Occurrence of SARS-CoV-2 RNA in Six Municipal Wastewater Treatment Plants at the Early Stage of COVID-19 Pandemic in The United States
Abstract
:1. Introduction
2. Material and Methods
2.1. Wastewater Sample Collection
2.2. SARS-CoV-2 Concentration
2.3. Sample Process Control
2.4. RNA Extraction and cDNA Preparation
2.5. RT-qPCR for SARS-CoV-2
3. Results and Discussion
4. Conclusions
- Wastewater samples from influents of WWTPs in Virginia, Florida (WWTP D) and Georgia tested positive for SARS-CoV-2 RNA.
- SARS-CoV-2 RNA was detected in 19% (8/42) untreated wastewater influent samples and tested negative for all 24 secondary- and 34 tertiary-treated effluents.
- The prevalence of SARS-CoV-2 RNA was low in the studied WWTPs in the early pandemic stage.
- Both ultrafiltration and adsorption-extraction methods were effective for detecting RNA in wastewater samples.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amoah, I.D.; Kumari, S.; Bux, F. Coronaviruses in wastewater processes: Source, fate and potential risks. Environ. Int. 2020, 143, 105962. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, N.; Angel, J.; Edson, K.; Bibby, A.; Bivins, J.W.; O’Brien, B.T. First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the community. Sci. Total Environ. 2020, 728, 138764. [Google Scholar] [CrossRef] [PubMed]
- Sherchan, S.P.; Shahin, S.; Ward, L.; Tandukar, S.; Aw, T.G.; Schmitz, B.; Ahmed, W.; Kitajima, M. First detection of SARS-CoV-2 RNA in wastewater in North America: A study in Louisiana, USA. Sci. Total Environ. 2020, 743, 140621. [Google Scholar] [CrossRef] [PubMed]
- Maal-Bared, R.; Sobsey, M.; Bibby, K.; Sherchan, S.P.; Fitzmorris, K.B.; Munakata, N.; Gerba, C.; Schaefer, S.; Swift, J.; Gary, L.; et al. Pandemic danger to the deep: The risk of marine mammals contracting SARS-CoV-2 from wastewater. Sci. Total Environ. 2021, 773, 144855. [Google Scholar] [CrossRef]
- Xiao, F.; Tang, M.; Zheng, X.; Liu, Y.; Li, X.; Shan, H. Evidence for Gastrointestinal Infection of SARS-CoV-2. Gastroenterology 2020, 158, 1831–1833.e3. [Google Scholar] [CrossRef]
- La Rosa, G.; Iaconelli, M.; Mancini, P.; Ferraro, G.B.; Veneri, C.; Bonadonna, L.; Lucentini, L.; Suffredini, E. First detection of SARS-CoV-2 in untreated wastewaters in Italy. Sci. Total Environ. 2020, 736, 139652. [Google Scholar] [CrossRef]
- Medema, G.; Heijnen, L.; Elsinga, G.; Italiaander, R.; Brouwer, A. Presence of SARS-Coronavirus-2 RNA in sewage and correlation with reported COVID-19 prevalence in the early stage of the epidemic in The Netherlands. Environ. Sci. Technol. Lett. 2020, 7, 511–516. [Google Scholar] [CrossRef]
- Randazzo, W.; Truchado, P.; Ferrando, E.C.; Simon, P.; Allende, A.; Sanchez, G. SARS-CoV-2 RNA titers in wastewater anticipated COVID-19 occurrence in a low prevalence area. Water Res. 2020, 181, 115942. [Google Scholar] [CrossRef]
- Kumar, M.; Patel, A.K.; Shah, A.V.; Raval, J.; Rajpara, N.; Joshi, M.; Joshi, C.G. First proof of the capability of wastewater surveillance for COVID-19 in India through detection of genetic material of SARS-CoV-2. Sci. Total Environ. 2020, 746, 141326. [Google Scholar] [CrossRef]
- Rimoldi, S.G.; Stefani, F.; Gigantiello, A.; Polesello, S.; Comandatore, F.; Mileto, D.; Maresca, M.; Longobardi, C.; Mancon, A.; Romeri, F.; et al. Presence and infectivity of SARS-CoV-2 virus in wastewaters and rivers. Sci. Total Environ. 2020, 744, 140911. [Google Scholar] [CrossRef]
