Distinct Characteristics of Escherichia coli Isolated from Patients with Urinary Tract Infections in a Medical Center at a Ten-Year Interval
Abstract
:1. Introduction
2. Results
2.1. The Different Distribution of Phylogenetic Groups amongst E. coli Isolates at a 10-Year Interval
2.2. Antimicrobial Susceptibility of E. coli Isolated from UTI Patients
2.3. Antimicrobial Susceptibility of E. coli Isolated from UTI Patients Is Associated with Patient Age
2.4. The Different Prevalence of Bacterial Virulence Factors in E. coli Isolated from UTI Patients at a 10-Year Interval
3. Discussion
4. Materials and Methods
4.1. Sampling and Isolation of E. coli
4.2. Virulence Factors Identification
4.3. Phylogenetic Grouping and Escherichia coli Sequence Type 131 (ST131) Detection
4.4. Antimicrobial Susceptibility Testing
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Medina, M.; Castillo-Pino, E. An introduction to the epidemiology and burden of urinary tract infections. Ther. Adv. Urol. 2019, 11, 1756287219832172. [Google Scholar] [CrossRef] [Green Version]
- Geerlings, S.E. Clinical Presentations and Epidemiology of Urinary Tract Infections. Microbiol. Spectr. 2016, 4. [Google Scholar] [CrossRef] [Green Version]
- Dubbs, S.B.; Sommerkamp, S.K. Evaluation and Management of Urinary Tract Infection in the Emergency Department. Emerg. Med. Clin. N. Am. 2019, 37, 707–723. [Google Scholar] [CrossRef] [PubMed]
- Stapleton, A.E. Urinary tract infection pathogenesis: Host factors. Infect. Dis. Clin. N. Am. 2014, 28, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.H.; Wang, M.C.; Liu, P.Y.; Chen, P.S.; Wen, L.L.; Teng, C.H.; Kao, C.Y. Escherichia coli urinary tract infections: Host age-related differences in bacterial virulence factors and antimicrobial susceptibility. J. Microbiol. Immunol. Infect. 2021, in press. [Google Scholar] [CrossRef] [PubMed]
- Reitzer, L.; Zimmern, P. Rapid Growth and Metabolism of Uropathogenic Escherichia coli in Relation to Urine Composition. Clin. Microbiol. Rev. 2019, 33, e00101-19. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Subhadra, B.; Son, Y.J.; Kim, D.H.; Park, H.S.; Kim, J.M.; Koo, S.H.; Oh, M.H.; Kim, H.J.; Choi, C.H. Phylogenetic group distributions, virulence factors and antimicrobial resistance properties of uropathogenic Escherichia coli strains isolated from patients with urinary tract infections in South Korea. Lett. Appl. Microbiol. 2016, 62, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Tseng, C.C.; Lin, W.H.; Wu, A.B.; Wang, M.C.; Teng, C.H.; Wu, J.J. Escherichia coli FimH adhesins act synergistically with PapGII adhesins for enhancing establishment and maintenance of kidney infection. J. Microbiol. Immunol. Infect. 2020, in press. [Google Scholar] [CrossRef] [PubMed]
