Next Article in Journal
Coagulase-Negative Staphylococci Clones Are Widely Distributed in the Hospital and Community
Next Article in Special Issue
Models for Studying the Distribution of Ticks and Tick-Borne Diseases in Animals: A Systematic Review and a Meta-Analysis with a Focus on Africa
Previous Article in Journal
Proteins of the Ciliated Protozoan Parasite Ichthyophthirius multifiliis Identified in Common Carp Skin Mucus
Previous Article in Special Issue
The Novel Zoonotic Pathogen, Anaplasma capra, Infects Human Erythrocytes, HL-60, and TF-1 Cells In Vitro
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Molecular Identification of Plasmodium falciparum from Captive Non-Human Primates in the Western Amazon Ecuador

by
Gabriel Alberto Carrillo Bilbao
1,2,
Juan-Carlos Navarro
3,
Mutien-Marie Garigliany
4,5,
Sarah Martin-Solano
1,6,
Elizabeth Minda
1,
Washington Benítez-Ortiz
1 and
Claude Saegerman
2,*
1
Instituto de Salud Pública y Zoonosis (CIZ), Universidad Central del Ecuador, Quito 170521, Ecuador
2
Research Unit of Epidemiology and Risk Analysis Applied to Veterinary Sciences (UREAR-ULg), Fundamental and Applied Research for Animal and Health (FARAH) Center, Department of Infections and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, B-4000 Liège, Belgium
3
Grupo de Investigación en Enfermedades Emergentes, Ecoepidemiología y Biodiversidad, Facultad de Ciencias de la Salud, Universidad Internacional SEK, Quito 170107, Ecuador
4
Department of Pathology, Fundamental and Applied Research for Animal and Health (FARAH) Center, Liège University, B-4000 Liège, Belgium
5
Department of Animal Pathology, Liège University, B-4000 Liège, Belgium
6
Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas—ESPE, Sangolquí 171103, Ecuador
*
Author to whom correspondence should be addressed.
Pathogens 2021, 10(7), 791; https://doi.org/10.3390/pathogens10070791
Submission received: 16 May 2021 / Revised: 8 June 2021 / Accepted: 14 June 2021 / Published: 22 June 2021
(This article belongs to the Special Issue Emerging Vector-Borne and Zoonotic Diseases)

Abstract

:
Background: Malaria is a disease caused by hemoparasites of the Plasmodium genus. Non-human primates (NHP) are hosts of Plasmodium sp. around the world. Several studies have demonstrated that Plasmodium sp. emerged from Africa. However, little information is currently available about Plasmodium falciparum in the neotropical NHP and even less in Ecuador. Indeed, the objective of our study was to identify by molecular phylogenetic analyses the Plasmodium species associated with NHP from the Western Amazon region of Ecuador, and to design a molecular taxonomy protocol to use in the NHP disease ecology. Methods: We extracted DNA from faecal samples (n = 26) from nine species of captive (n = 19) and free-ranging (n = 7) NHP, collected from 2011 to 2019 in the Western Amazon region of Ecuador. Results: Using a pan-Plasmodium PCR, we obtained one positive sample from an adult female Leontocebus lagonotus. A maximum likelihood phylogenetic analysis showed that this sequence unequivocally clustered with Plasmodium falciparum. Conclusions: The identification of Plasmodium sp. in NHP of the Ecuadorian Amazon would be essential to identify their role as potential zoonotic reservoirs, and it is also important to identify their origin in wildlife and their transmission in captive NHP.

1. Introduction

Malaria is a disease transmitted by mosquitoes and caused by a hemoparasite of the genus Plasmodium. The protozoan Plasmodium spp. belongs to the Apicomplexa groups; they have the ability to parasite cells thanks to a group of organelles called the apical complex. Plasmodium inhabits red blood cells and hepatocytes [1]. It causes high fever, anemia, headaches, and diarrhea, among others. This mosquito-borne disease is found in humans and in several vertebrates such as birds [2,3], bats [4], antelopes and reptiles [5], and non-human primates (NHP) [6,7,8,9]. The latter are an important source of infections for Plasmodium sp. in humans. In OW (Old World) monkeys, Plasmodium sp. has been detected in chimpanzees (Pan troglodytes) [10], baboons (Papio anubis), Tantalus monkeys (Chlorocebus aethiops), red patas monkeys (Erythrocebus patas) [6], long-tailed and pig-tailed macaques (Macaca fascicularis and Macaca nemestrina) [7], and recently in a lemur species (Propithecus verreauxi) and Macaca radiata [11], to name a few. In the neotropics, there is evidence of natural infection in humans with Plasmodium brasilianum in Venezuela [12] and Plasmodium simium in Brazil [13]. These two species of Plasmodium naturally infect NHP. Plasmodium brasilianum has been identified in at least 49 species of New World (NW) NHP [14,15,16,17,18,19,20] (Table 1). Plasmodium simium has been found in less species, around 4 NW NHP species [18,21,22,23]. There are 25 known species of Plasmodium and some of those (P. vivax, P. malariae, P. falciparum, P. ovale, P. knowlesi) are responsible for human malaria [24,25,26]. Plasmodium falciparum is one of the most malignant species of malaria and it originated from human migration into the NW [10,27,28].
Several genes are used for molecular identification and phylogenetic studies of Plasmodium species [29,30]. However, the small subunit ribosomal RNA gene is widely used for molecular characterization and phylogenetic studies [31,32,33]. Indeed, it has both highly conserved and very variable domains. This gene was used to study the phylogenetic relationships [34,35,36] and host specificity of Plasmodium sp. [19]. More than 49 species of NW monkeys are known to be infected with Plasmodium sp. [37,38]. In Ecuador, only a few studies on Plasmodium sp. were realized [39]. Avian Plasmodia were studied in the Galapagos [40,41]. In humans, several studies with molecular markers have identified population origins of P. falciparum in the Northwest of Ecuador [42,43], but only one study yielded sequence information [44]. The aim of this study was to monitor Plasmodium sp. in the Amazon region of Ecuador, to identify potential zoonotic reservoirs, and to identify the origins of malaria parasites in wildlife and potential human–monkey transmission with captive NHP.
Table 1. Plasmodium species found in neotropical non-human primates.
Table 1. Plasmodium species found in neotropical non-human primates.
HostLocationPlasmodium SpeciesSampling (Invasive
Non-Invasive)
Detection MethodsReferences
Alouatta seniculus. BrazilPlasmodium sp.InvasiveConventional microscopy (GIEMSA)
PCR
[17]
Alouatta caraya
Alouatta guariba clamitans
Alouatta seniculus macconnelli
Sapajus apella
Brazil
French Guiana
Plasmodium vivaxInvasiveMicroscopy
Enzyme-linked Immunosorbent assay
IFA
ELISA
PCR
Real-time PCR
[22,45,46]
Alouatta sp.
Alouatta seniculus
Alouatta seniculus straminea
Alouatta caraya
Alouatta guariba clamitans
Alouatta guariba guariba
Aotus nigriceps
Alouatta g. clamitans
Ateles sp.
Ateles belzebuth
Ateles chamek
Ateles paniscus
Aotus nigriceps
Bracytheles arachnoides
Cacajao calvus
Cacajao rubicundus
Callicebus bruneus
Callicebus dubuis
Callicebus moloch
Callicebus personatus
Callicebus torquatus
Callithrix geoffroyi
Cebus sp.
Chiropotes albinasus
Chiropotes chiropotes
Chiropotus sp.
Chiropotes satanas
Lagothrix cana cana
Lagothrix lagotricha lagotricha
Lagothrix lagotricha poeppigii
Leontopithecus chrysomelas
Leontopithecus rosalia
Mico humeralifer
Pithecia monachus
Pithecia irrorata
Pithecia pithecia
Saguinus martinsi martinsi
Saguinus martinsi ochraceous
Saguinus midas niger
Saguinus midas
Saimiri sp.
Saimiri sciureus
Saimiri sciureus sciureus
Saimiri sciureus boliviensis
Saimiri ustus
Sapajus apella apella
Sapajus apella macrocephalus
Sapajus robustus
Sapajus xanthosternos
French Guyana
Brazil
Venezuela
Plasmodium brasilianumInvasiveBlood smears
Conventional microscopy (GIEMSA)
PCR
ELISA
[14,15,16,17,18,19,20]
Alouatta guariba clamitans
Cebus sp.
Sapajus robustus
Sapajus xanthosternos
BrazilPlasmodium simiumInvasive
Non-Invasive
Blood smears
PCR
PCR from faecal samples
Nested-PCR
[18,21,22,23]
Alouatta caraya
Alouatta guariba
Alouatta puruensis
Alouatta seniculus macconnelli
Ateles chamek
Callicebus bruneus
Lagothrix cana cana
Sapajus apella
Brazil
French Guyana
Plasmodium falciparumInvasiveELISA
IFA
PCR
[14,45]

