Molecular Identification of Plasmodium falciparum from Captive Non-Human Primates in the Western Amazon Ecuador
Abstract
:1. Introduction
Host | Location | Plasmodium Species | Sampling (Invasive Non-Invasive) | Detection Methods | References |
---|---|---|---|---|---|
Alouatta seniculus. | Brazil | Plasmodium sp. | Invasive | Conventional microscopy (GIEMSA) PCR | [17] |
Alouatta caraya Alouatta guariba clamitans Alouatta seniculus macconnelli Sapajus apella | Brazil French Guiana | Plasmodium vivax | Invasive | Microscopy Enzyme-linked Immunosorbent assay IFA ELISA PCR Real-time PCR | [22,45,46] |
Alouatta sp. Alouatta seniculus Alouatta seniculus straminea Alouatta caraya Alouatta guariba clamitans Alouatta guariba guariba Aotus nigriceps Alouatta g. clamitans Ateles sp. Ateles belzebuth Ateles chamek Ateles paniscus Aotus nigriceps Bracytheles arachnoides Cacajao calvus Cacajao rubicundus Callicebus bruneus Callicebus dubuis Callicebus moloch Callicebus personatus Callicebus torquatus Callithrix geoffroyi Cebus sp. Chiropotes albinasus Chiropotes chiropotes Chiropotus sp. Chiropotes satanas Lagothrix cana cana Lagothrix lagotricha lagotricha Lagothrix lagotricha poeppigii Leontopithecus chrysomelas Leontopithecus rosalia Mico humeralifer Pithecia monachus Pithecia irrorata Pithecia pithecia Saguinus martinsi martinsi Saguinus martinsi ochraceous Saguinus midas niger Saguinus midas Saimiri sp. Saimiri sciureus Saimiri sciureus sciureus Saimiri sciureus boliviensis Saimiri ustus Sapajus apella apella Sapajus apella macrocephalus Sapajus robustus Sapajus xanthosternos | French Guyana Brazil Venezuela | Plasmodium brasilianum | Invasive | Blood smears Conventional microscopy (GIEMSA) PCR ELISA | [14,15,16,17,18,19,20] |
Alouatta guariba clamitans Cebus sp. Sapajus robustus Sapajus xanthosternos | Brazil | Plasmodium simium | Invasive Non-Invasive | Blood smears PCR PCR from faecal samples Nested-PCR | [18,21,22,23] |
Alouatta caraya Alouatta guariba Alouatta puruensis Alouatta seniculus macconnelli Ateles chamek Callicebus bruneus Lagothrix cana cana Sapajus apella | Brazil French Guyana | Plasmodium falciparum | Invasive | ELISA IFA PCR | [14,45] |
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Sites and Sampling
4.2. Molecular Identification
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References and Note
- Goater, T.M.; Goater, C.P.; Esch, G.W. Parasitism: The Diversity and Ecology of Animal Parasites; Cambridge University Press: Cambridge, UK, 2014; p. 524. [Google Scholar]
- Böhme, U.; Otto, T.D.; Cotton, J.A.; Steinbiss, S.; Sanders, M.; Oyola, S.O.; Nicot, A.; Gandon, S.; Patra, K.P.; Herd, C.; et al. Complete avian malaria parasite genomes reveal features associated with lineage-specific evolution in birds and mammals. Genome Res. 2018, 28, 547–560. [Google Scholar] [CrossRef]
- Bensch, S.; Stjernman, M.; Hasselquist, D.; Ostman, O.; Hansson, B.; Westerdahl, H.; Pinheiro, R.T. Host specificity in avian blood parasites: A study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proc. R. Soc. B 2000, 267, 1583–1589. [Google Scholar] [CrossRef]
- Boundenga, L.; Ngoubangoye, B.; Mombo, I.M.; Tsoubmou, T.A.; Renaud, F.; Rougeron, V.; Prugnolle, F. Extensive diversity of malaria parasites circulating in Central African bats and monkeys. Ecol. Evol. 2018, 8, 10578–10586. [Google Scholar] [CrossRef]
- Boundenga, L.; Makanga, B.; Ollomo, B.; Gilabert, A.; Rougeron, V.; Mve-Ondo, B.; Arnathau, C.; Durand, P.; Moukodoum, N.D.; Okouga, A.-P.; et al. Haemosporidian parasites of antelopes and other vertebrates from Gabon, Central Africa. PLoS ONE 2016, 11, e0148958. [Google Scholar] [CrossRef]
