The First Detection and Genetic Characterization of Four Different Honeybee Viruses in Wild Bumblebees from Croatia
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Field Sampling
4.2. Molecular Analyses in Laboratory Conditions
4.3. Data Processing, Statistical Analysis, and Reporting
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Graystock, P.; Blane, E.J.; McFrederick, Q.S.; Goulson, D.; Hughes, W.O.H. Do managed bees drive parasite spread and emergence in wild bees? Int. J. Parasitol. Parasites Wildl. 2016, 5, 64–75. [Google Scholar] [CrossRef] [Green Version]
- Osborne, J.L.; Williams, P.H. Bumble bees as pollinators of crops and wild flowers. In Bumble Bees for Pleasure and Profit; Matheson, A., Ed.; IBRA: Cardif, UK, 1996; pp. 24–32. [Google Scholar]
- Velthius, H.H.V.; van Doorn, A. A century of advances in bumblebee domestication and the economic and environmental aspects of its commercialization for pollination. Apidologie 2006, 37, 421–451. [Google Scholar] [CrossRef] [Green Version]
- Williams, P.H.; Osborne, J.L. Bumblebee vulnerability and conservation world-wide. Apidologie 2009, 40, 367–387. [Google Scholar] [CrossRef] [Green Version]
- Potts, S.G.; Biesmeijer, J.C.; Kremen, C.; Neumann, P.; Schweiger, O.; Kunin, W.E. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 2010, 25, 345–353. [Google Scholar] [CrossRef]
- Cameron, S.A.; Lozier, J.D.; Strange, J.P.; Koch, J.B.; Cordes, N.; Solter, L.F.; Griswold, T.L. Patterns of widespread decline in North American bumble bees. Proc. Natl. Acad. Sci. USA 2011, 108, 662–667. [Google Scholar] [CrossRef] [Green Version]
- Cameron, S.A.; Sadd, B.M. Global trends in bumble bee health. Ann. Rev. Entomol. 2020, 65, 209–232. [Google Scholar] [CrossRef] [Green Version]
- McCallum, H.; Dobson, A. Disease, habitat fragmentation and conservation. Proc. Biol. Sci. 2002, 269, 2041–2049. [Google Scholar] [CrossRef] [Green Version]
- Fürst, M.A.; McMahon, D.P.; Osborne, J.L.; Paxton, R.J.; Brown, M.J.F. Disease associations between honeybees and bumlebees as a threat to wild pollinators. Nature 2014, 506, 364–366. [Google Scholar] [CrossRef]
- Toplak, I.; Šimenc, L.; Pislak Ocepek, M.; Bevk, D. Determination of Genetically Identical Strains of Four Honeybee Viruses in Bumblebee Positive Samples. Viruses 2020, 12, 1310. [Google Scholar] [CrossRef] [PubMed]
- Alger, S.A.; Burnham, P.A.; Boncristiani, H.F.; Brody, A.K. RNA virus spillover from managed honeybees (Apis mellifera) to wild bumblebees (Bombus spp.). PLoS ONE 2019, 14, e0217822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamnikar-Ciglenecki, U.; Pislak Ocepek, M.; Toplak, I. Genetic diversity of deformed wing virus from Apis mellifera carnica (Hymenoptera: Apidae) and Varroa Mite (Mesostigmata: Varroidae). J. Econ. Entomol. 2019, 112, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Biesmeijer, J.C.; Roberts, S.P.M.; Reemer, M.; Ohlemuller, R.; Edwards, M.; Peeters, T.; Schaffers, A.P.; Potts, S.G.; Kleukers, R.; Thomas, C.D.; et al. Parallel Declines in Pollinators and Insect Pollinated Plants in Britain and The Netherlands. Science 2006, 313, 351–354. [Google Scholar] [CrossRef]
- Fontaine, C.; Dajoz, I.; Meriguet, J.; Loreau, M. Functional diversity of plant-pollinator interaction webs enhances the persistence of plant communities. PLoS Biol. 2006, 4, e1. [Google Scholar] [CrossRef]
- McMahon, D.P.; Furst, M.A.; Caspar, J.; Theodorou, P.; Brown, M.J.F.; Paxton, R.J. A sting in the spit: Widespread cross-infection of multiple RNA viruses across wild and managed bees. J. Anim. Ecol. 2015, 84, 615–624. [Google Scholar] [CrossRef] [PubMed]