2. Results

A total of 26 faecal DNA samples were analysed from captive and free-ranging NHP, in the Western Amazon region of Ecuador. After DNA extraction and using a pan-Plasmodium PCR, one positive sample was obtained from an adult female Leontocebus lagonotus (representing 3.85%). This animal came from a rescue centre in Pastaza. As with the other rescue centres in Ecuador, most NHP from this rescue centre have been donated by families or confiscated by the police during roadside checks, with this individual’s information being uncertain.
We sequenced the amplicon and then aligned it with sequences from other Plasmodium sp. species available in the GenBank. The maximum-likelihood phylogeny (ML) tree (Figure 1) yielded a topology with the different Plasmodium species clades and an internal (derivated) monophyletic clade comprised by P. falciparum including the sequence obtained from the Leontocebus lagonotus plus P. reichenowi sequences and P. gaboni. The ML recovered a clear reciprocal monophyly between falciparum and reichenowi as sister groups both with a strong support group by bootstrapping values of 74%. The arrangements of other sister clades were recovered: P. simium + P. vivax; P. inui + (P. fragile + P. knowlesi); P. ovale + (P. brasilianum + P. malariae). All sister groups were strongly supported by bootstrapping values of above 96%. In the analysis performed, the sequence of the amplified Plasmodium from the NHP L. lagonotus’ faeces is located within the P. falciparum clade, supporting its molecular identification with this species in the phylogenetic species sense.

3. Discussion

DNA from only 26 of the 109 faecal samples collected from 109 NHP was analysed because the quality of the DNA from the other 83 samples was insufficient for the detection of Plasmodium, possibly due to the presence of some inhibitors that prevent the amplification of DNA. We detected Plasmodium falciparum in a faecal sample from Leontocebus lagonotus (3.85%), contributing to the parasite ecology of NW NHP. The percentage of detection is not high, but it is in line with previous published results in scientific literature in Latin America (e.g., [23]).
Malaria parasites display host specificity [47], such as avian malaria in birds [48,49], and malaria in apes [50]. However, it is estimated that the diversification of Plasmodium was rapid 16–24 million years ago (MYA) or 26–38 MYA, which differs from the divergence times of the hosts (reptiles to mammals) 75–310 MYA. This difference in the divergence times between parasites and hosts suggests that there has been no co-divergence with the hosts [51]. In primates, two groups of Plasmodium have been identified. The first includes the species P. malariae/P. ovale/P. hylobatid, which infect Old World primates. The second group includes the species P. falciparum/P. reichenowi, which infect humans and NHP. In NW monkeys, P. brasilianum and Plasmodium simium are known to be the cause of primate malaria. Plasmodium falciparum is known to be a cause of human malaria, a result of a recent cross-species transmission of a parasite between gorillas and humans [52]. However, P. falciparum is also known to naturally infect at least eight species of NW NHP [14,45]. Our sample is located in the clade of P. falciparum, and close to P. recheinowi. This relationship was already observed in previous studies [51,53,54]. It has been reported that Plasmodium falciparum and P. reichenowi are part of a monophyletic clade [55].
Non-human primates in captivity from this study are in close contact with care takers and tourists, which may increase the possibility of parasite transmission [56]. However, the origin of these captive animals is unknown. This assumption makes us wonder whether the infection occurred in a sylvatic environment or whether it occurred during the captive period of this NHP. If it occurred during the sylvatic environment, the transmission could be the result of a natural infection via mosquitoes. Leontocebus lagonotus is known to be widely distributed in Western Amazonia in Ecuador, i.e., in Pastaza and Morona Santiago provinces [57], which according to the Center for Disease Control and Prevention (CDC) [58], are areas of malaria (Plasmodium vivax and Plasmodium falciparum). In 2019, Pastaza and Morona Santiago where the two provinces with the highest number of malaria (Plasmodium falciparum and Plasmodium vivax) cases in humans [59]. If it occurred during the captive period, further studies should be carried out to determine if the vector responsible for the human–NHP transmission is present in this region because there are no reports of the vector in the area.