- Mbaya, A.W.; Aliyu, M.M.; Nwosu, C.O.; Ibrahim, U.I. Captive wild animals as potential reservoirs of haemo and ectoparasitic infections of man and domestic animals in the arid- region of Northeastern Nigeria. Vet. Arhiv 2008, 78, 429–440. [Google Scholar]
- Lee, K.S.; Divis, P.C.S.; Zakaria, S.K.; Matusop, A.; Julin, R.A.; Conway, D.J.; Cox-Singh, J.; Singh, B. Plasmodium knowlesi: Reservoir hosts and tracking the emergence in humans and macaques. PLoS Pathog. 2011, 7. [Google Scholar] [CrossRef] [PubMed]
- Springer, A.; Fichtel, C.; Calvignac-Spencer, S.; Leendertz, F.H.; Kappeler, P.M. Hemoparasites in a wild primate: Infection patterns suggest interaction of Plasmodium and Babesia in a lemur species. Int. J. Parasitol. Parasites Wildl. 2015, 4, 385–395. [Google Scholar] [CrossRef] [PubMed]
- Figueiredo, M.A.P.; Santi, S.M.D.; Manrique, W.G.; André, M.R.; Machado, R.Z. Serological and molecular techniques applied for identification of Plasmodium spp. in blood samples from nonhuman primates. Rev. Bras. Parasitol. Vet. 2018, 27, 363–376. [Google Scholar] [CrossRef] [PubMed]
- Escalante, A.A.; Freeland, D.E.; Collins, W.E.; Lal, A.A. The evolution of primate malaria parasites based on the gene encoding cytochrome b from the linear mitochondrial genome. Proc. Natl. Acad. Sci. USA 1998, 95, 8124–8129. [Google Scholar] [CrossRef]
- Dixit, J.; Zachariah, A.; Sajesh, P.K.; Chandramohan, B.; Shanmuganatham, V.; Karanth, K.P. Reinvestigating the status of malaria parasite (Plasmodium sp.) in Indian non-human primates. PLoS Negl. Trop. Dis. 2018, 12, e0006801. [Google Scholar] [CrossRef]
- Lalremruata, A.; Magris, M.; Vivas-Martínez, S.; Koehler, M.; Esen, M.; Kempaiah, P.; Jeyaraj, S.; Perkins, D.J.; Mordmüller, B.; Metzger, W.G. Natural infection of Plasmodium brasilianum in humans: Man and monkey share quartan malaria parasites in the Venezuelan Amazon. EBioMedicine 2015, 2, 1186–1192. [Google Scholar] [CrossRef]
- Brasil, P.; Zalis, M.G.; Pina-Costa, A.D.; Siqueira, A.M.; Junior, C.B.; Silva, S.; Areas, A.L.L.; Pelajo-Machado, M.; Alvarenga, D.A.M.D.; Santelli, A.C.F.D.S.; et al. Plasmodium simium causing human malaria: A zoonosis with outbreak potential in the Rio de Janeiro Brazilian Atlantic forest. bioRxiv 2017. [Google Scholar] [CrossRef]
- Araújo, M.S.; Messias, M.R.; Figueiró, M.R.; Gil, L.H.S.; Probst, C.M.; Vidal, N.M.; Katsuragawa, T.H.; Krieger, M.A.; Silva, L.H.P.D.; Ozaki, L.S. Natural Plasmodium infection in monkeys in the state of Rondônia (Brazilian Western Amazon). Malar. J. 2013, 12, 180. [Google Scholar] [CrossRef] [PubMed]
- Thoisy, B.D.; Michel, J.-C.; Vogel, I.; Vié, J.-C. A survey of hemoparasite infections in free-ranging mammals and reptiles in french Guiana. J. Parasitol. 2000, 86, 1035–1040. [Google Scholar] [CrossRef]
- Deane, L. Simian malaria in Brazil. Mem. Inst. Oswaldo Cruz. 1992, 87, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Fandeur, T.; Volney, B.; Peneau, C.; Thoisy, B. Monkeys of the rainforest in French Guiana are natural reservoirs for P. brasilianum/P. malariae malaria. Parasitology 2000, 120. [Google Scholar] [CrossRef]
- Alvarenga, D.A.M.D.; Pina-Costa, A.D.; Sousa, T.N.D.; Pissinatti, A.; Zalis, M.G.; Suaréz-Mutis, M.C.; Lourenço-de-Oliveira, R.; Brasil, P.; Daniel-Ribeiro, C.T.; Brito, C.F.A.D. Simian malaria in the Brazilian Atlantic forest: First description of natural infection of capuchin monkeys (Cebinae subfamily) by Plasmodium simium. Malar. J. 2015, 14, 81. [Google Scholar] [CrossRef]
- Alvarenga, D.A.M.; Pina-Costa, A.; Bianco, C.; Moreira, S.B.; Brasil, P.; Pissinatti, A.; Daniel-Ribeiro, C.T.; Brito, C.F.A. New potential Plasmodium brasilianum hosts: Tamarin and marmoset monkeys (family Callitrichidae). Malar. J. 2017, 16, 71. [Google Scholar] [CrossRef]