- Sachman-Ruiz, B.; Narváez-Padilla, V.; Reynaud, E. Commercial Bombus impatiens as reservoirs of emerging infectious diseases in central México. Biol. Invasions 2015, 17, 2043–2053. [Google Scholar] [CrossRef] [Green Version]
- Tlak Gajger, I.; Kolodziejek, J.; Bakonyi, T.; Nowotny, N. Prevalence and distribution patterns of seven different honeybee viruses in diseased colonies: A case study from Croatia. Apidologie 2014, 45, 701–706. [Google Scholar] [CrossRef] [Green Version]
- Tlak Gajger, I.; Bičak, J.; Belužić, R. The occurrence of honeybee viruses in apiaries in the Koprivnica-Križevci district in Croatia. Vet. Arhiv. 2014, 84, 421–428. [Google Scholar]
- Forsgren, E.; de Miranda, J.R.; Isaksson, M.; Wei, S.; Fries, I. Deformed wing virus associated with Tropilaelaps mercedesae infesting European honey bees (Apis mellifera). Exp. Appl. Acarol. 2009, 47, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Tehel, A.; Streicher, T.; Tragust, S.; Paxton, R.J. Experimental infection of bumblebees with honeybee-associated viruses: No direct fitness costa but potential future threats to novel wild bee hosts. R. Soc. Open Sci. 2020, 7, 200480. [Google Scholar] [CrossRef]
- Beaurepaire, A.; Piot, N.; Doublet, V.; Antunez, K.; Campbell, E.; Chantawannakul, P.; Chejanovsky, N.; Gajda, A.; Heerman, M.; Panziera, D.; et al. Diversity and Global Distribution of Viruses of the Western Honey Bee, Apis Mellifera. Insects 2020, 11, 239. [Google Scholar] [CrossRef]
- Ullah, A.; Tlak Gajger, I.; Majoros, A.; Dar, S.A.; Khane, S.; Kalimullah; Shah, A.H.; Nasir, S.M.; Khabir, M.N.; Hussain, R.; et al. Viral impacts on honey bee populations: A review. Saudi J. Biol. Sci. 2021, 28, 523–530. [Google Scholar] [CrossRef] [PubMed]
- De Miranda, J.R.; Gauthier, L.; Ribiere, M.; Chen, Y.P. Honey bee viruses and their effect on bee and colony health. In Honey Bee Colony Health: Challenges and Sustainable Solutions; Sammataro, D., Yoder, J., Eds.; CRC Press: Boca Raton, FL, USA, 2012; pp. 71–102. [Google Scholar]
- Grozinger, C.M.; Flenniken, M.L. Bee viruses: Ecology, pathogenicity, and impacts. Annu. Rev. Entomol. 2019, 64, 205–226. [Google Scholar] [CrossRef] [PubMed]
- Manley, R.; Temperton, B.; Doyle, T.; Gates, D.; Hedges, S.; Boots, M.; Wilfert, L. Knock-on community impacts of a novel vector: Spillover of emerging DWV-B from Varroa-infested honeybees to wild bumblebees. Ecol. Lett. 2019, 22, 1306–1315. [Google Scholar] [CrossRef] [Green Version]
- Martin, S.J.; Highfield, A.C.; Brettell, L.; Villalobos, E.M.; Budge, G.E.; Powell, M.; Nikaido, S.; Schroeder, D.C. Global honey bee viral landscape altered by a parasitic mite. Science 2012, 336, 1304–1306. [Google Scholar] [CrossRef] [PubMed]
- Mondet, F.; De Miranda, J.R.; Kretzschmar, A.; Le Conte, Y.; Mercer, A.R. On the front line: Quantitative virus dynamics in honeybee (Apis mellifera L.) colonies along a new expansion front of the parasite Varroa destructor. PLoS Pathog. 2014, 10, e1004323. [Google Scholar] [CrossRef] [Green Version]
- Dolezal, A.G.; Hendrix, S.D.; Scavo, N.A.; Carrillo-Tripp, J.; Harris, M.A.; Wheelock, M.J.; O’Neal, M.E.; Toth, A.L. Honeybee viruses and wild bees: Viral prevalence, loads and experimental inoculation. PLoS ONE 2016, 11, e0166190. [Google Scholar] [CrossRef] [PubMed]
- Jamnikar Ciglenecki, U.; Toplak, I. Development of a real-time RT-PCR assay with TaqMan probe for specific detection of acute bee paralysis virus. J. Virol. Methods 2012, 184, 63–68. [Google Scholar] [CrossRef]
- Chantawannakul, P.; Ward, L.; Boonham, N.; Brown, M. A scientific note on the detection of honeybee viruses using real-time PCR (TaqMan) in varroa mites collected from a Thai honeybee (Apis mellifera) apiary. J. Invertebr. Pathol. 2006, 91, 69–73. [Google Scholar] [CrossRef]