4. Materials and Methods

4.1. Study Sites and Sampling

This study was performed in Puyo (Pastaza), Tena (Napo), and Macas (Morona Santiago), three cities in the Western Amazon region (Figure 2). We examined Plasmodium spp. in two populations, one captive and one free-ranging. The captive population was studied in wildlife refuges. Most NHP from wildlife refuges had been donated by families or confiscated by the police during roadside checks. The free-ranging population lived in the small town of Misahualli (Tena, Napo) (1°2′7.0″ S, 77°39′59.4″ W) (Figure 3).
Faecal samples are an important source of information about pathogens (viruses, prokaryotes, or eukaryotes) that infect primate species. The analysis of molecular faecal samples offers a non-invasive option that becomes a valid alternative to the traditional sampling methods (blood and tissue samples) of primates [60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77]. Studies in conservation genetics have used faecal samples for DNA extraction prioritizing species that are in some category of protection or threat [78,79]. In this study, we collected 109 faecal samples from 109 NHP. However, the DNA quality was not good enough on 83 samples to detect Plasmodium. Indeed, we analysed faecal samples (n = 26) from nine species of captive (n = 19) and free-ranging (n = 7) NHPs (Table 2), between 2011 and 2019, in the Western Amazon region of Ecuador from Proyecto Primates Ecuador. Individuals were followed daily from 8 a.m. to 6 p.m. and we collected the samples immediately after defecation to avoid getting confused with samples from other species. All animals were individually identified to facilitate the results analysis. For the molecular analyses, samples were stored in 50 mL Falcon tubes in 99% alcohol at −20 °C to prevent the degradation of DNA. In addition, 600 µL of faeces suspension (1:3; 1 part of faecal sample and 3 parts of ethanol 96–100%) was centrifuged for 2 min at 239 g and the pellet was washed with 1 mL of PBS Buffer (Oxoid, Hampshire, England). This solution (pellet +PBS) was centrifugated for 5 min and the supernatant was discarded. This washing step was repeated three times. Next, the pellet was re-suspended in 600 µL of 2% PVPP (polyvinylpolypyrolidone—Sigma), and frozen overnight at −20 °C to facilitate the capture of phenols in the sample. DNA extraction was performed twice on different days using the QIAamp Stool FAST Mini Kit (Qiagen GmbH, Hilden, Germany) following the manufacturer’s instructions. To prevent cross-contamination, sample preparation, DNA extraction, and the PCR were performed in completely different and separated rooms. Furthermore, the master mix was assembled in a DNA-free room. Ultraviolet light sterilization was performed before and after each procedure. The PCR was carried out using primers targeting the small subunit of 18S ribosomal RNA. The primers used were described by dos Santos et al. [80] (Table 3).
The molecular identification was performed in two reactions (nested PCR) as described by [80], with adaptations. The amplification in the first reaction consisted of 95 °C for 5 min, 95 °C for 30 seg; 50 cycles of 55 °C for 30 seg, 72 °C for 1 min; and a final extension step at 72 °C for 5 min, with a product of 600 bp. In addition, the amplification in the second reaction consisted of an initial denaturation at 95 °C for 5 min, 95 °C for 30 seg; 50 cycles of 58 °C for 30 seg and 72 °C for 1 min; and a final extension at 72 °C for 5 min. The products of the second reaction (240 bp) were observed using the electrophoresis of an agarose gel under UV light. Amplicons were cut, extracted using NucleoSpin gel and the PCR clean-up kit (Macherey-Nagel, Düren, Germany) and sequenced (Sanger sequencing) by Eurofins (Hamburg, Germany). Every PCR reaction contained a negative and a positive control. Sterile filtered pipette tips were used in all stages of the methodology to prevent contamination. We changed the pipette tip after each sample to avoid false-positive reactions/cross-contamination and all laboratory consumables were not reused.
A positive control for Plasmodium spp. was obtained using DNA extracted from the spleen of a Belgian blackbird (Turdus merula) collected in 2018 [81,82].

4.2. Molecular Identification

The sequence was uploaded to GenBank under the accession number submission MZ156589. Sequence reconstruction was performed using Assembler by MacVector software 17.5.5. The first sequence identity was confirmed by BLAST in NCBI resources. A total of 15 sequences from 14 species of Plasmodium were retrieved from GenBank and included as sister groups in order to obtain a wide geographic diversity and taxonomic representation [83] (Table 4). DNA sequences were aligned using MacVector 17.5.5 [84] by the ClustalW algorithm with high gap creation and extension penalties by 30.0 and 10.0, respectively, searching for a strong positional homology. The evolutionary history was inferred by using the maximum likelihood method and the Tamura 3-parameter model. The tree with the highest log likelihood (−932.64) is shown. A discrete Gamma distribution was used to model evolutionary rate differences among sites (five categories (+G, parameter = 0.3352)). The tree was drawn to scale, with branch lengths measured in the number of substitutions per site. This analysis involved 16 nucleotide sequences. There was a total of 241 positions in the final dataset. Evolutionary analyses were conducted in MEGA X.
The robustness for all the analyses was estimated using bootstrapping with 1000 pseudoreplicates and shown in percentage.

5. Conclusions

The results of this study provide evidence of Plasmodium falciparum in a species of NW NHP, and the potential risk of zoonotic malaria transmission. The present study, by identifying the presence of the parasite in NHP, suggests the need to promote continuous and systematic diagnoses and monitoring of malaria in these animals. In addition, wildlife trafficking and management should be incorporated into public health policies for the prevention of malaria as an emerging zoonotic disease.

Author Contributions

Conceptualization, C.S. and G.A.C.B.; methodology, G.A.C.B., M.-M.G., J.-C.N., E.M.; software, M.-M.G., J.-C.N.; validation, C.S., M.-M.G., S.M.-S., G.A.C.B., W.B.-O.; formal analysis, G.A.C.B., M.-M.G., J.-C.N., S.M.-S.; investigation, G.A.C.B., C.S.; resources, G.A.C.B., S.M.-S.; data curation, M.-M.G., S.M.-S.; writing—original draft preparation, G.A.C.B.; writing—review and editing, C.S., M.-M.G., S.M.-S., J.-C.N.; visualization, G.A.C.B., S.M.-S.; supervision, C.S.; project administration, G.A.C.B.; funding acquisition, W.B-O. All authors have read and agreed to the published version of the manuscript.

Funding

This work was funded the Academy of Research and Higher Education (ARES) through an institutional support program entitled “Hemoparasites and arboviruses in non-human primates of the Ecuadorian Amazon using non-invasive techniques”, which involves the Universidad Central del Ecuador and the University of Liège in Belgium. We also had a grant from UISEK number: DII-UISEK-P011617-2 (JCN).

Institutional Review Board Statement

This study was approved by the Ministerio del Ambiente Ecuador under the permit number MAE-DNB-CM-2015-0028-M-002.

Informed Consent Statement

Not applicable.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

We would like to thank Ministerio del Ambiente for its support.