- Arruda, M.D.; Nardin, E.H.; Nussenzweig, R.S.; Cochrane, A.H. Sero-epidemiological studies of malaria in Indian tribes and monkeys of the Amazon basin of Brazil. Am. J. Trop. Med. Hyg. 1989, 41, 379–385. [Google Scholar] [CrossRef]
- Abreu, F.V.S.D.; Santos, E.D.; Mello, A.R.L.; Gomes, L.R.; Alvarenga, D.A.M.D.; Gomes, M.Q.; Vargas, W.P.; Bianco-Júnior, C.; Pina-Costa, A.D.; Teixeira, D.S.; et al. Howler monkeys are the reservoir of malarial parasites causing zoonotic infections in the Atlantic forest of Rio de Janeiro. PLoS Negl. Trop. Dis. 2019, 13, e0007906. [Google Scholar] [CrossRef]
- Costa, D.C.; Cunha, V.P.D.; Assis, G.M.P.D.; Souza Junior, J.C.D.; Hirano, Z.M.B.; Arruda, M.E.D.; Kano, F.S.; Carvalho, L.H.; Brito, C.F.A.D. Plasmodium simium/Plasmodium vivax infections in southern brown howler monkeys from the Atlantic Forest. Mem. Inst. Oswaldo Cruz. 2014, 109, 641–653. [Google Scholar] [CrossRef] [PubMed]
- Assis, G.M.P.D.; Alvarenga, D.A.M.D.; Costa, D.C.; Souza Junior, J.C.D.; Hirano, Z.M.B.; Kano, F.S.; Sousa, T.N.D.; Brito, C.F.A.D. Detection of Plasmodium in faeces of the New World primate Alouatta clamitans. Mem. Inst. Oswaldo Cruz. 2016, 111, 570–576. [Google Scholar] [CrossRef] [PubMed]
- William, T.; Rahman, H.A.; Jelip, J.; Ibrahim, M.Y.; Menon, J.; Grigg, M.J. Increasing incidence of Plasmodium knowlesi malaria following control of P. falciparum and P. vivax Malaria in Sabah, Malaysia. PLoS Negl. Trop. Dis. 2013, 7, e2026. [Google Scholar] [CrossRef] [PubMed]
- Lalremruata, A.; Jeyaraj, S.; Engleitner, T.; Joanny, F.; Lang, A.; Belard, S.; Mombo-Ngoma, G.; Ramharter, M.; Kremsner, P.G.; Mordmuller, B.; et al. Species and genotype diversity of Plasmodium in malaria patients from Gabon analysed by next generation sequencing. Malar. J. 2017, 16, 398. [Google Scholar] [CrossRef]
- Miguel-Oteo, M.; Jiram, A.I.; Ta-Tang, T.H.; Lanza, M.; Hisam, S.; Rubio, J.M. Nested multiplex PCR for identification and detection of human Plasmodium species including Plasmodium knowlesi. Asian Pac. J. Trop. Dis. 2017, 10, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Prugnolle, F.; Durand, P.; Ollomo, B.; Duval, L.; Ariey, F.; Arnathau, C.; Gonzalez, J.-P.; Leroy, E.; Renaud, F. A fresh look at the origin of Plasmodium falciparum, the most malignant malaria agent. PLoS Pathog. 2011, 7, e1001283. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, P.T.; Valdivia, H.O.; Oliveira, T.C.D.; Alves, J.M.P.; Duarte, A.M.R.C.; Cerutti-Junior, C.; Buery, J.C.; Brito, C.F.A.; Souza, J.C.D.; Hirano, Z.M.B.; et al. Human migration and the spread of malaria parasites to the New World. Sci. Rep. 2018, 8, 1993. [Google Scholar] [CrossRef]
- Buitrago, S.P.; Garzón-Ospina, D.; Patarroyo, M.A. Size polymorphism and low sequence diversity in the locus encoding the Plasmodium vivax rhoptry neck protein 4 (PvRON4) in Colombian isolates. Malar. J. 2016, 15, 501. [Google Scholar] [CrossRef]
- Pacheco, M.A.; Cepeda, A.S.; Bernotienė, R.; Lotta, I.A.; Matta, N.E.; Valkiūnas, G.; Escalante, A.A. Primers targeting mitochondrial genes of avian haemosporidians: PCR detection and differential DNA amplification of parasites belonging to different genera. Int. J. Parasitol. 2018, 48, 657–670. [Google Scholar] [CrossRef]
- Sato, H.; Leo, N.; Katakai, Y.; Takano, J.-I.; Akari, H.; Nakamura, S.-i.; Une, Y. Prevalence and molecular phylogenetic characterization of Trypanosoma (megatrypanum) minasense in the peripheral blood of small neotropical primates after a quarantine period. J. Parasitol. 2008, 94, 112–1138. [Google Scholar] [CrossRef]