- Haramoto, E.; Malla, B.; Thakali, O.; Kitajima, M. First environmental surveillance for the presence of SARS-CoV-2 RNA in wastewater and river water in Japan. Sci. Total Environ. 2020, 737, 140405. [Google Scholar] [CrossRef] [PubMed]
- Kitajima, M.; Ahmed, W.; Bibby, K.; Carducci, A.; Gerba, C.P.; Hamilton, K.A.; Haramoto, E.; Rose, J.B. SARS-CoV-2 in wastewater: State of the knowledge and research needs. Sci. Total Environ. 2020, 739, 139076. [Google Scholar] [CrossRef]
- Graham, K.E.; Loeb, S.K.; Wolfe, M.K.; Catoe, D.; Sinnott-Armstrong, N.; Kim, S.; Yamahara, K.M.; Sassoubre, L.M.; Grijalva, L.M.M.; Roldan-Hernandez, L.; et al. SARS-CoV-2 RNA in Wastewater Settled Solids Is Associated with COVID-19 Cases in a Large Urban Sewershed. Environ. Sci. Technol. 2021, 55, 488–498. [Google Scholar] [CrossRef]
- Peccia, J.; Zulli, A.; Brackney, D.E.; Grubaugh, N.D.; Kaplan, E.H.; Casanovas-Massana, A.; Ko, A.I.; Malik, A.A.; Wang, D.; Wang, M.; et al. Measurement of SARS-CoV-2 RNA in wastewater tracks community infection dynamics. Nat. Biotechnol. 2020, 38, 1164–1167. [Google Scholar] [CrossRef] [PubMed]
- Alygizakis, N.; Markou, A.N.; Rousis, N.I.; Galani, A.; Avgeris, M.; Adamopoulos, P.G.; Scorilas, A.; Lianidou, E.S.; Paraskevis, D.; Tsiodras, S.; et al. Analytical methodologies for the detection of SARS-CoV-2 in wastewater: Protocols and future perspectives. TrAC Trends Anal. Chem. 2021, 134, 116125. [Google Scholar] [CrossRef]
- Balboa, S.; Mauricio-Iglesias, M.; Rodríguez, S.; Martínez-Lamas, L.; Vasallo, F.J.; Regueiro, B.; Lema, J.M. The fate of SARS-CoV-2 in WWTPs points out the sludge line as a suitable spot for monitoring. medRxiv 2020. [Google Scholar] [CrossRef]
- Guerrero-Latorre, L.; Ballesteros, I.; Villacrés-Granda, I.; Granda, M.G.; Freire-Paspuel, B.; Ríos-Touma, B. SARS-CoV-2 in river water: Implications in low sanitation countries. Sci. Total Environ. 2020, 743, 140832. [Google Scholar] [CrossRef]
- Lodder, W.; Husman, A.M.D.R. SARS-CoV-2 in wastewater: Potential health risk, but also data source. Lancet Gastroenterol. Hepatol. 2020, 5, 533–534. [Google Scholar] [CrossRef]
- Dada, A.C.; Gyawali, P. Quantitative microbial risk assessment (QMRA) of occupational exposure to SARS-CoV-2 in wastewater treatment plants. Sci. Total Environ. 2021, 763, 142989. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, W.; Bertsch, P.M.; Bivins, A.; Bibby, K.; Farkas, K.; Gathercole, A.; Haramoto, E.; Gyawali, P.; Korajkic, A.; McMinn, B.R.; et al. Comparison of virus concentration methods for the RT-qPCR based recovery of murine hepatitis virus, a surrogate for SARS-CoV-2 from untreated wastewater. Sci. Total Environ. 2020, 739, 139960. [Google Scholar] [CrossRef]
- Tandukar, S.; Sherchan, S.P.; Haramoto, E. Applicability of crAssphage, pepper mild mottle virus, and tobacco mosaic virus as indicators of reduction of enteric viruses during wastewater treatment. Sci. Rep. 2020, 10, 3616. [Google Scholar] [CrossRef] [Green Version]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CDC. 2019-Novel Coronavirus (2019-nCoV) Real-Time RT-PCR Primer and Probe Information. 2020. Available online: https://www.cdc.gov/coronavirus/2019-ncov/lab/rt-pcr-panel-primer-probes.html (accessed on 5 May 2020).
