Unpredictable In Vitro Killing Activity of Amphotericin B against Four Candida auris Clades
Abstract
:1. Introduction
2. Results
2.1. MIC Determination by Broth Microdilution and Etest Methods
2.2. Minimum Fungicidal Concentrations (MFCs)
2.3. Time Kill Results
2.3.1. South Asian Clade
2.3.2. East Asian Clade
2.3.3. South African Clade
2.3.4. South American Clade
2.4. Widefield Fluorescence Microscopy
3. Discussion
4. Materials and Methods
4.1. Isolates
4.2. Minimum Inhibitory Concentration
4.3. Minimum Fungicidal Concentration
4.4. Time–Kill Studies
4.5. Widefield Fluorescence Microscopy
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Satoh, K.; Makimura, K.; Hasumi, Y.; Nishiyama, Y.; Uchida, K.; Yamaguchi. Candida auris sp. nov., a novel ascomycetous yeast isolated from the external ear canal of an inpatient in a Japanese hospital. Microbiol. Immunol. 2009, 53, 41–44. [Google Scholar] [CrossRef] [PubMed]
- Allaw, F.; Zahreddine, K.N.; Ibrahim, A.; Tannous, J.; Taleb, H.; Bizri, A.R.; Dbaibo, G.; Kanj, S.S. First Candida auris outbreak during a COVID-19 pandemic in a tertiary-care center in Lebanon. Pathogens 2021, 10, 157. [Google Scholar] [CrossRef] [PubMed]
- Sekyere, O.J. Candida auris: A systematic review and meta-analysis of current updates on an emerging multidrug-resistant pathogen. MicrobiologyOpen 2018, 7, e578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lockhart, S.R.; Etienne, K.A.; Vallabhaneni, S.; Farooqi, J.; Chowdhary, A.; Govender, N.P.; Colombo, A.L.; Calvo, B.; Cuomo, C.A.; Desjardins, C.A.; et al. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin. Infect. Dis. 2017, 64, 134–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chow, N.A.; de Groot, T.; Badali, H.; Abastabar, M.; Chiller, T.M.; Meis, J.F. Potential fifth clade of Candida auris, Iran, 2018. Emerg. Infect. Dis. 2019, 25, 1780–1781. [Google Scholar] [CrossRef] [Green Version]
- Borman, A.M.; Szekely, A.; Johnson, E.M. Comparative pathogenicity of United Kingdom isolates of the emerging pathogen, Candida auris and other key pathogenic Candida species. MSphere 2016, 18, e00189-16. [Google Scholar] [CrossRef] [Green Version]
- Szekely, A.; Borman, A.M.; Johnson, E.M. Candida auris isolates of the Southern Asian and South African lineages exhibit different phenotypic and antifungal susceptibility profiles in vitro. J. Clin. Microbiol. 2019, 57, e02055-18. [Google Scholar] [CrossRef] [Green Version]
- Forgács, L.; Borman, A.M.; Prépost, E.; Tóth, Z.; Kardos, G.; Kovács, R.; Szekely, A.; Nagy, F.; Kovacs, I.; Majoros, L. Comparison of in vivo pathogenicity of four Candida auris clades in a neutropenic bloodstream infection murine model. Emerg. Microbes Infect. 2020, 9, 1160–1169. [Google Scholar] [CrossRef]
- Kovács, R.; Tóth, Z.; Locke, J.B.; Forgács, L.; Kardos, G.; Nagy, F.; Borman, A.M.; Majoros, L. Comparison of in vitro killing activity of rezafungin, anidulafungin, caspofungin, and micafungin against four Candida auris clades in RPMI-1640 in the absence and presence of human serum. Microorganisms 2021, 16, 863. [Google Scholar] [CrossRef]
- Chowdhary, A.; Prakash, A.; Sharma, C.; Kordalewska, M.; Kumar, A.; Sarma, S.; Tarai, B.; Singh, A.; Upadhyaya, G.; Upadhyay, S.; et al. A multicentre study of antifungal susceptibility patterns among 350 Candida auris isolates (2009–17) in India: Role of the ERG11 and FKS1 genes in azole and echinocandin resistance. J. Antimicrob. Chemother. 2018, 73, 891–899. [Google Scholar] [CrossRef]
- Escandón, P.; Chow, N.A.; Caceres, D.H.; Gade, L.; Berkow, E.L.; Armstrong, P.; Rivera, S.; Misas, E.; Duarte, C.; Moulton-Meissner, H.; et al. Molecular epidemiology of Candida auris in Colombia reveals a highly related, countrywide colonization with regional patterns in amphotericin B resistance. Clin. Infect. Dis. 2019, 68, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Montoya, M.C.; Moye-Rowley, W.S.; Krysan, D.J. Candida auris: The canary in the mine of antifungal drug resistance. ACS Infect. Dis. 2019, 13, 1487–1492. [Google Scholar] [CrossRef]
- Chowdhary, A.; Tarai, B.; Singh, A.; Sharma, A. Multidrug-resistant Candida auris infections in critically ill Coronavirus disease patients, India, April–July 2020. Emerg. Infect. Dis. 2020, 26, 2694–2696. [Google Scholar] [CrossRef] [PubMed]
- CDC. Available online: https://www.cdc.gov/fungal/candida-auris/c-auris-antifungal.html (accessed on 29 May 2020).