- Khan, S.M.; Debnath, C.; Pramanik, A.K.; Xiao, L.; Nozaki, T.; Ganguly, S. Molecular characterization and assessment of zoonotic transmission of Cryptosporidium from dairy cattle in West Bengal, India. Vet. Parasitol. 2010, 171, 41–47. [Google Scholar] [CrossRef]
- Bertelsen, M.F.; Meyland-Smith, F.; Willesen, J.L.; Jefferies, R.; Morgan, E.R.; Monrad, J. Diversity and prevalence of metastrongyloid nematodes infecting the red panda (Ailurus fulgens) in European zoos. Vet. Parasitol. 2010, 172, 299–304. [Google Scholar] [CrossRef]
- Duval, L.; Fourment, M.; Nerrienet, E.; Rousset, D.; Sadeuh, S.A.; Goodman, S.M.; Andriaholinirina, N.V.; Randrianarivelojosia, M.; Paul, R.E.; Robert, V.; et al. African apes as reservoirs of Plasmodium falciparum and the origin and diversification of the Laverania subgenus. Proc. Natl. Acad. Sci. USA 2010, 107, 10561. [Google Scholar] [CrossRef] [PubMed]
- Leclerc, M.C.; Hugot, J.P.; Durand, P.; Renaud, F. Evolutionary relationships between 15 Plasmodium species from New and Old World primates (including humans): A 18S rDNA cladistic analysis. Parasitology 2004, 129, 677–684. [Google Scholar] [CrossRef]
- Chua, T.H.; Manin, B.O.; Daim, S.; Vythilingam, I.; Drakeley, C. Phylogenetic analysis of simian Plasmodium spp. infecting Anopheles balabacensis Baisas in Sabah, Malaysia. PLoS Negl. Trop. Dis. 2017, 11, e0005991. [Google Scholar] [CrossRef]
- Stuart, M.D.; Pendergast, V.; Rumfelt, S.; Pierberg, S.; Greenspan, L.L.; Glander, K.E.; Clarke, M.R. Parasites of wild howlers (Alouatta spp.). Int. J. Primatol. 1998, 19, 493–512. [Google Scholar] [CrossRef]
- Figueiredo, M.A.P.; Santi, S.M.D.; Manrique, W.G.; André, M.R.; Machado, R.Z. Identification of Plasmodium spp. in Neotropical primates of Maranhense Amazon in Northeast Brazil. PLoS ONE 2017, 12, e0182905. [Google Scholar] [CrossRef] [PubMed]
- Pérez, F.; Martin-Solano, S.; Sáenz, F.; Minda-Aluisa, E.; Navarro, J.C.; Carillo-Bilbao, G.-A. Detection of Plasmodium sp. from Fecal Samples of Non-Human Primates from the Cities of Tena, Puyo and Macas Using Nested-PCR. In Proceedings of the RED Santo Domingo Investiga, Santo Domingo, Dominican Republic, 25–29 September 2018. [Google Scholar]
- Levin, I.I.; Colborn, R.E.; Kim, D.; Perlut, N.G.; Renfrew, R.B.; Parker, P.G. Local parasite lineage sharing in temperate grassland birds provides clues about potential origins of Galapagos avian Plasmodium. Ecol. Evol. 2016, 6, 716–726. [Google Scholar] [CrossRef] [PubMed]
- Perlut, N.G.; Parker, P.G.; Renfrew, R.B.; Jaramillo, M. Haemosporidian parasite community in migrating bobolinks on the Galapagos Islands. Int. J. Parasitol. Parasites Wildl. 2018, 7, 204–206. [Google Scholar] [CrossRef] [PubMed]
- Vera-Arias, C.A.; Castro, L.E.; Gómez-Obando, J.; Sáenz, F.E. Diverse origin of Plasmodium falciparum in northwest Ecuador. Malar. J. 2019, 18, 251. [Google Scholar] [CrossRef] [PubMed]
- Sáenz, F.E.; Morton, L.C.; Okoth, S.A.; Valenzuela, G.; Vera-Arias, C.A.; Vélez-Álvarez, E.; Lucchi, N.W.; Castro, L.E.; Udhayakumar, V. Clonal population expansion in an outbreak of Plasmodium falciparum on the northwest coast of Ecuador. Malar. J. 2015, 14, 497. [Google Scholar] [CrossRef]
- Baker, J.; McCarthy, J.; Gatton, M.; Kyle, D.E.; Belizario, V.; Luchavez, J.; Bell, D.; Cheng, Q. Genetic diversity of Plasmodium falciparum histidine-rich protein 2 (PfHRP2) and its effect on the performance of PfHRP2-based rapid diagnostic tests. J. Infect. Dis. 2005, 192, 870–877. [Google Scholar] [CrossRef]