- Gendron, L.; Verreault, D.; Veillette, M.; Moineau, S.; Duchaine, C. Evaluation of Filters for the Sampling and Quantification of RNA Phage Aerosols. Aerosol Sci. Technol. 2010, 44, 893–901. [Google Scholar] [CrossRef]
- Saawarn, B.; Hait, S. Occurrence, fate and removal of SARS-CoV-2 in wastewater: Current knowledge and future perspectives. J. Environ. Chem. Eng. 2021, 9, 104870. [Google Scholar] [CrossRef]
- Ahmed, A.; Bivins, P.M.; Bertsch, K.; Bibby, P.M.; Choi, K.; Farkas, P.; Gyawali, K.A.; Hamilton, E.; Haramoto, M.; Kitajima, S.L.; et al. Surveillance of SARS-CoV-2 RNA in wastewater: Methods optimisation and quality control are crucial for generating reliable public health information. Curr. Opin. Environ. Sci. Health 2020, 17, 82–93. [Google Scholar] [CrossRef]
- Zheng, S.; Fan, J.; Yu, F.; Feng, B.; Lou, B.; Zou, Q.; Xie, G.; Lin, S.; Wang, R.; Yang, X.; et al. Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Zhejiang province, China, January-March 2020: Retrospective cohort study. BMJ 2020, 369, m1443. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, W.; Harwood, V.J.; Gyawali, P.; Sidhu, J.P.S.; Toze, S. Comparison of Concentration Methods for Quantitative Detection of Sewage-Associated Viral Markers in Environmental Waters. Appl. Environ. Microbiol. 2015, 81, 2042–2049. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, R.; Curtis, K.; Bivins, A.; Bibby, K.; Weir, M.H.; Yetka, K.; Thompson, H.; Keeling, D.; Mitchell, J.; Gonzalez, D. COVID-19 surveillance in Southeastern Virginia using wastewater-based epidemiology. Water Res. 2020, 186, 116296. [Google Scholar] [CrossRef] [PubMed]
- Barra, G.B.; Santa Rita, T.H.; Mesquita, P.G.; Jacomo, R.H.; Nery, L.F.A. Analytical sensibility and specificity of two RT-qPCR protocols for SARS-CoV-2 detection performed in an automated workflow. Infectious Diseases (except HIV/AIDS). Genes 2020, 11, 1183. [Google Scholar] [CrossRef]
- Vogels, C.B.F.; Brito, A.F.; Wyllie, A.L.; Fauver, J.R.; Ott, I.M.; Kalinich, C.C.; Petrone, M.E.; Casanovas-Massana, A.; Muenker, M.C.; Moore, A.J.; et al. Analytical sensitivity and efficiency comparisons of SARS-CoV-2 RT–qPCR primer–probe sets. Nat. Microbiol. 2020, 5, 1299–1305. [Google Scholar] [CrossRef]
- Kumar, M.; Kuroda, K.; Patel, A.K.; Patel, N.; Bhattacharya, P.; Joshi, M.; Joshi, C.G. Decay of SARS-CoV-2 RNA along the wastewater treatment outfitted with Upflow Anaerobic Sludge Blanket (UASB) system evaluated through two sample concentration techniques. Sci. Total Environ. 2021, 754, 142329. [Google Scholar] [CrossRef] [PubMed]
- Westhaus, S.; Weber, F.-A.; Schiwy, S.; Linnemann, V.; Brinkmann, M.; Widera, M.; Greve, C.; Janke, A.; Hollert, H.; Wintgens, T.; et al. Detection of SARS-CoV-2 in raw and treated wastewater in Germany—Suitability for COVID-19 surveillance and potential transmission risks. Sci. Total Environ. 2021, 751, 141750. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, W.; Bertsch, P.M.; Bibby, K.; Haramoto, E.; Hewitt, J.; Huygens, F.; Gyawali, P.; Korajkic, A.; Riddell, S.; Sherchan, S.P.; et al. Decay of SARS-CoV-2 and surrogate murine hepatitis virus RNA in untreated wastewater to inform application in wastewater-based epidemiology. Environ. Res. 2020, 191, 110092. [Google Scholar] [CrossRef] [PubMed]
WWTPs | Location a | Population Served b | Treatment Train |
---|---|---|---|
A | VA | 300,000 | preliminary screening, grit removal, primary clarification, fine screening, flow equalization, membrane bioreactors (MBR), activated carbon, and UV disinfection. |
B/C | FL | 974,996 | WWTP B uses an advanced Bardenpho process while WWTP C uses UV disinfection |
D | FL | 471,826 | a Modified Ludzack Ettinger (MLE) process configuration with two biological treatment trains. |