Conflicts of Interest

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References and Note

  1. Goater, T.M.; Goater, C.P.; Esch, G.W. Parasitism: The Diversity and Ecology of Animal Parasites; Cambridge University Press: Cambridge, UK, 2014; p. 524. [Google Scholar]
  2. Böhme, U.; Otto, T.D.; Cotton, J.A.; Steinbiss, S.; Sanders, M.; Oyola, S.O.; Nicot, A.; Gandon, S.; Patra, K.P.; Herd, C.; et al. Complete avian malaria parasite genomes reveal features associated with lineage-specific evolution in birds and mammals. Genome Res. 2018, 28, 547–560. [Google Scholar] [CrossRef]
  3. Bensch, S.; Stjernman, M.; Hasselquist, D.; Ostman, O.; Hansson, B.; Westerdahl, H.; Pinheiro, R.T. Host specificity in avian blood parasites: A study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proc. R. Soc. B 2000, 267, 1583–1589. [Google Scholar] [CrossRef]
  4. Boundenga, L.; Ngoubangoye, B.; Mombo, I.M.; Tsoubmou, T.A.; Renaud, F.; Rougeron, V.; Prugnolle, F. Extensive diversity of malaria parasites circulating in Central African bats and monkeys. Ecol. Evol. 2018, 8, 10578–10586. [Google Scholar] [CrossRef]
  5. Boundenga, L.; Makanga, B.; Ollomo, B.; Gilabert, A.; Rougeron, V.; Mve-Ondo, B.; Arnathau, C.; Durand, P.; Moukodoum, N.D.; Okouga, A.-P.; et al. Haemosporidian parasites of antelopes and other vertebrates from Gabon, Central Africa. PLoS ONE 2016, 11, e0148958. [Google Scholar] [CrossRef]
  6. Mbaya, A.W.; Aliyu, M.M.; Nwosu, C.O.; Ibrahim, U.I. Captive wild animals as potential reservoirs of haemo and ectoparasitic infections of man and domestic animals in the arid- region of Northeastern Nigeria. Vet. Arhiv 2008, 78, 429–440. [Google Scholar]
  7. Lee, K.S.; Divis, P.C.S.; Zakaria, S.K.; Matusop, A.; Julin, R.A.; Conway, D.J.; Cox-Singh, J.; Singh, B. Plasmodium knowlesi: Reservoir hosts and tracking the emergence in humans and macaques. PLoS Pathog. 2011, 7. [Google Scholar] [CrossRef] [PubMed]
  8. Springer, A.; Fichtel, C.; Calvignac-Spencer, S.; Leendertz, F.H.; Kappeler, P.M. Hemoparasites in a wild primate: Infection patterns suggest interaction of Plasmodium and Babesia in a lemur species. Int. J. Parasitol. Parasites Wildl. 2015, 4, 385–395. [Google Scholar] [CrossRef] [PubMed]
  9. Figueiredo, M.A.P.; Santi, S.M.D.; Manrique, W.G.; André, M.R.; Machado, R.Z. Serological and molecular techniques applied for identification of Plasmodium spp. in blood samples from nonhuman primates. Rev. Bras. Parasitol. Vet. 2018, 27, 363–376. [Google Scholar] [CrossRef] [PubMed]
  10. Escalante, A.A.; Freeland, D.E.; Collins, W.E.; Lal, A.A. The evolution of primate malaria parasites based on the gene encoding cytochrome b from the linear mitochondrial genome. Proc. Natl. Acad. Sci. USA 1998, 95, 8124–8129. [Google Scholar] [CrossRef]
  11. Dixit, J.; Zachariah, A.; Sajesh, P.K.; Chandramohan, B.; Shanmuganatham, V.; Karanth, K.P. Reinvestigating the status of malaria parasite (Plasmodium sp.) in Indian non-human primates. PLoS Negl. Trop. Dis. 2018, 12, e0006801. [Google Scholar] [CrossRef]
  12. Lalremruata, A.; Magris, M.; Vivas-Martínez, S.; Koehler, M.; Esen, M.; Kempaiah, P.; Jeyaraj, S.; Perkins, D.J.; Mordmüller, B.; Metzger, W.G. Natural infection of Plasmodium brasilianum in humans: Man and monkey share quartan malaria parasites in the Venezuelan Amazon. EBioMedicine 2015, 2, 1186–1192. [Google Scholar] [CrossRef]
  13. Brasil, P.; Zalis, M.G.; Pina-Costa, A.D.; Siqueira, A.M.; Junior, C.B.; Silva, S.; Areas, A.L.L.; Pelajo-Machado, M.; Alvarenga, D.A.M.D.; Santelli, A.C.F.D.S.; et al. Plasmodium simium causing human malaria: A zoonosis with outbreak potential in the Rio de Janeiro Brazilian Atlantic forest. bioRxiv 2017. [Google Scholar] [CrossRef]
  14. Araújo, M.S.; Messias, M.R.; Figueiró, M.R.; Gil, L.H.S.; Probst, C.M.; Vidal, N.M.; Katsuragawa, T.H.; Krieger, M.A.; Silva, L.H.P.D.; Ozaki, L.S. Natural Plasmodium infection in monkeys in the state of Rondônia (Brazilian Western Amazon). Malar. J. 2013, 12, 180. [Google Scholar] [CrossRef] [PubMed]
  15. Thoisy, B.D.; Michel, J.-C.; Vogel, I.; Vié, J.-C. A survey of hemoparasite infections in free-ranging mammals and reptiles in french Guiana. J. Parasitol. 2000, 86, 1035–1040. [Google Scholar] [CrossRef]
  16. Deane, L. Simian malaria in Brazil. Mem. Inst. Oswaldo Cruz. 1992, 87, 1–20. [Google Scholar] [CrossRef] [PubMed]
  17. Fandeur, T.; Volney, B.; Peneau, C.; Thoisy, B. Monkeys of the rainforest in French Guiana are natural reservoirs for P. brasilianum/P. malariae malaria. Parasitology 2000, 120. [Google Scholar] [CrossRef]
  18. Alvarenga, D.A.M.D.; Pina-Costa, A.D.; Sousa, T.N.D.; Pissinatti, A.; Zalis, M.G.; Suaréz-Mutis, M.C.; Lourenço-de-Oliveira, R.; Brasil, P.; Daniel-Ribeiro, C.T.; Brito, C.F.A.D. Simian malaria in the Brazilian Atlantic forest: First description of natural infection of capuchin monkeys (Cebinae subfamily) by Plasmodium simium. Malar. J. 2015, 14, 81. [Google Scholar] [CrossRef]
  19. Alvarenga, D.A.M.; Pina-Costa, A.; Bianco, C.; Moreira, S.B.; Brasil, P.; Pissinatti, A.; Daniel-Ribeiro, C.T.; Brito, C.F.A. New potential Plasmodium brasilianum hosts: Tamarin and marmoset monkeys (family Callitrichidae). Malar. J. 2017, 16, 71. [Google Scholar] [CrossRef]
  20. Arruda, M.D.; Nardin, E.H.; Nussenzweig, R.S.; Cochrane, A.H. Sero-epidemiological studies of malaria in Indian tribes and monkeys of the Amazon basin of Brazil. Am. J. Trop. Med. Hyg. 1989, 41, 379–385. [Google Scholar] [CrossRef]