- Duarte, A.M.R.D.C.; Porto, M.A.L.; Curado, I.; Malafronte, R.S.; Hoffmann, E.H.E.; Oliveira, S.G.; Silva, A.M.J.; Kloetzel, J.K.; Gomes, A.D.C. Widespread occurrence of antibodies against circumsporozoite protein and against blood forms of Plasmodium vivax, P. falciparum and P. malariae in Brazilian wild monkeys. J. Med. Primatol. 2006, 35, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Volney, B.; Pouliquen, J.F.; Thoisy, B.; Fandeur, T. A sero-epidemiological study of malaria in human and monkey populations in French Guiana. Acta Trop. 2002, 82. [Google Scholar] [CrossRef]
- Siao, M.C.; Borner, J.; Perkins, S.L.; Deitsch, K.W.; Kirkman, L.A. Evolution of host specificity by Malaria parasites through altered mechanisms controlling genome maintenance. mBio 2020, 11, e03272-19. [Google Scholar] [CrossRef]
- Loiseau, C.; Harrigan, R.J.; Robert, A.; Bowie, R.C.; Thomassen, H.A.; Smith, T.B.; Sehgal, R.N. Host and habitat specialization of avian malaria in Africa. Mol. Ecol. 2012, 21, 431–441. [Google Scholar] [CrossRef] [PubMed]
- Iezhova, T.A.; Valkiünas, G.; Bairlein, F. Vertebrate host specificity of two avian malaria parasites of the subgenus Novyella: Plasmodium nucleophilum and Plasmodium vaughani. J. Parasitol. 2005, 91, 472–474. [Google Scholar] [CrossRef] [PubMed]
- Makanga, B.; Yangari, P.; Rahola, N.; Rougeron, V.; Elguero, E.; Boundenga, L.; Moukodoum, N.D.; Okouga, A.P.; Arnathau, C.; Durand, P.; et al. Ape malaria transmission and potential for ape-to-human transfers in Africa. Proc. Natl. Acad. Sci. USA 2016, 113, 5329–5334. [Google Scholar] [CrossRef]
- Hayakawa, T.; Culleton, R.; Otani, H.; Horii, T.; Tanabe, K. Big bang in the evolution of extant malaria parasites. Mol. Biol. Evol. 2008, 25, 2233–2239. [Google Scholar] [CrossRef] [PubMed]
- Loy, D.E.; Liu, W.; Li, Y.; Learn, G.H.; Plenderleith, L.J.; Sundararaman, S.A.; Sharp, P.M.; Hahn, B.H. Out of Africa: Origins and evolution of the human malaria parasites Plasmodium falciparum and Plasmodium vivax. Int. J. Parasitol. 2017, 47, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Rich, S.M.; Leendertz, F.H.; Xu, G.; LeBreton, M.; Djoko, C.F.; Aminake, M.N.; Takang, E.E.; Diffo, J.L.D.; Pike, B.L.; Rosenthal, B.M.; et al. The origin of malignant malaria. Proc. Natl. Acad. Sci. USA 2009, 106, 14902–14907. [Google Scholar] [CrossRef]
- Otto, T.D.; Rayner, J.C.; Böhme, U.; Pain, A.; Spottiswoode, N.; Sanders, M.; Quail, M.; Ollomo, B.; Renaud, F.; Thomas, A.W.; et al. Genome sequencing of chimpanzee malaria parasites reveals possible pathways of adaptation to human hosts. Nat. Commun. 2014, 5, 4754. [Google Scholar] [CrossRef]
- Liu, W.; Li, Y.; Learn, G.H.; Rudicell, R.S.; Robertson, J.D.; Keele, B.F.; Ndjango, J.-B.N.; Sanz, C.M.; Morgan, D.B.; Locatelli, S.; et al. Origin of the human malaria parasite Plasmodium falciparum in gorillas. Nature 2010, 467, 420–425. [Google Scholar] [CrossRef] [PubMed]
- Chapman, C.A.; Gillespie, T.R.; Goldberg, T.L. Primates and the ecology of their infectious diseases: How will anthropogenic change affect host-parasite interactions? Evol. Anthropol. 2005, 14, 134–144. [Google Scholar] [CrossRef]
- Álvarez-Solas, S.; Torre, S.D.L.; Tirira, D. Tamarín Ensillado de Dorso Rojo Leontocebus lagonotus (Jiménez de la Espada, 1870). In Estado de Conservación de los Primates del Ecuador, 1st ed.; Tirira, D., Torre, S.D.L., Ríos, G.Z., Eds.; Grupo de Estudio de Primates del Ecuador/Asociación Ecuatoriana de Mastozoología: Quito, Ecuador, 2018. [Google Scholar]
- Gershman, M.D.; Jentes, E.S.; Stoney, R.J.; Tan, K.R.; Arguin, P.M. Yellow Fever Vaccine & Malaria Prophylaxis Information, by Country. In Yellow Book; Brunette, G.W., Nemhauser, J.B., Eds.; Oxford University Press: New York, NY, USA, 2020; p. 720. [Google Scholar]
- Gaceta Epidemiológica—SIVE. Gaceta vectores SE Alert n°52. 2019 (report).