- Tseng, C.C.; Wang, M.C.; Lin, W.H.; Liao, I.C.; Chen, W.C.; Teng, C.H.; Yan, J.J.; Wu, A.B.; Wu, J.J. Role of class II P fimbriae and cytokine response in the pathogenesis of Escherichia coli kidney infection in diabetic mice. J. Microbiol. Immunol. Infect. 2018, 51, 492–499. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.C.; Tseng, C.C.; Chen, C.Y.; Wu, J.J.; Huang, J.J. The role of bacterial virulence and host factors in patients with Escherichia coli bacteremia who have acute cholangitis or upper urinary tract infection. Clin. Infect. Dis. 2002, 35, 1161–1166. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.C.; Tseng, C.C.; Wu, A.B.; Lin, W.H.; Teng, C.H.; Yan, J.J.; Wu, J.J. Bacterial characteristics and glycemic control in diabetic patients with Escherichia coli urinary tract infection. J. Microbiol. Immunol. Infect. 2013, 46, 24–29. [Google Scholar] [CrossRef] [Green Version]
- Luna-Pineda, V.M.; Moreno-Fierros, L.; Cazares-Dominguez, V.; Ilhuicatzi-Alvarado, D.; Ochoa, S.A.; Cruz-Cordova, A.; Valencia-Mayoral, P.; Rodriguez-Leviz, A.; Xicohtencatl-Cortes, J. Curli of Uropathogenic Escherichia coli Enhance Urinary Tract Colonization as a Fitness Factor. Front. Microbiol. 2019, 10, 2063. [Google Scholar] [CrossRef]
- Garcia, E.C.; Brumbaugh, A.R.; Mobley, H.L. Redundancy and specificity of Escherichia coli iron acquisition systems during urinary tract infection. Infect. Immun. 2011, 79, 1225–1235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, J.R.; Jelacic, S.; Schoening, L.M.; Clabots, C.; Shaikh, N.; Mobley, H.L.; Tarr, P.I. The IrgA homologue adhesin Iha is an Escherichia coli virulence factor in murine urinary tract infection. Infect. Immun. 2005, 73, 965–971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres, A.G.; Cieza, R.J.; Rojas-Lopez, M.; Blumentritt, C.A.; Souza, C.S.; Johnston, R.K.; Strockbine, N.; Kaper, J.B.; Sbrana, E.; Popov, V.L. In vivo bioluminescence imaging of Escherichia coli O104:H4 and role of aerobactin during colonization of a mouse model of infection. BMC Microbiol. 2012, 12, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia, T.A.; Ventura, C.L.; Smith, M.A.; Merrell, D.S.; O’Brien, A.D. Cytotoxic necrotizing factor 1 and hemolysin from uropathogenic Escherichia coli elicit different host responses in the murine bladder. Infect. Immun. 2013, 81, 99–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, S.; Nakano, M.; Terai, A.; Yuri, K.; Nakata, K.; Nair, G.B.; Kurazono, H.; Ogawa, O. The presence of the virulence island containing the usp gene in uropathogenic Escherichia coli is associated with urinary tract infection in an experimental mouse model. J. Urol. 2001, 165, 1347–1351. [Google Scholar] [CrossRef]
- He, X.L.; Wang, Q.; Peng, L.; Qu, Y.R.; Puthiyakunnon, S.; Liu, X.L.; Hui, C.Y.; Boddu, S.; Cao, H.; Huang, S.H. Role of uropathogenic Escherichia coli outer membrane protein T in pathogenesis of urinary tract infection. Pathog. Dis. 2015, 73. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.R.; O’Bryan, T.T.; Delavari, P.; Kuskowski, M.; Stapleton, A.; Carlino, U.; Russo, T.A. Clonal relationships and extended virulence genotypes among Escherichia coli isolates from women with a first or recurrent episode of cystitis. J. Infect. Dis. 2001, 183, 1508–1517. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.R.; Porter, S.; Johnston, B.; Kuskowski, M.A.; Spurbeck, R.R.; Mobley, H.L.; Williamson, D.A. Host Characteristics and Bacterial Traits Predict Experimental Virulence for Escherichia coli Bloodstream Isolates From Patients With Urosepsis. Open Forum. Infect. Dis 2015, 2, ofv083. [Google Scholar] [CrossRef]