  21. Abreu, F.V.S.D.; Santos, E.D.; Mello, A.R.L.; Gomes, L.R.; Alvarenga, D.A.M.D.; Gomes, M.Q.; Vargas, W.P.; Bianco-Júnior, C.; Pina-Costa, A.D.; Teixeira, D.S.; et al. Howler monkeys are the reservoir of malarial parasites causing zoonotic infections in the Atlantic forest of Rio de Janeiro. PLoS Negl. Trop. Dis. 2019, 13, e0007906. [Google Scholar] [CrossRef]
  22. Costa, D.C.; Cunha, V.P.D.; Assis, G.M.P.D.; Souza Junior, J.C.D.; Hirano, Z.M.B.; Arruda, M.E.D.; Kano, F.S.; Carvalho, L.H.; Brito, C.F.A.D. Plasmodium simium/Plasmodium vivax infections in southern brown howler monkeys from the Atlantic Forest. Mem. Inst. Oswaldo Cruz. 2014, 109, 641–653. [Google Scholar] [CrossRef] [PubMed]
  23. Assis, G.M.P.D.; Alvarenga, D.A.M.D.; Costa, D.C.; Souza Junior, J.C.D.; Hirano, Z.M.B.; Kano, F.S.; Sousa, T.N.D.; Brito, C.F.A.D. Detection of Plasmodium in faeces of the New World primate Alouatta clamitans. Mem. Inst. Oswaldo Cruz. 2016, 111, 570–576. [Google Scholar] [CrossRef] [PubMed]
  24. William, T.; Rahman, H.A.; Jelip, J.; Ibrahim, M.Y.; Menon, J.; Grigg, M.J. Increasing incidence of Plasmodium knowlesi malaria following control of P. falciparum and P. vivax Malaria in Sabah, Malaysia. PLoS Negl. Trop. Dis. 2013, 7, e2026. [Google Scholar] [CrossRef] [PubMed]
  25. Lalremruata, A.; Jeyaraj, S.; Engleitner, T.; Joanny, F.; Lang, A.; Belard, S.; Mombo-Ngoma, G.; Ramharter, M.; Kremsner, P.G.; Mordmuller, B.; et al. Species and genotype diversity of Plasmodium in malaria patients from Gabon analysed by next generation sequencing. Malar. J. 2017, 16, 398. [Google Scholar] [CrossRef]
  26. Miguel-Oteo, M.; Jiram, A.I.; Ta-Tang, T.H.; Lanza, M.; Hisam, S.; Rubio, J.M. Nested multiplex PCR for identification and detection of human Plasmodium species including Plasmodium knowlesi. Asian Pac. J. Trop. Dis. 2017, 10, 299–304. [Google Scholar] [CrossRef] [PubMed]
  27. Prugnolle, F.; Durand, P.; Ollomo, B.; Duval, L.; Ariey, F.; Arnathau, C.; Gonzalez, J.-P.; Leroy, E.; Renaud, F. A fresh look at the origin of Plasmodium falciparum, the most malignant malaria agent. PLoS Pathog. 2011, 7, e1001283. [Google Scholar] [CrossRef] [PubMed]
  28. Rodrigues, P.T.; Valdivia, H.O.; Oliveira, T.C.D.; Alves, J.M.P.; Duarte, A.M.R.C.; Cerutti-Junior, C.; Buery, J.C.; Brito, C.F.A.; Souza, J.C.D.; Hirano, Z.M.B.; et al. Human migration and the spread of malaria parasites to the New World. Sci. Rep. 2018, 8, 1993. [Google Scholar] [CrossRef]
  29. Buitrago, S.P.; Garzón-Ospina, D.; Patarroyo, M.A. Size polymorphism and low sequence diversity in the locus encoding the Plasmodium vivax rhoptry neck protein 4 (PvRON4) in Colombian isolates. Malar. J. 2016, 15, 501. [Google Scholar] [CrossRef]
  30. Pacheco, M.A.; Cepeda, A.S.; Bernotienė, R.; Lotta, I.A.; Matta, N.E.; Valkiūnas, G.; Escalante, A.A. Primers targeting mitochondrial genes of avian haemosporidians: PCR detection and differential DNA amplification of parasites belonging to different genera. Int. J. Parasitol. 2018, 48, 657–670. [Google Scholar] [CrossRef]
  31. Sato, H.; Leo, N.; Katakai, Y.; Takano, J.-I.; Akari, H.; Nakamura, S.-i.; Une, Y. Prevalence and molecular phylogenetic characterization of Trypanosoma (megatrypanum) minasense in the peripheral blood of small neotropical primates after a quarantine period. J. Parasitol. 2008, 94, 112–1138. [Google Scholar] [CrossRef]
  32. Khan, S.M.; Debnath, C.; Pramanik, A.K.; Xiao, L.; Nozaki, T.; Ganguly, S. Molecular characterization and assessment of zoonotic transmission of Cryptosporidium from dairy cattle in West Bengal, India. Vet. Parasitol. 2010, 171, 41–47. [Google Scholar] [CrossRef]
  33. Bertelsen, M.F.; Meyland-Smith, F.; Willesen, J.L.; Jefferies, R.; Morgan, E.R.; Monrad, J. Diversity and prevalence of metastrongyloid nematodes infecting the red panda (Ailurus fulgens) in European zoos. Vet. Parasitol. 2010, 172, 299–304. [Google Scholar] [CrossRef]
  34. Duval, L.; Fourment, M.; Nerrienet, E.; Rousset, D.; Sadeuh, S.A.; Goodman, S.M.; Andriaholinirina, N.V.; Randrianarivelojosia, M.; Paul, R.E.; Robert, V.; et al. African apes as reservoirs of Plasmodium falciparum and the origin and diversification of the Laverania subgenus. Proc. Natl. Acad. Sci. USA 2010, 107, 10561. [Google Scholar] [CrossRef] [PubMed]
  35. Leclerc, M.C.; Hugot, J.P.; Durand, P.; Renaud, F. Evolutionary relationships between 15 Plasmodium species from New and Old World primates (including humans): A 18S rDNA cladistic analysis. Parasitology 2004, 129, 677–684. [Google Scholar] [CrossRef]
  36. Chua, T.H.; Manin, B.O.; Daim, S.; Vythilingam, I.; Drakeley, C. Phylogenetic analysis of simian Plasmodium spp. infecting Anopheles balabacensis Baisas in Sabah, Malaysia. PLoS Negl. Trop. Dis. 2017, 11, e0005991. [Google Scholar] [CrossRef]
  37. Stuart, M.D.; Pendergast, V.; Rumfelt, S.; Pierberg, S.; Greenspan, L.L.; Glander, K.E.; Clarke, M.R. Parasites of wild howlers (Alouatta spp.). Int. J. Primatol. 1998, 19, 493–512. [Google Scholar] [CrossRef]
  38. Figueiredo, M.A.P.; Santi, S.M.D.; Manrique, W.G.; André, M.R.; Machado, R.Z. Identification of Plasmodium spp. in Neotropical primates of Maranhense Amazon in Northeast Brazil. PLoS ONE 2017, 12, e0182905. [Google Scholar] [CrossRef] [PubMed]
  39. Pérez, F.; Martin-Solano, S.; Sáenz, F.; Minda-Aluisa, E.; Navarro, J.C.; Carillo-Bilbao, G.-A. Detection of Plasmodium sp. from Fecal Samples of Non-Human Primates from the Cities of Tena, Puyo and Macas Using Nested-PCR. In Proceedings of the RED Santo Domingo Investiga, Santo Domingo, Dominican Republic, 25–29 September 2018. [Google Scholar]