- Bairami, A.; Rezaei, S.; Rezaeian, M. Synchronous identification of Entamoeba histolytica, Giardia intestinalis, and Cryptosporidium spp. in stool samples using a multiplex PCR assay. Iran. J. Parasitol. 2018, 13, 24–30. [Google Scholar] [PubMed]
- Bezjian, M.; Gillespie, T.R.; Chapman, C.A.; Greiner, E.C. Coprologic evidence of gastrointestinal helminths of Forest baboons, Papio anubis, in Kibale National Park, Uganda. J. Wildl. Dis. 2008, 44, 878–887. [Google Scholar] [CrossRef]
- Carozzi, F.M.; Sani, C. Fecal collection and stabilization methods for improved fecal DNA test for colorectal cancer in a screening setting. J. Cancer Res. 2013, 2013, 818675. [Google Scholar] [CrossRef]
- Cerda-Molina, A.L.; Hernández-López, L.; Páez-Ponce, D.L.; Rojas-Maya, S.; Mondragón-Ceballos, R. Seasonal variations of fecal progesterone and 17β-estradiol in captive female black-handed spider monkeys (Ateles geoffroyi). Theriogenology 2006, 66, 1985–1993. [Google Scholar] [CrossRef] [PubMed]
- Chinchilla, M.; Guerrero, O.M.; Gutierrez-Espeleta, G.A.; Sánchez, R.; Valerio Campos, I. Parásitos en monos carablanca Cebus capucinus (Primates: Cebidae) de Costa Rica. Parasitol. Latinoam. 2007, 62, 170–175. [Google Scholar] [CrossRef]
- Conga, D.F.; Bowler, M.; Tantalean, M.; Montes, D.; Serra-Freire, N.M.; Mayor, P. Intestinal helminths in wild Peruvian red uakari monkeys (Cacajao calvus ucayalii) in the northeastern Peruvian Amazon. J. Med. Primatol. 2014, 43, 130–133. [Google Scholar] [CrossRef]
- Jirků, M.; Pomajbíková, K.; Petrželková, K.J.; Hůzová, Z.; Modrý, D.; Lukeš, J. Detection of Plasmodium spp. in human feces. Emerg. Infect. Dis. 2012, 18, 634–636. [Google Scholar] [CrossRef]
- Nys, H.D.; Madinda, F.; Merkel, K.; Robbins, M.; Boesch, C.; Leendertz, F.; Calvignac-Spencer, S. A cautionary note on fecal sampling and molecular epidemiology in predatory wild great apes: Fecal based epidemiology in predatory apes. Am. J. Primatol. 2015, 77, 833–840. [Google Scholar] [CrossRef]
- Nys, H.M.D.; Calvignac-Spencer, S.; Boesch, C.; Dorny, P.; Wittig, R.M.; Mundry, R.; Leendertz, F.H. Malaria parasite detection increases during pregnancy in wild chimpanzees. Malar. J. 2014, 13, 413. [Google Scholar] [CrossRef]
- Boom, R.; Sol, C.J.; Salimans, M.M.; Jansen, C.L.; Wertheim-van Dillen, P.M.; Van der Noordaa, J. Rapid and simple method for purification of nucleic acids. J. Clin. Microbiol. 1990, 28, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Strier, K.B.; Ziegler, T.E.; Wittwer, D.J. Seasonal and social correlates of fecal testosterone and cortisol levels in wild male muriquis (Brachyteles arachnoides). Horm. Behav. 1999, 35, 125–134. [Google Scholar] [CrossRef]
- Ziegler, T.E.; Santos, C.V.; Pissinatti, A.; Strier, K.B. Steroid excretion during the ovarian cycle in captive and wild muriquis, Brachyteles arachnoides. Am. J. Primatol. 1997, 42, 311–321. [Google Scholar] [CrossRef]
- Acharya, K.R.; Dhand, N.K.; Whittington, R.J.; Plain, K.M. PCR inhibition of a quantitative PCR for detection of Mycobacterium avium subspecies Paratuberculosis DNA in feces: Diagnostic implications and potential solutions. Front. Microbiol. 2017, 8, 115. [Google Scholar] [CrossRef]