- Bellmann, R.; Smuszkiewicz, P. Pharmacokinetics of antifungal drugs: Practical implications for optimized treatment of patients. Infection 2017, 45, 737–779. [Google Scholar] [CrossRef] [PubMed]
- Pappas, P.G.; Kauffman, C.A.; Andes, D.R.; Clancy, C.J.; Marr, K.A.; Ostrosky-Zeichner, L.; Reboli, A.C.; Schuster, M.G.; Vazquez, J.A.; Walsh, T.J.; et al. Clinical practice guideline for the management of candidiasis: Update by the infectious diseases society of America. Clin. Infect. Dis. 2016, 62, e1–e50. [Google Scholar] [CrossRef] [PubMed]
- Carolus, H.; Pierson, S.; Lagrou, K.; van Dijck, P. Amphotericin B and other polyenes-discovery, clinical use, mode of action and drug resistance. J. Fungi 2020, 27, 321. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, 4th ed.; M27 Ed 4; CLSI: Wayne, PA, USA, 2017. [Google Scholar]
- Clinical and Laboratory Standards Institute. Performance Standards for Antifungal Susceptibility Testing of Yeasts, 1st ed.; M60 Ed 1; CLSI: Wayne, PA, USA, 2017. [Google Scholar]
- Lewis, R.E.; Wiederhold, N.P. The solubility ceiling: A rationale for continuous infusion amphotericin B therapy? Clin. Infect. Dis. 2003, 37, 871–872. [Google Scholar] [CrossRef]
- Dudiuk, C.; Berrio, I.; Leonardelli, F.; Morales-Lopez, S.; Theill, L.; Macedo, D.; Yesid-Rodriguez, J.; Salcedo, S.; Marin, A.; Gamarra, S.; et al. Antifungal activity and killing kinetics of anidulafungin, caspofungin and amphotericin B against Candida auris. J. Antimicrob. Chemother. 2019, 74, 2295–2302. [Google Scholar] [CrossRef] [PubMed]
- Lepak, A.J.; Zhao, M.; Berkow, E.L.; Lockhart, S.R.; Andes, D.R. Pharmacodynamic optimization for treatment of invasive Candida auris infection. Antimicrob. Agents Chemother. 2017, 61, e00791-17. [Google Scholar] [CrossRef] [Green Version]
- Hager, C.L.; Larkin, E.L.; Long, L.A.; Ghannoum, M.A. Evaluation of the efficacy of rezafungin, a novel echinocandin, in the treatment of disseminated Candida auris infection using an immunocompromised mouse model. J. Antimicrob. Chemother. 2018, 73, 2085–2088. [Google Scholar] [CrossRef] [Green Version]
- Hager, C.L.; Larkin, E.L.; Long, L.; Abidi, Z.F.; Shaw, K.J.; Ghannoum, M.A. In vitro and in vivo evaluation of the antifungal activity of APX001A/APX001 against Candida auris. Antimicrob. Agents Chemother. 2018, 23, e02319-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Billamboz, M.; Fatima, Z.; Hameed, S.; Jawhara, S. Promising drug candidates and new strategies for fighting against the emerging superbug Candida auris. Microorganisms 2021, 18, 634. [Google Scholar] [CrossRef]
- Peyclit, L.; Yousfi, H.; Rolain, J.-M.; Bittar, F. Drug repurposing in medical mycology: Identification of compounds as potential antifungals to overcome the emergence of multidrug-resistant fungi. Pharmaceuticals 2021, 14, 488. [Google Scholar] [CrossRef] [PubMed]