- Blanchard, P.; Regnault, J.; Schurr, F.; Dubois, E.; Ribière, M. Intra-laboratory validation of chronic bee paralysis virus quantitation using an accredited standardized real-time quantitative RT-PCR method. J. Virol. Method. 2012, 180, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Schurr, F.; Tison, A.; Militano, L.; Cheviron, N.; Sircoulomb, F.; Riviere, M.P.; Ribiere-Chabert, M.; Thiery, R.; Dubois, E. Validation of quantitative real-time RT-PCR assays for the detection of six honeybee viruses. J. Virol. Methods 2019, 270, 70–78. [Google Scholar] [CrossRef]
- Toplak, I.; Rihtarič, D.; Jamnikar Ciglenečki, U.; Hostnik, P.; Jenčič, V.; Barlič-Maganja, D. Detection of six honeybee viruses in clinically affected colonies of Carniolan gray bee (Apis mellifera carnica). Slov. Vet. Res. 2012, 49, 83–91. [Google Scholar]
- Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 2013, 30, 2725–2729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample Number | Name of Sample | ABPV Copy Number/5 µL | BQCV Copy Number/5 µL | CBPV Copy Number/5 µL | DWV Copy Number/5 µL | Number of Viruses |
---|---|---|---|---|---|---|
1 | Bombus-Zac/2018 | 9.082 × 102 | 1.251 × 104 | 0 | 0 | 2 |
2 | Bombus-Kri/2018 | 0 | 4.415 × 106 | 0 | 0 | 1 |
3 | Bombus-Pas/2018 | 0 | 0 | 0 | 0 | 0 |
4 | Bombus-Uglj/2018 | 0 | 0 | 0 | 1.739 × 102 | 1 |
5 | Bombus-Bnm/18 | 0 | 0 | 0 | 1.257 × 104 | 1 |
6 | Bombus-Mak/2018 | 0 | 9.160 × 107 | 0 | 1.260 × 104 | 2 |
7 | Bombus-Mar/2018 | 0 | 2.198 × 106 | 0 | 0 | 1 |
8 | Bombus-Kra/2018 | 0 | 4.212 × 106 | 0 | 0 | 1 |
9 | Bombus-Var/2018 | 0 | 3.511 × 106 | 0 | 0 | 1 |
10 | Bombus-Ses/2018 | 0 | 18.09 × 107 | 0 | 6.234 × 10 | 2 |
11 | Bombus-Zel/2018 | 0 | 25.83 × 105 | 0 | 0 | 1 |
12 | Bombus-Kop/2018 | 0 | 2.257 × 105 | 0 | 0 | 1 |
13 | Bombus-Zab/2018 | 0 | 1.678 × 106 | 0 | 0 | 1 |
14 | Bombus-Dur/2018 | 0 | 2.777 × 106 | 0 | 0 | 1 |
15 | Bombus-Ora/2018 | 0 | 4.400 × 105 | 0 | 0 | 1 |
16 | Bombus-Bje/2018 | 0 | 1.042 × 106 | 0 | 0 | 1 |
17 | Bombus-Dug/2018 | 0 | 2.131 × 105 | 0 | 0 | 1 |
18 | Bombus-Jad/2018 | 0 | 3.200 × 107 | 0 | 3.351 × 10 | 2 |
19 | Bombus-Rov/2018 | 0 | 1.588 × 105 | 0 | 0 | 1 |
20 | Bombus-Krk/2018 | 0 | 8.975 × 103 | 0 | 3.08 | 2 |
21 | Bombus-Dub/2018 | 0 | 1.656 × 105 | 6.33 | 0 | 2 |
22 | Bombus-Sib/2018 | 0 | 1.110 × 106 | 0 | 6.392 × 104 | 2 |
23 | Bombus-Vet/2018 | 0 | 7.72 × 105 | 0 | 1.285 × 102 | 2 |
24 | Bombus-Zag/2018 | 0 | 1.309 × 105 | 0 | 0 | 1 |
25 | Bombus-Gos/2018 | 0 | 1.348 × 105 | 0 | 3.741 × 102 | 2 |
26 | Bombus-Mur/2018 | 0 | 1.360 × 105 | 0 | 0 | 1 |
27 | Bombus-Nez/2018 | 0 | 1.224 × 108 | 0 | 1.140 × 103 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tlak Gajger, I.; Šimenc, L.; Toplak, I. The First Detection and Genetic Characterization of Four Different Honeybee Viruses in Wild Bumblebees from Croatia. Pathogens 2021, 10, 808. https://doi.org/10.3390/pathogens10070808
Tlak Gajger I, Šimenc L, Toplak I. The First Detection and Genetic Characterization of Four Different Honeybee Viruses in Wild Bumblebees from Croatia. Pathogens. 2021; 10(7):808. https://doi.org/10.3390/pathogens10070808
Chicago/Turabian StyleTlak Gajger, Ivana, Laura Šimenc, and Ivan Toplak. 2021. "The First Detection and Genetic Characterization of Four Different Honeybee Viruses in Wild Bumblebees from Croatia" Pathogens 10, no. 7: 808. https://doi.org/10.3390/pathogens10070808
APA StyleTlak Gajger, I., Šimenc, L., & Toplak, I. (2021). The First Detection and Genetic Characterization of Four Different Honeybee Viruses in Wild Bumblebees from Croatia. Pathogens, 10(7), 808. https://doi.org/10.3390/pathogens10070808