  40. Levin, I.I.; Colborn, R.E.; Kim, D.; Perlut, N.G.; Renfrew, R.B.; Parker, P.G. Local parasite lineage sharing in temperate grassland birds provides clues about potential origins of Galapagos avian Plasmodium. Ecol. Evol. 2016, 6, 716–726. [Google Scholar] [CrossRef] [PubMed]
  41. Perlut, N.G.; Parker, P.G.; Renfrew, R.B.; Jaramillo, M. Haemosporidian parasite community in migrating bobolinks on the Galapagos Islands. Int. J. Parasitol. Parasites Wildl. 2018, 7, 204–206. [Google Scholar] [CrossRef] [PubMed]
  42. Vera-Arias, C.A.; Castro, L.E.; Gómez-Obando, J.; Sáenz, F.E. Diverse origin of Plasmodium falciparum in northwest Ecuador. Malar. J. 2019, 18, 251. [Google Scholar] [CrossRef] [PubMed]
  43. Sáenz, F.E.; Morton, L.C.; Okoth, S.A.; Valenzuela, G.; Vera-Arias, C.A.; Vélez-Álvarez, E.; Lucchi, N.W.; Castro, L.E.; Udhayakumar, V. Clonal population expansion in an outbreak of Plasmodium falciparum on the northwest coast of Ecuador. Malar. J. 2015, 14, 497. [Google Scholar] [CrossRef]
  44. Baker, J.; McCarthy, J.; Gatton, M.; Kyle, D.E.; Belizario, V.; Luchavez, J.; Bell, D.; Cheng, Q. Genetic diversity of Plasmodium falciparum histidine-rich protein 2 (PfHRP2) and its effect on the performance of PfHRP2-based rapid diagnostic tests. J. Infect. Dis. 2005, 192, 870–877. [Google Scholar] [CrossRef]
  45. Duarte, A.M.R.D.C.; Porto, M.A.L.; Curado, I.; Malafronte, R.S.; Hoffmann, E.H.E.; Oliveira, S.G.; Silva, A.M.J.; Kloetzel, J.K.; Gomes, A.D.C. Widespread occurrence of antibodies against circumsporozoite protein and against blood forms of Plasmodium vivax, P. falciparum and P. malariae in Brazilian wild monkeys. J. Med. Primatol. 2006, 35, 87–96. [Google Scholar] [CrossRef] [PubMed]
  46. Volney, B.; Pouliquen, J.F.; Thoisy, B.; Fandeur, T. A sero-epidemiological study of malaria in human and monkey populations in French Guiana. Acta Trop. 2002, 82. [Google Scholar] [CrossRef]
  47. Siao, M.C.; Borner, J.; Perkins, S.L.; Deitsch, K.W.; Kirkman, L.A. Evolution of host specificity by Malaria parasites through altered mechanisms controlling genome maintenance. mBio 2020, 11, e03272-19. [Google Scholar] [CrossRef]
  48. Loiseau, C.; Harrigan, R.J.; Robert, A.; Bowie, R.C.; Thomassen, H.A.; Smith, T.B.; Sehgal, R.N. Host and habitat specialization of avian malaria in Africa. Mol. Ecol. 2012, 21, 431–441. [Google Scholar] [CrossRef] [PubMed]
  49. Iezhova, T.A.; Valkiünas, G.; Bairlein, F. Vertebrate host specificity of two avian malaria parasites of the subgenus Novyella: Plasmodium nucleophilum and Plasmodium vaughani. J. Parasitol. 2005, 91, 472–474. [Google Scholar] [CrossRef] [PubMed]
  50. Makanga, B.; Yangari, P.; Rahola, N.; Rougeron, V.; Elguero, E.; Boundenga, L.; Moukodoum, N.D.; Okouga, A.P.; Arnathau, C.; Durand, P.; et al. Ape malaria transmission and potential for ape-to-human transfers in Africa. Proc. Natl. Acad. Sci. USA 2016, 113, 5329–5334. [Google Scholar] [CrossRef]
  51. Hayakawa, T.; Culleton, R.; Otani, H.; Horii, T.; Tanabe, K. Big bang in the evolution of extant malaria parasites. Mol. Biol. Evol. 2008, 25, 2233–2239. [Google Scholar] [CrossRef] [PubMed]
  52. Loy, D.E.; Liu, W.; Li, Y.; Learn, G.H.; Plenderleith, L.J.; Sundararaman, S.A.; Sharp, P.M.; Hahn, B.H. Out of Africa: Origins and evolution of the human malaria parasites Plasmodium falciparum and Plasmodium vivax. Int. J. Parasitol. 2017, 47, 87–97. [Google Scholar] [CrossRef] [PubMed]
  53. Rich, S.M.; Leendertz, F.H.; Xu, G.; LeBreton, M.; Djoko, C.F.; Aminake, M.N.; Takang, E.E.; Diffo, J.L.D.; Pike, B.L.; Rosenthal, B.M.; et al. The origin of malignant malaria. Proc. Natl. Acad. Sci. USA 2009, 106, 14902–14907. [Google Scholar] [CrossRef]
  54. Otto, T.D.; Rayner, J.C.; Böhme, U.; Pain, A.; Spottiswoode, N.; Sanders, M.; Quail, M.; Ollomo, B.; Renaud, F.; Thomas, A.W.; et al. Genome sequencing of chimpanzee malaria parasites reveals possible pathways of adaptation to human hosts. Nat. Commun. 2014, 5, 4754. [Google Scholar] [CrossRef]
  55. Liu, W.; Li, Y.; Learn, G.H.; Rudicell, R.S.; Robertson, J.D.; Keele, B.F.; Ndjango, J.-B.N.; Sanz, C.M.; Morgan, D.B.; Locatelli, S.; et al. Origin of the human malaria parasite Plasmodium falciparum in gorillas. Nature 2010, 467, 420–425. [Google Scholar] [CrossRef] [PubMed]
  56. Chapman, C.A.; Gillespie, T.R.; Goldberg, T.L. Primates and the ecology of their infectious diseases: How will anthropogenic change affect host-parasite interactions? Evol. Anthropol. 2005, 14, 134–144. [Google Scholar] [CrossRef]
  57. Álvarez-Solas, S.; Torre, S.D.L.; Tirira, D. Tamarín Ensillado de Dorso Rojo Leontocebus lagonotus (Jiménez de la Espada, 1870). In Estado de Conservación de los Primates del Ecuador, 1st ed.; Tirira, D., Torre, S.D.L., Ríos, G.Z., Eds.; Grupo de Estudio de Primates del Ecuador/Asociación Ecuatoriana de Mastozoología: Quito, Ecuador, 2018. [Google Scholar]
  58. Gershman, M.D.; Jentes, E.S.; Stoney, R.J.; Tan, K.R.; Arguin, P.M. Yellow Fever Vaccine & Malaria Prophylaxis Information, by Country. In Yellow Book; Brunette, G.W., Nemhauser, J.B., Eds.; Oxford University Press: New York, NY, USA, 2020; p. 720. [Google Scholar]
  59. Gaceta Epidemiológica—SIVE. Gaceta vectores SE Alert n°52. 2019 (report).