E/F | GA | 936,250 | WWTP E uses advanced membrane bioreactor (MBR) wastewater treatment, WWTP F uses biological activated carbon (BAC) and ozonation |
Assay | Target Gene | Primer/Probe | Sequence (5′ > 3′) a | PCR Conditions | Reference |
---|---|---|---|---|---|
N1 | Nucleocapsid (N) | 2019-nCoV_N1-F | GAC CCC AAA ATC AGC GAA AT | 95 °C for 10 min and 45 cycles of 95 °C for 10 s and 55 °C for 30 s | [23] |
2019-nCoV_N1-R | TCT GGT TAC TGC CAG TTG AAT CTG | ||||
2019-nCoV_N1-P | FAM-ACCCCGCATTACGTTTGGTGGACC-BHQ1 | ||||
N2 | Nucleocapsid (N) | 2019-nCoV_N2-F | TTA CAA ACA TTG GCC GCA AA | 95 °C for 10 min and 45 cycles of 95 °C for 10 s and 55 °C for 30 s | [23] |
2019-nCoV_N2-R | GCG CGA CAT TCC GAA GAA | ||||
phi6 | phi-6S 1 | 2019-nCoV_N2-P phi6- F phi6- R phi6- P | FAM-ACAATTTGCCCCCAGCGCTTCAG-BHQ1 TGGCGGCGGTCAAGAGC GGATGATTCTCCAGAAGCTGCTG FAM/CGGTC GTCG/ZEN/CAGGTCTGACACTCGC/3IABkFQ/ | 94 °C for 3 min followed by 35 cycles of 94 °C for 15 s and 60 °C for 1 min | [24] |
States | WWTPs | Sample | No of Samples Tested | No. of Positive (%) | GC/L | ||
---|---|---|---|---|---|---|---|
N1 | N2 | N1 | N2 | ||||
Virginia | A | Influent | 10 | (1/3) a (2/10) b | (1/3) a (2/10) b | 4.3 × 103 a 3.36 × 103 b 3.43 ×103 b | 4.4 × 103 a 1.70 × 103 b 3.30 × 102 b |
Effluent | 12 | (0/3) a (0/12) b | (0/3) a (0/12) b | ||||
Florida | B | Influent | 6 | (0/2) a (0/6) b | (0/2) a (0/6) b | ||
Secondary Effluent | 4 | (0/2) a (0/4) b | (0/2) a (0/4) b | ||||
Effluent | 4 | (0/1) a (0/4) b | (0/1) a (0/4) b | ||||
C | Influent | 6 | (0/2) a (0/6) b | (0/2) a (0/6) b | |||
Secondary Effluent | 4 | (0/2) a (0/4) b | (0/2) a (0/4) b | ||||
Effluent | 4 | (0/2) a (0/4) b | (0/2) a (0/4) b | ||||
D | Influent | 10 | (1/10) b | (2/10) b | 8.70 × 102 b | 8.0 × 102 b 9.3 × 102 b | |
Secondary Effluent | 6 | (0/6) b | (0/6) b | ||||
Effluent | 4 | (0/6) b | (0/6) b | ||||
Georgia | E | Influent | 6 | (1/2) a (1/6) b | (1/2) a (1/6) b | 1.0 × 104 a 1.5 ×103 b | 7.8 × 103 a 1.70 × 103 b |
Secondary Effluent | 6 | (0/1) a (0/6) b | (0/1) a (0/6) b | ||||
Effluent | 6 | (0/1) a (0/6) b | (0/1) a (0/6) b | ||||
F | Influent | 4 | (1/2) a (0/4) b | (1/2) a (0/4) b | 6.5 × 103 b | 1.9 × 104 b | |
Secondary Effluent | 4 | (0/2) a (0/4) b | (0/2) a (0/4) b | ||||
Effluent | 4 | (0/2) a (0/4) b | (0/2) a (0/4) b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sherchan, S.P.; Shahin, S.; Patel, J.; Ward, L.M.; Tandukar, S.; Uprety, S.; Schmitz, B.W.; Ahmed, W.; Simpson, S.; Gyawali, P. Occurrence of SARS-CoV-2 RNA in Six Municipal Wastewater Treatment Plants at the Early Stage of COVID-19 Pandemic in The United States. Pathogens 2021, 10, 798. https://doi.org/10.3390/pathogens10070798
Sherchan SP, Shahin S, Patel J, Ward LM, Tandukar S, Uprety S, Schmitz BW, Ahmed W, Simpson S, Gyawali P. Occurrence of SARS-CoV-2 RNA in Six Municipal Wastewater Treatment Plants at the Early Stage of COVID-19 Pandemic in The United States. Pathogens. 2021; 10(7):798. https://doi.org/10.3390/pathogens10070798
Chicago/Turabian StyleSherchan, Samendra P., Shalina Shahin, Jeenal Patel, Lauren M. Ward, Sarmila Tandukar, Sital Uprety, Bradley W. Schmitz, Warish Ahmed, Stuart Simpson, and Pradip Gyawali. 2021. "Occurrence of SARS-CoV-2 RNA in Six Municipal Wastewater Treatment Plants at the Early Stage of COVID-19 Pandemic in The United States" Pathogens 10, no. 7: 798. https://doi.org/10.3390/pathogens10070798
APA StyleSherchan, S. P., Shahin, S., Patel, J., Ward, L. M., Tandukar, S., Uprety, S., Schmitz, B. W., Ahmed, W., Simpson, S., & Gyawali, P. (2021). Occurrence of SARS-CoV-2 RNA in Six Municipal Wastewater Treatment Plants at the Early Stage of COVID-19 Pandemic in The United States. Pathogens, 10(7), 798. https://doi.org/10.3390/pathogens10070798