- Al-Areeqi, M.A.; Sady, H.; Al-Mekhlafi, H.M.; Anuar, T.S.; Al-Adhroey, A.H.; Atroosh, W.M.; Dawaki, S.; Elyana, F.N.; Nasr, N.A.; Ithoi, I.; et al. First molecular epidemiology of Entamoeba histolytica, E. dispar and E. moshkovskii infections in Yemen: Different species-specific associated risk factors. Trop. Med. Int. Health 2017, 22, 493–504. [Google Scholar] [CrossRef] [PubMed]
- Arregui, G.; Enriquez, S.; Benítez-Ortiz, W.; Navarro, J.-C. Taxonomía molecular de Anopheles del Ecuador mediante ADN mitocondrial (citocromo c oxidasa I) y optimización por parsimonia máxima. Bol. Mal. Salud. Amb. 2015, 55, 132–154. [Google Scholar]
- Mathay, C.; Hamot, G.; Henry, E.; Georges, L.; Bellora, C.; Lebrun, L.; Witt, B.D.; Ammerlaan, W.; Buschart, A.; Wilmes, P.; et al. Method optimization for fecal sample collection and fecal DNA extraction. Biopreserv. Biobank 2015, 13, 79–93. [Google Scholar] [CrossRef]
- Zinner, D.; Wertheimer, J.; Liedigk, R.; Groeneveld, L.F.; Roos, C. Baboon phylogeny as inferred from complete mitochondrial genomes. Am. J. Phys. Anthropol. 2013, 150, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, K.; Oh, K.; Ren, B.; Tickle, T.; Franzosa, E.; Wachtman, L.; Miller, A.; Westmoreland, S.; Mansfield, K.; Vallender, E.; et al. Biogeography of the intestinal mucosal and lumenal microbiome in the rhesus macaque. Cell Host Microbe 2015, 17, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Taberlet, P.; Luikart, G. Non-invasive genetic sampling and individual identification. Biol. J. Linn. Soc. 1999, 68, 41–55. [Google Scholar] [CrossRef]
- Creel, S.; Spong, G.; Sands, J.L.; Rotella, J.; Zeigle, J.; Joe, L.; Murphy, K.M.; Smith, D. Population size estimation in Yellowstone wolves with error-prone noninvasive microsatellite genotypes. Mol. Ecol. 2003, 12, 2003–2009. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.C.D.; Curotto, S.M.R.; Moraes, W.D.; Cubas, Z.S.; Costa-Nascimento, M.D.J.; Filho, I.R.D.B.; Biondo, A.W.; Kirchgatter, K. Detection of Plasmodium sp. in capybara. Vet. Parasitol. 2009, 163, 148–151. [Google Scholar] [CrossRef]
- Bentz, S.; Rigaud, T.; Barroca, M.; Martin-Laurent, F.; Bru, D.; Moreau, J.; Faivre, B. Sensitive measure of prevalence and parasitaemia of haemosporidia from European blackbird (Turdus merula) populations: Value of PCR-RFLP and quantitative PCR. Parasitology 2006, 133, 685–692. [Google Scholar] [CrossRef] [PubMed]
- Rouffaer, L.O.; Steensels, M.; Verlinden, M.; Vervaeke, M.; Boonyarittichaikij, R.; Martel, A.; Lambrecht, B. Usutu virus epizootic and plasmodium coinfection in Eurasian blackbirds (Turdus merula) in Flanders, Belgium. J. Wildl. Dis. 2018, 54, 859–862. [Google Scholar] [CrossRef]
- Nixon, K.C.; Carpenter, J.M. On outgroups. Cladistics 1993, 9, 413–426. [Google Scholar] [CrossRef]
- MacVectorInc Sequence Analysis Tools for Molecular Biologists, version 17.5.5; MacVector, Inc.: Apex, NC, USA, 2020.