- Luo, Y.; Ma, Y.; Zhao, Q.; Wang, L.; Guo, L.; Ye, L.; Zhang, Y.; Yang, J. Similarity and divergence of phylogenies, antimicrobial susceptibilities, and virulence factor profiles of Escherichia coli isolates causing recurrent urinary tract infections that persist or result from reinfection. J. Clin. Microbiol. 2012, 50, 4002–4007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bedenic, B.; Mestrovic, T. Mechanisms of Resistance in Gram-Negative Urinary Pathogens: From Country-Specific Molecular Insights to Global Clinical Relevance. Diagnostics 2021, 11, 800. [Google Scholar] [CrossRef] [PubMed]
- Abd El Ghany, M.; Sharaf, H.; Al-Agamy, M.H.; Shibl, A.; Hill-Cawthorne, G.A.; Hong, P.Y. Genomic characterization of NDM-1 and 5, and OXA-181 carbapenemases in uropathogenic Escherichia coli isolates from Riyadh, Saudi Arabia. PLoS ONE 2018, 13, e0201613. [Google Scholar] [CrossRef] [PubMed]
- Gurung, S.; Kafle, S.; Dhungel, B.; Adhikari, N.; Thapa Shrestha, U.; Adhikari, B.; Banjara, M.R.; Rijal, K.R.; Ghimire, P. Detection of OXA-48 Gene in Carbapenem-Resistant Escherichia coli and Klebsiella pneumoniae from Urine Samples. Infect. Drug Resist. 2020, 13, 2311–2321. [Google Scholar] [CrossRef] [PubMed]
- Kao, C.Y.; Lin, W.H.; Tseng, C.C.; Wu, A.B.; Wang, M.C.; Wu, J.J. The complex interplay among bacterial motility and virulence factors in different Escherichia coli infections. Eur. J. Clin. Microbiol. Infect. Dis. 2014, 33, 2157–2162. [Google Scholar] [CrossRef] [PubMed]
- Tseng, C.C.; Wu, J.J.; Liu, H.L.; Sung, J.M.; Huang, J.J. Roles of host and bacterial virulence factors in the development of upper urinary tract infection caused by Escherichia coli. Am. J. Kidney Dis. 2002, 39, 744–752. [Google Scholar] [CrossRef]
- Clermont, O.; Christenson, J.K.; Denamur, E.; Gordon, D.M. The Clermont Escherichia coli phylo-typing method revisited: Improvement of specificity and detection of new phylo-groups. Environ. Microbiol. Rep. 2013, 5, 58–65. [Google Scholar] [CrossRef]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Iranpour, D.; Hassanpour, M.; Ansari, H.; Tajbakhsh, S.; Khamisipour, G.; Najafi, A. Phylogenetic groups of Escherichia coli strains from patients with urinary tract infection in Iran based on the new Clermont phylotyping method. Biomed Res. Int. 2015, 2015, 846219. [Google Scholar] [CrossRef] [Green Version]
- Clermont, O.; Bonacorsi, S.; Bingen, E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl. Environ. Microbiol. 2000, 66, 4555–4558. [Google Scholar] [CrossRef] [Green Version]
- Gordon, D.M.; Clermont, O.; Tolley, H.; Denamur, E. Assigning Escherichia coli strains to phylogenetic groups: Multi-locus sequence typing versus the PCR triplex method. Environ. Microbiol. 2008, 10, 2484–2496. [Google Scholar] [CrossRef]