  60. Bairami, A.; Rezaei, S.; Rezaeian, M. Synchronous identification of Entamoeba histolytica, Giardia intestinalis, and Cryptosporidium spp. in stool samples using a multiplex PCR assay. Iran. J. Parasitol. 2018, 13, 24–30. [Google Scholar] [PubMed]
  61. Bezjian, M.; Gillespie, T.R.; Chapman, C.A.; Greiner, E.C. Coprologic evidence of gastrointestinal helminths of Forest baboons, Papio anubis, in Kibale National Park, Uganda. J. Wildl. Dis. 2008, 44, 878–887. [Google Scholar] [CrossRef]
  62. Carozzi, F.M.; Sani, C. Fecal collection and stabilization methods for improved fecal DNA test for colorectal cancer in a screening setting. J. Cancer Res. 2013, 2013, 818675. [Google Scholar] [CrossRef]
  63. Cerda-Molina, A.L.; Hernández-López, L.; Páez-Ponce, D.L.; Rojas-Maya, S.; Mondragón-Ceballos, R. Seasonal variations of fecal progesterone and 17β-estradiol in captive female black-handed spider monkeys (Ateles geoffroyi). Theriogenology 2006, 66, 1985–1993. [Google Scholar] [CrossRef] [PubMed]
  64. Chinchilla, M.; Guerrero, O.M.; Gutierrez-Espeleta, G.A.; Sánchez, R.; Valerio Campos, I. Parásitos en monos carablanca Cebus capucinus (Primates: Cebidae) de Costa Rica. Parasitol. Latinoam. 2007, 62, 170–175. [Google Scholar] [CrossRef]
  65. Conga, D.F.; Bowler, M.; Tantalean, M.; Montes, D.; Serra-Freire, N.M.; Mayor, P. Intestinal helminths in wild Peruvian red uakari monkeys (Cacajao calvus ucayalii) in the northeastern Peruvian Amazon. J. Med. Primatol. 2014, 43, 130–133. [Google Scholar] [CrossRef]
  66. Jirků, M.; Pomajbíková, K.; Petrželková, K.J.; Hůzová, Z.; Modrý, D.; Lukeš, J. Detection of Plasmodium spp. in human feces. Emerg. Infect. Dis. 2012, 18, 634–636. [Google Scholar] [CrossRef]
  67. Nys, H.D.; Madinda, F.; Merkel, K.; Robbins, M.; Boesch, C.; Leendertz, F.; Calvignac-Spencer, S. A cautionary note on fecal sampling and molecular epidemiology in predatory wild great apes: Fecal based epidemiology in predatory apes. Am. J. Primatol. 2015, 77, 833–840. [Google Scholar] [CrossRef]
  68. Nys, H.M.D.; Calvignac-Spencer, S.; Boesch, C.; Dorny, P.; Wittig, R.M.; Mundry, R.; Leendertz, F.H. Malaria parasite detection increases during pregnancy in wild chimpanzees. Malar. J. 2014, 13, 413. [Google Scholar] [CrossRef]
  69. Boom, R.; Sol, C.J.; Salimans, M.M.; Jansen, C.L.; Wertheim-van Dillen, P.M.; Van der Noordaa, J. Rapid and simple method for purification of nucleic acids. J. Clin. Microbiol. 1990, 28, 495–503. [Google Scholar] [CrossRef] [PubMed]
  70. Strier, K.B.; Ziegler, T.E.; Wittwer, D.J. Seasonal and social correlates of fecal testosterone and cortisol levels in wild male muriquis (Brachyteles arachnoides). Horm. Behav. 1999, 35, 125–134. [Google Scholar] [CrossRef]
  71. Ziegler, T.E.; Santos, C.V.; Pissinatti, A.; Strier, K.B. Steroid excretion during the ovarian cycle in captive and wild muriquis, Brachyteles arachnoides. Am. J. Primatol. 1997, 42, 311–321. [Google Scholar] [CrossRef]
  72. Acharya, K.R.; Dhand, N.K.; Whittington, R.J.; Plain, K.M. PCR inhibition of a quantitative PCR for detection of Mycobacterium avium subspecies Paratuberculosis DNA in feces: Diagnostic implications and potential solutions. Front. Microbiol. 2017, 8, 115. [Google Scholar] [CrossRef]
  73. Al-Areeqi, M.A.; Sady, H.; Al-Mekhlafi, H.M.; Anuar, T.S.; Al-Adhroey, A.H.; Atroosh, W.M.; Dawaki, S.; Elyana, F.N.; Nasr, N.A.; Ithoi, I.; et al. First molecular epidemiology of Entamoeba histolytica, E. dispar and E. moshkovskii infections in Yemen: Different species-specific associated risk factors. Trop. Med. Int. Health 2017, 22, 493–504. [Google Scholar] [CrossRef] [PubMed]
  74. Arregui, G.; Enriquez, S.; Benítez-Ortiz, W.; Navarro, J.-C. Taxonomía molecular de Anopheles del Ecuador mediante ADN mitocondrial (citocromo c oxidasa I) y optimización por parsimonia máxima. Bol. Mal. Salud. Amb. 2015, 55, 132–154. [Google Scholar]
  75. Mathay, C.; Hamot, G.; Henry, E.; Georges, L.; Bellora, C.; Lebrun, L.; Witt, B.D.; Ammerlaan, W.; Buschart, A.; Wilmes, P.; et al. Method optimization for fecal sample collection and fecal DNA extraction. Biopreserv. Biobank 2015, 13, 79–93. [Google Scholar] [CrossRef]
  76. Zinner, D.; Wertheimer, J.; Liedigk, R.; Groeneveld, L.F.; Roos, C. Baboon phylogeny as inferred from complete mitochondrial genomes. Am. J. Phys. Anthropol. 2013, 150, 133–140. [Google Scholar] [CrossRef] [PubMed]
  77. Yasuda, K.; Oh, K.; Ren, B.; Tickle, T.; Franzosa, E.; Wachtman, L.; Miller, A.; Westmoreland, S.; Mansfield, K.; Vallender, E.; et al. Biogeography of the intestinal mucosal and lumenal microbiome in the rhesus macaque. Cell Host Microbe 2015, 17, 385–391. [Google Scholar] [CrossRef] [PubMed]
  78. Taberlet, P.; Luikart, G. Non-invasive genetic sampling and individual identification. Biol. J. Linn. Soc. 1999, 68, 41–55. [Google Scholar] [CrossRef]
  79. Creel, S.; Spong, G.; Sands, J.L.; Rotella, J.; Zeigle, J.; Joe, L.; Murphy, K.M.; Smith, D. Population size estimation in Yellowstone wolves with error-prone noninvasive microsatellite genotypes. Mol. Ecol. 2003, 12, 2003–2009. [Google Scholar] [CrossRef] [PubMed]
  80. Santos, L.C.D.; Curotto, S.M.R.; Moraes, W.D.; Cubas, Z.S.; Costa-Nascimento, M.D.J.; Filho, I.R.D.B.; Biondo, A.W.; Kirchgatter, K. Detection of Plasmodium sp. in capybara. Vet. Parasitol. 2009, 163, 148–151. [Google Scholar] [CrossRef]
  81. Bentz, S.; Rigaud, T.; Barroca, M.; Martin-Laurent, F.; Bru, D.; Moreau, J.; Faivre, B. Sensitive measure of prevalence and parasitaemia of haemosporidia from European blackbird (Turdus merula) populations: Value of PCR-RFLP and quantitative PCR. Parasitology 2006, 133, 685–692. [Google Scholar] [CrossRef] [PubMed]