- Domán, M.; Kovács, R.; Kardos, G.; Gesztelyi, R.; Juhász, B.; Bozó, A.; Kardos, T.; Saleh, Q.; Majoros, L. Killing rates of caspofungin in 50 percent serum correlate with caspofungin efficacy against Candida albicans in a neutropenic murine model. Curr. Drug Deliv. 2016, 13, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Sóczó, G.; Kardos, G.; McNicholas, P.; Balogh, É.; Gergely, L.; Varga, I.; Kelentey, B.; Majoros, L. Correlation of posaconazole minimum fungicidal concentration and time-kill test against nine Candida species. J. Antimicrob. Chemother. 2007, 60, 1004–1009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Clade | Isolate Number | Body Site | MIC (mg/L) | |||
---|---|---|---|---|---|---|
BMD (CFU/mL) | Etest | |||||
103 | 104 | 24 h | 48 h | |||
South Asian | 10 | Wound swab | 0.5 | 2 | 0.5 | 0.5 |
12 | Unknown | 0.5 | 1 | 0.12 | 0.25 | |
20 (NCPF 8985) | Wound | 0.5 | 1 | 0.25 | 0.5 | |
27 (NCPF 89891) | Pleural fluid | 0.5 | 1 | 0.25 | 0.5 | |
174 | Nose swab | 1 | 2 | 0.25 | 1 | |
196 | Blood | 1 | 2 | 0.5 | 1 | |
East Asian | 15 (NCPF 8984) | External ear | 0.25 | 1 | 0.25 | 0.5 |
12372 (CBS 12372) | Blood | 0.12 | 1 | 0.25 | 1 | |
12373 (CBS 12373) | Blood | 0.25 | 1 | 0.25 | 1 | |
Type strain (NCPF 13029 = CBS 10913) | External ear | 0.25 | 1 | 0.12 | 0.25 | |
South African | 2 (NCPF 8977) | Cerebrospinal fluid | 0.5 | 1 | 0.25 | 0.5 |
182 | Sputum | 0.25 | 2 | 0.5 | 0.5 | |
185 | Blood | 0.5 | 1 | 0.25 | 0.5 | |
204 | Tracheostomy | 0.5 | 1 | 0.25 | 0.5 | |
206 | Blood | 0.5 | 2 | 0.25 | 0.5 | |
228 | Screening swab | 0.5 | 2 | 0.5 | 1 | |
South American | 13108 (CDC B-13108) | Hospital environment | 0.25 | 1 | 0.25 | 0.5 |
13112 (CDC B-13112) | Hospital environment | 0.5 | 1 | 0.12 | 0.25 | |
16565 (CDC B-16565) | Hospital environment | 0.25 | 1 | 0.25 | 0.5 | |
I-24 | Blood | 1 | 2 | 0.25 | 1 | |
I-156 | Blood | 1 | 1 | 0.25 | 1 | |
I-172 | Blood | 0.5 | 2 | 0.25 | 0.5 |
Clade | Isolate Number | MFC (mg/L) | Maximum Log Decreases in CFU in Time–Kill Experiments at the Indicated AMB Concentration (mg/L) | |||
---|---|---|---|---|---|---|
0.25 | 0.5 | 1 | 2 | |||
South Asian | 10 | 2 | −0.43 | −1.04 | −1.9 | −3.9 |
12 | 2 | −2.08 | −2.3 | −3.78 | −3.78 | |
20 | 1 | −0.74 | −2.86 | −3.78 | −3.78 | |
27 | 2 | −0.32 * | −1.0 | −1.6 | −3.6 | |
174 | 2 | NK | −0.30 * | −1.20 * | −3.30 | |
196 | 4 | NK | −0.18 * | −0.32 * | −1.22 | |
East Asian | 15 | 2 | −0.46 * | −0.79 | −1.47 | −3.90 |
12372 | 4 | −3.26 | −3.26 | −3.78 | −3.78 | |
12373 | 2 | −0.38 * | −1.22 | −1.88 | −3.78 | |
Type strain | 2 | −0.74 * | −1.60 | −3.78 | −3.78 | |
South African | 2 | 2 | −0.40 * | −1.62 | −3.78 | −3.78 |
182 | 2 | −0.38 * | −1.39 * | −4.20 | −4.20 | |
185 | 2 | −0.32 * | −0.90 | −2.23 | −3.90 | |
204 | 2 | −1.09 | −2.38 | −3.78 | −3.78 | |
206 | 2 | −0.30 * | −1.03 | −2.41 | −4.15 | |
228 | 2 | NK | −0.46 * | −1.48 | −2.50 | |
South American | 13108 | 2 | −0.48 * | −1.78 * | −3.78 | −3.78 |