- Banerjee, R.; Johnston, B.; Lohse, C.; Porter, S.B.; Clabots, C.; Johnson, J.R. Escherichia coli sequence type 131 is a dominant, antimicrobial-resistant clonal group associated with healthcare and elderly hosts. Infect. Control. Hosp. Epidemiol. 2013, 34, 361–369. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, T.; Sadek, M.; Yao, Y.; Imirzalioglu, C.; Stephan, R.; Poirel, L.; Nordmann, P. Cross-Border Emergence of Escherichia coli Producing the Carbapenemase NDM-5 in Switzerland and Germany. J. Clin. Microbiol. 2021, 59. [Google Scholar] [CrossRef]
- Pulcini, C.; Clerc-Urmes, I.; Attinsounon, C.A.; Fougnot, S.; Thilly, N. Antibiotic resistance of Enterobacteriaceae causing urinary tract infections in elderly patients living in the community and in the nursing home: A retrospective observational study. J. Antimicrob. Chemother. 2019, 74, 775–781. [Google Scholar] [CrossRef]
- Dadi, B.R.; Abebe, T.; Zhang, L.; Mihret, A.; Abebe, W.; Amogne, W. Distribution of virulence genes and phylogenetics of uropathogenic Escherichia coli among urinary tract infection patients in Addis Ababa, Ethiopia. BMC Infect. Dis. 2020, 20, 108. [Google Scholar] [CrossRef] [Green Version]
- Pootong, A.; Mungkornkeaw, N.; Norrapong, B.; Cowawintaweewat, S. Phylogenetic background, drug susceptibility and virulence factors of uropathogenic E. coli isolate in a tertiary university hospital in central Thailand. Trop. Biomed. 2018, 35, 195–204. [Google Scholar]
- Lin, W.H.; Tseng, C.C.; Wu, A.B.; Chang, Y.T.; Kuo, T.H.; Chao, J.Y.; Wang, M.C.; Wu, J.J. Clinical and microbiological characteristics of peritoneal dialysis-related peritonitis caused by Escherichia coli in southern Taiwan. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 1699–1707. [Google Scholar] [CrossRef]
- Doumith, M.; Day, M.; Ciesielczuk, H.; Hope, R.; Underwood, A.; Reynolds, R.; Wain, J.; Livermore, D.M.; Woodford, N. Rapid identification of major Escherichia coli sequence types causing urinary tract and bloodstream infections. J. Clin. Microbiol. 2015, 53, 160–166. [Google Scholar] [CrossRef] [Green Version]
- Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing. In CLSI Supplement M100, 31st ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2021. [Google Scholar]
Year of Isolation | ||
---|---|---|
2009–2010 (n = 504) | 2020 (n = 340) | |
Average age (year) | 44.47 | 47.76 |
Age group (years old), n (%) | ||
≤3 | 75 (14.9) | 60 (17.6) |
4–20 | 62 (12.3) | 17 (5.0) |
21–40 | 97 (19.2) | 62 (18.2) |
41–60 | 89 (17.7) | 66 (19.4) |
61–80 | 92 (18.3) | 68 (20.0) |
>80 | 89 (17.7) | 67 (19.7) |
Gender, n (%) | ||
Female | 370 (73.4) | 222 (65.3) |
Male | 134 (26.6) | 118 (34.7) |
Year of Isolation | |||||||
---|---|---|---|---|---|---|---|
2009–2010 (n = 504) | 2020 (n = 340) | p-Value | |||||
Antimicrobial Category and Agents | |||||||
Aminoglycoside | S | I | R | S | I | R | |
AN | 486 (98.4) | 2 (0.4) | 6 (1.2) | 337 (99.1) | 1 (0.3) | 2 (0.6) | 0.376 |
GM | 360 (71.4) | 14 (2.8) | 130 (25.8) | 263 (77.4) | 7 (2.1) | 70 (20.6) | 0.055 |
Penicillins | |||||||
AM | 115 (22.8) | 1 (0.2) | 388 (77.0) | 89 (26.2) | 6 (1.8) | 245 (72.1) | 0.264 |