  82. Rouffaer, L.O.; Steensels, M.; Verlinden, M.; Vervaeke, M.; Boonyarittichaikij, R.; Martel, A.; Lambrecht, B. Usutu virus epizootic and plasmodium coinfection in Eurasian blackbirds (Turdus merula) in Flanders, Belgium. J. Wildl. Dis. 2018, 54, 859–862. [Google Scholar] [CrossRef]
  83. Nixon, K.C.; Carpenter, J.M. On outgroups. Cladistics 1993, 9, 413–426. [Google Scholar] [CrossRef]
  84. MacVectorInc Sequence Analysis Tools for Molecular Biologists, version 17.5.5; MacVector, Inc.: Apex, NC, USA, 2020.
Figure 1. Evolutionary relationships of the Leontocebus lagonotus isolate described in this study (bolded and highlighted in red) compared to representative members of the Plasmodium genus. The tree is based on the maximum-likelihood phylogeny of the partial small subunit ribosomal RNA gene. The phylogenetic analysis was performed using the Tamura 3-parameter substitution model implemented in MEGA X. Bootstrap percentages > 70% (1000 resamplings) are indicated at the nodes. GenBank accession numbers are indicated for each strain. The scale bar indicates nucleotide substitutions per site.
Figure 1. Evolutionary relationships of the Leontocebus lagonotus isolate described in this study (bolded and highlighted in red) compared to representative members of the Plasmodium genus. The tree is based on the maximum-likelihood phylogeny of the partial small subunit ribosomal RNA gene. The phylogenetic analysis was performed using the Tamura 3-parameter substitution model implemented in MEGA X. Bootstrap percentages > 70% (1000 resamplings) are indicated at the nodes. GenBank accession numbers are indicated for each strain. The scale bar indicates nucleotide substitutions per site.
Pathogens 10 00791 g001
Figure 2. Rescue centres surveyed in the Amazon region of Ecuador.
Figure 2. Rescue centres surveyed in the Amazon region of Ecuador.
Pathogens 10 00791 g002
Figure 3. Location of free-ranging population of Cebus yuracus surveyed in the Amazon region of Ecuador.
Figure 3. Location of free-ranging population of Cebus yuracus surveyed in the Amazon region of Ecuador.
Pathogens 10 00791 g003
Table 2. Non-human primate species sampled in the Ecuadorian Amazon.
Table 2. Non-human primate species sampled in the Ecuadorian Amazon.
Habitat SettingsNon-Human Primate Species nSexAge
MaleFemaleAdultSubadultJuvenile
Captive Alouatta seniculus404121
Ateles belzebuth110100
Callicebus lucifer110100
Cebuella pygmaea110100
Cebus yuracus211110
Lagothrix lagotricha202101
Leontocebus fuscicollis321210
Saimiri sciureus321111
Sapajus apella211101
Free rangingCebus yuracus752412
Table 3. Sequences of the primers.
Table 3. Sequences of the primers.
ReactionPrimer Oligonucleotide Sequence
First reactionrPLU1 5′-TCAAAGATTAAGCCATGCAAGTGA 3′ forward
rPLU6R5′-CGTTTTAACTGCAACAATTTTAA-3′ reverse
Second ReactionrPLU3 5′-TTTTTATAAGGATAACTACGGAAAAGCTGT-3′ forward
rPLU45′-TACCCGTCATAGCCATGTTAGGCCAATACC-3′ reverse
Table 4. GenBank accession numbers of Plasmodium species sequences.
Table 4. GenBank accession numbers of Plasmodium species sequences.
Plasmodium SpeciesID GenbankHostCountry
Plasmodium sp. LT963420.1Gorilla sp.Unknown
P. falciparumLR131487.1Unknown (Genome assembly)Unknown (Genome assembly)
P. falciparumMZ156589Leontocebus lagonotusEcuador
P. falciparumLR131471.1Unknown (Genome assembly)Unknown (Genome assembly)
P. reichenowiLT969568.1Unknown (Genome assembly)Unknown (Genome assembly)
P. gaboniLT969430.1Unknown (Genome assembly)Unknown (Genome assembly)
P. gonderiAB287269.1Cercocebus atysCentral Africa
P. ovaleKF018656.1Homo sapiensChina
P. brasillianumKX618475.1Sapajus flaviusBrazil
P. malariaeLT594624.1Unknown (Genome assembly)Unknown (Genome assembly)
P. fragileXR001111607.1Unknown Unknown
P. inuiEU400397Macaca fascicularisThailand
P. simiumU69605.1Saimiris sciureusColombia
P. vivaxU07368UnknownCDC Strain
Plamodium sp.KX522949.1Anopheles nuneztovariBrazil
P. knowlesiLR701163.1Unknown (Genome assembly)Unknown (Genome assembly)
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Carrillo Bilbao, G.A.; Navarro, J.-C.; Garigliany, M.-M.; Martin-Solano, S.; Minda, E.; Benítez-Ortiz, W.; Saegerman, C. Molecular Identification of Plasmodium falciparum from Captive Non-Human Primates in the Western Amazon Ecuador. Pathogens 2021, 10, 791. https://doi.org/10.3390/pathogens10070791

AMA Style

Carrillo Bilbao GA, Navarro J-C, Garigliany M-M, Martin-Solano S, Minda E, Benítez-Ortiz W, Saegerman C. Molecular Identification of Plasmodium falciparum from Captive Non-Human Primates in the Western Amazon Ecuador. Pathogens. 2021; 10(7):791. https://doi.org/10.3390/pathogens10070791

Chicago/Turabian Style

Carrillo Bilbao, Gabriel Alberto, Juan-Carlos Navarro, Mutien-Marie Garigliany, Sarah Martin-Solano, Elizabeth Minda, Washington Benítez-Ortiz, and Claude Saegerman. 2021. "Molecular Identification of Plasmodium falciparum from Captive Non-Human Primates in the Western Amazon Ecuador" Pathogens 10, no. 7: 791. https://doi.org/10.3390/pathogens10070791

APA Style

Carrillo Bilbao, G. A., Navarro, J. -C., Garigliany, M. -M., Martin-Solano, S., Minda, E., Benítez-Ortiz, W., & Saegerman, C. (2021). Molecular Identification of Plasmodium falciparum from Captive Non-Human Primates in the Western Amazon Ecuador. Pathogens, 10(7), 791. https://doi.org/10.3390/pathogens10070791

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop