiden, M.; Dauber, M.; Balkema-Buschmann, A.; Brun, A.; Groschup, M.H. Generation and application of monoclonal antibodies against Rift Valley fever virus nucleocapsid protein NP and glycoproteins Gn and Gc. Arch. Virol. 2013, 159, 535–546. [Google Scholar] [CrossRef]
- Mroz, C.; Schmidt, K.M.; Reiche, S.; Groschup, M.H.; Eiden, M. Development of monoclonal antibodies to Rift Valley Fever Virus and their application in antigen detection and indirect immunofluorescence. J. Immunol. Methods 2018, 460, 36–44. [Google Scholar] [CrossRef]
MP-12 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6 hpi | 12 hpi | 24 hpi | 48 hpi | 72 hpi | |||||||||||
Gn | NP | NSs | Gn | NP | NSs | Gn | NP | NSs | Gn | NP | NSs | Gn | NP | NSs | |
MaKo | - | - | - | - | - | - | - | + | - | + | + | - | + | + | + |
IgH-2 | - | - | - | - | - | - | + | + | + | + | + | + | + * | + * | + * |
TH-1 | - | - | - | - | - | - | + | + | + | + | + | + | + | + | + |
A6 | - | - | - | - | + | - | - | + | - | - | + | - | - | + | - |
SKM-R | - | - | - | - | + | - | - | + | + | + | + | - | + | + | - |
VH-2 | - | - | - | - | + | + | - | + | + | + | + | + | + | + | + |
Vero 76 | - | + | + | - | + | + | + | + | + | + | + | + | + | + | + |
CDSK | - | - | - | - | + | - | + | + | + | + | + | + | + | + | + |
Clone 13 1 | |||||||||||||||
6 hpi | 12 hpi | 24 hpi | 48 hpi | 72 hpi | |||||||||||
Gn | NP | Gn | NP | Gn | NP | Gn | NP | Gn | NP | ||||||
MaKo | - | - | - | + | - | + | + | + | + | + | |||||
IgH-2 | - | - | - | + | - | + | + | + | - | + | |||||
TH-1 | - | - | - | + | + | + | + | + | + | + | |||||
A6 | - | - | - | - | - | + | - | + | - | + | |||||
SKM-R | - | - | - | - | - | - | - | - | - | - | |||||
VH-2 | - | - | - | - | - | + | - | + | - | + | |||||
BHK-21 | - | + | - | + | + | + | + | + | + | + | |||||
CDSK | - | - | - | + | - | + | - | + | + | + | |||||
ZH501 | |||||||||||||||
6 hpi | 12 hpi | 24 hpi | 48 hpi | 72 hpi | |||||||||||
Gn | NP | NSs | Gn | NP | NSs | Gn | NP | NSs | Gn | NP | NSs | Gn | NP | NSs | |
MaKo | - | - | - | - | - | - | - | + | + | + | + | + | + | + | + |
IgH-2 | - | - | - | - | - | - | - | + | + | + | + | + | + | + | + |
TH-1 | - | - | - | - | + | - | + | + | + | + | + | + | + | + | + |
A6 | - | - | - | - | - | - | - | + | - | - | + | - | - | + | - |
SKM-R | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
VH-2 | - | - | - | - | + | - | + | + | + | + | + | + | + | + | + |
Vero E6 | - | + | + | + | + | + | + | + | + | + | + | + | + | + | + |
CDSK | - | - | - | - | - | - | + | + | + | + | + | + | + | + | + |
Cell Line | Species | Tissue | Origin | Medium |
---|---|---|---|---|
A6 | African clawed frog (Xenopus laevis) | Kidney | ECACC 1 | NCTC 109 mod. |
CDSK | Chinese pond turtle (Mauremys reevesii) | Kidney | this study | Ham’s F12/IMDM (1:1) |
IgH-2 | Green iguana (Iguana iguana) | Heart | CCLV 2 | MEM (E), NEA, 25 mM HEPES |
MaKo | Egyptian cobra (Naja haje) | Kidney | this study | Ham’s F12/IMDM (1:1) |
SKM-R | Red-eared slider (Trachemys scripta elegans) | Spleen | CCLV 2 | Ham’s F12/IMDM (1:1) |
TH-1 | Common box turtle (Terrapene carolina) | Heart | CCLV 2 | MEM (H+E), NEA |
VH-2 | Russell’s viper (Daboia russelii) | Heart | CCLV 2 | MEM (E), NEA, 25 mM HEPES |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rissmann, M.; Lenk, M.; Stoek, F.; Szentiks, C.A.; Eiden, M.; Groschup, M.H. Replication of Rift Valley Fever Virus in Amphibian and Reptile-Derived Cell Lines. Pathogens 2021, 10, 681. https://doi.org/10.3390/pathogens10060681
Rissmann M, Lenk M, Stoek F, Szentiks CA, Eiden M, Groschup MH. Replication of Rift Valley Fever Virus in Amphibian and Reptile-Derived Cell Lines. Pathogens. 2021; 10(6):681. https://doi.org/10.3390/pathogens10060681
Chicago/Turabian StyleRissmann, Melanie, Matthias Lenk, Franziska Stoek, Claudia A. Szentiks, Martin Eiden, and Martin H. Groschup. 2021. "Replication of Rift Valley Fever Virus in Amphibian and Reptile-Derived Cell Lines" Pathogens 10, no. 6: 681. https://doi.org/10.3390/pathogens10060681
APA StyleRissmann, M., Lenk, M., Stoek, F., Szentiks, C. A., Eiden, M., & Groschup, M. H. (2021). Replication of Rift Valley Fever Virus in Amphibian and Reptile-Derived Cell Lines. Pathogens, 10(6), 681. https://doi.org/10.3390/pathogens10060681