13112 | 2 | −0.32 * | −0.96* | −1.78 | −3.60 | |
16565 | 2 | −0.88 * | −1.18 * | −1.82 | −3.08 | |
I−24 | 8 | NK | −0.79 * | −1.05 * | −1.85 | |
I−156 | 4 | NK | −0.25 * | −0.63 * | −1.40 * | |
I−172 | 8 | −0.30 * | −1.00 * | −1.70 * | −3.00 |
Clade | Isolate Number | Time (Hours) | |||||||
---|---|---|---|---|---|---|---|---|---|
T99 | T99.9 | ||||||||
0.25 mg/L | 0.5 mg/L | 1 mg/L | 2 mg/L | 0.25 mg/L | 0.5 mg/L | 1 mg/L | 2 mg/L | ||
South Asian | 10 | * NA | NA | 1.79 | 1.12 | NA | NA | NA | 1.69 |
12 | 3.36 | 1.53 | 0.78 | 0.53 | NA | NA | 1.16 | 0.79 | |
20 | NA | 2.79 | 0.82 | 0.56 | NA | NA | 1.22 | 0.84 | |
27 | NA | NA | NA | 1.04 | NA | NA | NA | 1.56 | |
174 | ** NK | NK | NK | 1.30 | NK | NK | NK | 1.96 | |
196 | NK | NK | NK | NA | NK | NK | NK | NA | |
East Asian | 15 | NA | NA | NA | 0.53 | NA | NA | NA | 0.79 |
12372 | 2.82 | 2.05 | 1.51 | 0.81 | 4.24 | 3.08 | 2.27 | 1.21 | |
12373 | NK | NA | NA | 2.03 | NK | NA | NA | 3.05 | |
Type strain | NA | NA | 1.18 | 0.53 | NA | NA | 1.77 | 0.79 | |
South African | 2 | NA | NA | 1.73 | 0.89 | NA | NA | 2.59 | 1.34 |
182 | NK | 6.05 | 1.48 | 0.88 | NK | NA | 2.22 | 1.32 | |
185 | NK | NA | 2.93 | 1.33 | NK | NA | NA | 1.99 | |
204 | NA | 5.85 | 2.86 | 1.38 | NA | NA | 4.29 | 2.07 | |
206 | NK | NA | 6.00 | 3.08 | NK | NA | NA | 4.62 | |
228 | NK | NK | NA | 1.59 | NK | NK | NA | NA | |
South American | 13108 | NK | NA | 2.23 | 1.39 | NK | NA | 3.35 | 2.10 |
13112 | NK | NK | NA | 1.72 | NK | NK | NA | 2.58 | |
16565 | NK | NA | NA | 1.28 | NK | NA | NA | 1.91 | |
I-24 | NK | NK | NA | NA | NK | NK | NA | NA | |
I-156 | NK | NK | NK | NA | NK | NK | NK | NA | |
I-172 | NK | NK | NA | 1.62 | NK | NK | NA | 2.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papp, Z.; Borman, A.M.; Forgács, L.; Kovács, R.; Tóth, Z.; Chun-Ju, C.; Kardos, G.; Juhász, B.; Szilvássy, J.; Majoros, L. Unpredictable In Vitro Killing Activity of Amphotericin B against Four Candida auris Clades. Pathogens 2021, 10, 990. https://doi.org/10.3390/pathogens10080990
Papp Z, Borman AM, Forgács L, Kovács R, Tóth Z, Chun-Ju C, Kardos G, Juhász B, Szilvássy J, Majoros L. Unpredictable In Vitro Killing Activity of Amphotericin B against Four Candida auris Clades. Pathogens. 2021; 10(8):990. https://doi.org/10.3390/pathogens10080990
Chicago/Turabian StylePapp, Zoltán, Andrew M. Borman, Lajos Forgács, Renátó Kovács, Zoltán Tóth, Chiu Chun-Ju, Gábor Kardos, Béla Juhász, Judit Szilvássy, and László Majoros. 2021. "Unpredictable In Vitro Killing Activity of Amphotericin B against Four Candida auris Clades" Pathogens 10, no. 8: 990. https://doi.org/10.3390/pathogens10080990
APA StylePapp, Z., Borman, A. M., Forgács, L., Kovács, R., Tóth, Z., Chun-Ju, C., Kardos, G., Juhász, B., Szilvássy, J., & Majoros, L. (2021). Unpredictable In Vitro Killing Activity of Amphotericin B against Four Candida auris Clades. Pathogens, 10(8), 990. https://doi.org/10.3390/pathogens10080990