Habitat Settings | Non-Human Primate Species | n | Sex | Age | |||
---|---|---|---|---|---|---|---|
Male | Female | Adult | Subadult | Juvenile | |||
Captive | Alouatta seniculus | 4 | 0 | 4 | 1 | 2 | 1 |
Ateles belzebuth | 1 | 1 | 0 | 1 | 0 | 0 | |
Callicebus lucifer | 1 | 1 | 0 | 1 | 0 | 0 | |
Cebuella pygmaea | 1 | 1 | 0 | 1 | 0 | 0 | |
Cebus yuracus | 2 | 1 | 1 | 1 | 1 | 0 | |
Lagothrix lagotricha | 2 | 0 | 2 | 1 | 0 | 1 | |
Leontocebus fuscicollis | 3 | 2 | 1 | 2 | 1 | 0 | |
Saimiri sciureus | 3 | 2 | 1 | 1 | 1 | 1 | |
Sapajus apella | 2 | 1 | 1 | 1 | 0 | 1 | |
Free ranging | Cebus yuracus | 7 | 5 | 2 | 4 | 1 | 2 |
Reaction | Primer | Oligonucleotide Sequence | |
---|---|---|---|
First reaction | rPLU1 | 5′-TCAAAGATTAAGCCATGCAAGTGA 3′ | forward |
rPLU6R | 5′-CGTTTTAACTGCAACAATTTTAA-3′ | reverse | |
Second Reaction | rPLU3 | 5′-TTTTTATAAGGATAACTACGGAAAAGCTGT-3′ | forward |
rPLU4 | 5′-TACCCGTCATAGCCATGTTAGGCCAATACC-3′ | reverse |
Plasmodium Species | ID Genbank | Host | Country |
---|---|---|---|
Plasmodium sp. | LT963420.1 | Gorilla sp. | Unknown |
P. falciparum | LR131487.1 | Unknown (Genome assembly) | Unknown (Genome assembly) |
P. falciparum | MZ156589 | Leontocebus lagonotus | Ecuador |
P. falciparum | LR131471.1 | Unknown (Genome assembly) | Unknown (Genome assembly) |
P. reichenowi | LT969568.1 | Unknown (Genome assembly) | Unknown (Genome assembly) |
P. gaboni | LT969430.1 | Unknown (Genome assembly) | Unknown (Genome assembly) |
P. gonderi | AB287269.1 | Cercocebus atys | Central Africa |
P. ovale | KF018656.1 | Homo sapiens | China |
P. brasillianum | KX618475.1 | Sapajus flavius | Brazil |
P. malariae | LT594624.1 | Unknown (Genome assembly) | Unknown (Genome assembly) |
P. fragile | XR001111607.1 | Unknown | Unknown |
P. inui | EU400397 | Macaca fascicularis | Thailand |
P. simium | U69605.1 | Saimiris sciureus | Colombia |
P. vivax | U07368 | Unknown | CDC Strain |
Plamodium sp. | KX522949.1 | Anopheles nuneztovari | Brazil |
P. knowlesi | LR701163.1 | Unknown (Genome assembly) | Unknown (Genome assembly) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrillo Bilbao, G.A.; Navarro, J.-C.; Garigliany, M.-M.; Martin-Solano, S.; Minda, E.; Benítez-Ortiz, W.; Saegerman, C. Molecular Identification of Plasmodium falciparum from Captive Non-Human Primates in the Western Amazon Ecuador. Pathogens 2021, 10, 791. https://doi.org/10.3390/pathogens10070791
Carrillo Bilbao GA, Navarro J-C, Garigliany M-M, Martin-Solano S, Minda E, Benítez-Ortiz W, Saegerman C. Molecular Identification of Plasmodium falciparum from Captive Non-Human Primates in the Western Amazon Ecuador. Pathogens. 2021; 10(7):791. https://doi.org/10.3390/pathogens10070791
Chicago/Turabian StyleCarrillo Bilbao, Gabriel Alberto, Juan-Carlos Navarro, Mutien-Marie Garigliany, Sarah Martin-Solano, Elizabeth Minda, Washington Benítez-Ortiz, and Claude Saegerman. 2021. "Molecular Identification of Plasmodium falciparum from Captive Non-Human Primates in the Western Amazon Ecuador" Pathogens 10, no. 7: 791. https://doi.org/10.3390/pathogens10070791
APA StyleCarrillo Bilbao, G. A., Navarro, J. -C., Garigliany, M. -M., Martin-Solano, S., Minda, E., Benítez-Ortiz, W., & Saegerman, C. (2021). Molecular Identification of Plasmodium falciparum from Captive Non-Human Primates in the Western Amazon Ecuador. Pathogens, 10(7), 791. https://doi.org/10.3390/pathogens10070791