AMC | 329 (65.3) | 44 (8.7) | 131 (26) | 250 (73.5) | 44 (12.9) | 46 (13.5) | 0.011 |
Penicillins + β-lactamase inhibitors | |||||||
SAM | 335 (66.5) | 62 (12.3) | 107 (21.2) | 265 (77.9) | 24 (7.1) | 51 (15.0) | <0.001 |
TZP | 483 (95.8) | 16 (3.2) | 5 (1.0) | 331 (97.4) | 6 (1.8) | 3 (0.9) | 0.242 |
Carbapenems | |||||||
IPM | 501 (99.4) | 3 (0.6) | 0 (0) | 336 (98.8) | 2 (0.6) | 2 (0.6) | 0.361 |
ETP | 497 (98.6) | 3 (0.6) | 4 (0.8) | 338 (99.4) | 1 (0.3) | 1 (0.3) | 0.267 |
MEM | 502 (99.6) | 0 (0) | 2 (0.4) | 338 (99.4) | 0 (0) | 2 (0.6) | 0.691 |
Non-extended spectrum cephalosporins | |||||||
CZ | 338 (67.1) | 0 (0) | 166 (32.9) | 248 (72.9) | 0 (0) | 92 (27.1) | 0.069 |
CXM | 340 (67.5) | 35 (6.9) | 129 (25.6) | 255 (75.0) | 7 (2.1) | 78 (22.9) | 0.018 |
CMZ | 422 (83.7) | 29 (5.8) | 53 (10.5) | 323 (95.0) | 1 (0.3) | 16 (4.7) | <0.001 |
Extended-spectrum cephalosporins | |||||||
CRO | 343 (68.1) | 18 (3.6) | 143 (28.4) | 252 (74.1) | 4 (1.2) | 84 (24.7) | 0.058 |
CAZ | 364 (72.2) | 31 (6.2) | 109 (21.6) | 281 (82.6) | 25 (7.4) | 34 (10.0) | <0.001 |
FEP | 432 (85.7) | 29 (5.8) | 43 (8.5) | 289 (85.0) | 16 (4.7) | 35 (10.3) | 0.773 |
Cephamycins | |||||||
FOX | 380 (75.4) | 19 (3.8) | 105 (20.8) | 310 (91.2) | 6 (1.8) | 24 (7.1) | <0.001 |
Fluoroquinolones | |||||||
CIP | 293 (58.1) | 36 (7.1) | 175 (34.7) | 192 (56.5) | 27 (7.9) | 121 (35.6) | 0.631 |
LVX | 335 (66.5) | 8 (1.6) | 161 (31.9) | 223 (65.6) | 5 (1.5) | 112 (32.9) | 0.791 |
Tetracyclines | |||||||
TE | 210 (41.7) | 23 (4.6) | 271 (53.8) | 172 (50.6) | 10 (2.9) | 158 (46.5) | 0.011 |
Glycylcyclines | |||||||
TIG | 504 (100) | 0 (0) | 0 (0) | 340 (100) | 0 (0) | 0 (0) | - |
Folate pathway inhibitors | |||||||
SXT | 242 (48.0) | 1 (0.2) | 261 (51.8) | 194 (57.1) | 0 (0) | 146 (42.9) | 0.010 |
Year of Isolation | ||||||
---|---|---|---|---|---|---|
2009–2010 (n = 504) | 2020 (n = 340) | |||||
Drug-Resistant Isolate, n (%) | Non-MDR or XDR | MDR | XDR | Non-MDR or XDR | MDR | XDR |
A | 3 (33.3) | 6 (66.7) | 0 (0) | 3 (17.6) | 12 (70.6) | 2 (11.8) |
B1 | 7 (15.9) | 32 (72.7) | 5 (11.4) | 12 (54.5) | 10 (45.5) | 0 (0) |
B2 | 161 (51.4) | 140 (44.7) | 12 (3.9) | 111 (47.4) | 118 (50.4) | 5 (2.2) |
C | 4 (12.1) | 29 (87.9) | 0 (0) | 1 (16.7) | 5 (83.3) | 0 (0) |
D | 9 (20.9) | 34 (79.1) | 0 (0) | 11 (37.9) | 17 (58.6) | 1 (3.5) |
E | 3 (20.0) | 12 (80.0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
F | 6 (18.8) | 18 (56.3) | 8 (24.9) | 1 (5.3) | 14 (73.7) | 4 (21.0) |
Clade I | 1 (100) | 0 (0) | 0 (0) | 0 (0) | 3 (100) | 0 (0) |
Unknown | 5 (35.7) | 8 (57.1) | 1 (7.2) | 2 (20.0) | 8 (80.0) | 0 (0) |
Total | 199 (39.4) | 279 (55.4) | 26 (5.2) | 141 (41.5) | 187 (55.0) | 12 (3.5) |
Age Group (Years Old) in 2009–2010 | Age Group (Years Old) in 2020 | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
Antimicrobial Category and Agents | ≤3 (n = 75) | >80 (n = 89) | p-Value | ≤3 (n = 60) | >80 (n = 67) | p-Value | ≤3 Age Group a | >80 Age Group b |
I + R | I + R | I + R | I + R | |||||
Aminoglycoside | ||||||||
AN | 1 (1.3) | 2 (2.2) | 0.664 | 0 (0) | 1 (1.5) | 0.342 | 0.369 | 0.734 |
GM | 25 (33.3) | 25 (28.1) | 0.467 | 17 (28.3) | 14 (20.9) | 0.330 | 0.533 | 0.304 |
Penicillins | ||||||||
AM | 62 (82.7) | 74 (83.1) | 0.935 | 44 (73.3) | 51 (76.1) | 0.718 | 0.189 | 0.276 |
AMC | 17 (22.7) | 38 (42.7) | 0.007 | 16 (26.7) | 22 (32.8) | 0.448 | 0.591 | 0.210 |
Penicillins + β-lactamase inhibitors | ||||||||
SAM | 14 (18.7) | 39 (43.8) | 0.001 | 12 (20.0) | 19 (28.4) | 0.274 | 0.845 | 0.048 |
TZP | 1 (1.3) | 6 (6.7) | 0.088 | 0 (0) | 2 (3.0) | 0.177 | 0.369 | 0.292 |
Carbapenems | ||||||||
IPM | 0 (0) | 0 (0) | - | 0 (0) | 2 (3.0) | 0.177 | - | 0.101 |
ETP | 1 (1.3) | 2 (2.2) | 0.664 | 0 (0) | 0 (0) | - | 0.369 | 0.217 |
MEM | 1 (1.3) | 1 (1.1) | 0.903 | 0 (0) | 1 (1.5) | 0.342 | 0.369 | 0.839 |
Non-extended spectrum cephalosporins | ||||||||
CZ | 15 (20.0) | 39 (43.8) | 0.001 | 15 (25.0) | 31 (46.3) | 0.013 | 0.487 | 0.761 |
CXM | 15 (20.0) | 37 (41.6) | 0.003 | 14 (23.3) | 28 (41.8) | 0.027 | 0.639 | 0.978 |
CMZ | 2 (2.7) | 22 (24.7) | <0.001 | 1 (1.7) | 6 (9.0) | 0.072 | 0.695 | 0.011 |
Extended-spectrum cephalosporins | ||||||||
CRO | 16 (21.3) | 37 (41.6) | 0.006 | 14 (23.3) | 31 (46.3) | 0.007 | 0.781 | 0.558 |
CAZ | 12 (16.0) | 31 (34.8) | 0.006 | 10 (16.7) | 16 (23.9) | 0.314 | 0.917 | 0.140 |
FEP | 9 (12.0) | 19 (21.3) | 0.113 | 10 (16.7) | 15 (22.4) | 0.418 | 0.438 | 0.876 |
Cephamycins | ||||||||
FOX | 8 (10.7) | 30 (33.7) | <0.001 | 3 (4.9) | 9 (13.4) | 0.105 | 0.232 | 0.004 |
Fluoroquinolones | ||||||||
CIP | 20 (26.7) | 51 (57.3) | <0.001 | 20 (33.3) | 39 (58.2) | 0.005 | 0.399 | 0.910 |
LVX | 15 (20.0) | 43 (48.3) | <0.001 | 16 (26.7) | 36 (53.7) | 0.002 | 0.360 | 0.503 |
Tetracyclines | ||||||||
TE | 46 (61.3) | 52 (58.4) | 0.705 | 29 (48.3) | 33 (49.3) | 0.917 | 0.131 | 0.255 |
Glycylcyclines | ||||||||
TIG | 0 (0) | 0 (0) | - | 0 (0) | 0 (0) | - | - | - |
Folate pathway inhibitors | ||||||||
SXT | 41 (54.7) | 54 (60.7) | 0.438 | 32 (53.3) | 24 (35.8) | 0.047 | 0.877 | 0.002 |
Drug-resistance | 0.052 | 0.145 | 0.467 | 0.855 | ||||
MDR | 39 (52.0) | 57 (64.0) | 36 (60.0) | 40 (59.7) | ||||
XDR | 1 (1.3) | 5 (5.6) | 0 (0) | 4 (6.0) |
Virulence Factor Genes | 2009–2010 (n = 504) | 2020 (n = 340) | Total (n = 844) | p-Value |
---|---|---|---|---|
papGI | 0 (0) | 1 (0.3) | 1 (0.1) | 0.223 |
papGII | 144 (28.6) | 77 (22.6) | 221 (26.2) | 0.055 |
papGIII | 85 (16.9) | 41 (12.1) | 126 (14.9) | 0.055 |
sfa | 43 (8.5) | 43 (12.6) | 86 (10.2) | 0.053 |
foc | 53 (10.5) | 40 (11.8) | 93 (11.0) | 0.570 |
cnf1 | 112 (22.2) | 92 (27.1) | 204 (24.2) | 0.107 |
aer | 324 (64.3) | 189 (55.6) | 513 (60.8) | 0.011 |
usp | 318 (63.1) | 200 (58.8) | 518 (61.4) | 0.211 |
iha | 180 (35.7) | 111 (32.6) | 291 (34.5) | 0.358 |
ompT | 400 (79.4) | 253 (74.4) | 653 (77.4) | 0.092 |
afa | 284 (56.3) | 217 (63.8) | 501 (59.4) | 0.030 |
iRONE | 20 (40.3) | 121 (35.6) | 324 (38.4) | 0.169 |
fimH | 490 (97.2) | 303 (89.1) | 793 (94.0) | <0.001 |
hly | 125 (24.8) | 105 (30.9) | 230 (27.3) | 0.052 |
sat | 165 (32.7) | 139 (40.9) | 304 (36.0) | 0.016 |
K1 | 126 (25.0) | 75 (22.1) | 201 (23.8) | 0.325 |
Age Group (Years Old) in 2009–2010 | Age Group (Years Old) in 2020 | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
Virulence Factor Genes a | ≤3 (n = 75) | >80 (n = 89) | p-Value | ≤3 (n = 60) | >80 (n = 67) | p-Value | ≤3 Age Group a | >80 Age Group b |
papGI | 0 (0) | 0 (0) | - | 0 (0) | 0 (0) | - | - | - |
papGII | 35 (46.7) | 19 (21.3) | 0.001 | 30 (50.0) | 10 (14.9) | <0.001 | 0.700 | 0.307 |
papGIII | 17 (22.7) | 9 (10.1) | 0.028 | 4 (6.7) | 8 (11.9) | 0.310 | 0.011 | 0.717 |
sfa | 10 (13.3) | 9 (10.1) | 0.521 | 9 (15.0) | 8 (11.9) | 0.613 | 0.782 | 0.717 |
foc | 8 (10.7) | 6 (6.7) | 0.370 | 12 (20.0) | 5 (7.5) | 0.038 | 0.129 | 0.862 |
cnf1 | 26 (34.7) | 16 (18.0) | 0.015 | 23 (38.3) | 11 (16.4) | 0.005 | 0.660 | 0.799 |
aer | 56 (74.7) | 62 (69.7) | 0.477 | 47 (78.3) | 40 (59.7) | 0.024 | 0.619 | 0.195 |
usp | 56 (74.7) | 49 (55.1) | 0.009 | 43 (71.7) | 39 (58.2) | 0.113 | 0.695 | 0.694 |
iha | 37 (49.3) | 36 (40.4) | 0.254 | 24 (40.0) | 27 (40.3) | 0.973 | 0.279 | 0.985 |
ompT | 65 (86.7) | 68 (76.4) | 0.094 | 50 (83.3) | 54 (80.6) | 0.689 | 0.588 | 0.530 |
afa | 39 (52.0) | 50 (56.2) | 0.592 | 45 (75.0) | 40 (59.7) | 0.067 | 0.006 | 0.659 |
iRONE | 31 (41.3) | 29 (32.6) | 0.247 | 24 (40.0) | 19 (28.4) | 0.166 | 0.876 | 0.571 |
fimH | 74 (98.7) | 84 (94.4) | 0.145 | 56 (93.3) | 61 (91.0) | 0.633 | 0.103 | 0.420 |
hly | 33 (44.0) | 17 (19.1) | 0.001 | 25 (41.7) | 18 (26.9) | 0.078 | 0.786 | 0.250 |
sat | 36 (48.0) | 34 (38.2) | 0.206 | 28 (46.7) | 29 (43.3) | 0.702 | 0.877 | 0.522 |
K1 | 18 (24.0) | 17 (19.1) | 0.446 | 11 (18.3) | 17 (25.4) | 0.339 | 0.426 | 0.348 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, W.-H.; Zhang, Y.-Z.; Liu, P.-Y.; Chen, P.-S.; Wang, S.; Kuo, P.-Y.; Thuy, T.T.D.; Duong, T.T.T.; Wen, L.-L.; Hsieh, Y.-H.; et al. Distinct Characteristics of Escherichia coli Isolated from Patients with Urinary Tract Infections in a Medical Center at a Ten-Year Interval. Pathogens 2021, 10, 1156. https://doi.org/10.3390/pathogens10091156
Lin W-H, Zhang Y-Z, Liu P-Y, Chen P-S, Wang S, Kuo P-Y, Thuy TTD, Duong TTT, Wen L-L, Hsieh Y-H, et al. Distinct Characteristics of Escherichia coli Isolated from Patients with Urinary Tract Infections in a Medical Center at a Ten-Year Interval. Pathogens. 2021; 10(9):1156. https://doi.org/10.3390/pathogens10091156
Chicago/Turabian StyleLin, Wei-Hung, Yen-Zhen Zhang, Po-Yao Liu, Po-Shun Chen, Shining Wang, Pei-Yun Kuo, Tran Thi Dieu Thuy, Tran Thi Thuy Duong, Li-Li Wen, Yi-Hsien Hsieh, and et al. 2021. "Distinct Characteristics of Escherichia coli Isolated from Patients with Urinary Tract Infections in a Medical Center at a Ten-Year Interval" Pathogens 10, no. 9: 1156. https://doi.org/10.3390/pathogens10091156
APA StyleLin, W. -H., Zhang, Y. -Z., Liu, P. -Y., Chen, P. -S., Wang, S., Kuo, P. -Y., Thuy, T. T. D., Duong, T. T. T., Wen, L. -L., Hsieh, Y. -H., Wang, M. -C., & Kao, C. -Y. (2021). Distinct Characteristics of Escherichia coli Isolated from Patients with Urinary Tract Infections in a Medical Center at a Ten-Year Interval. Pathogens, 10(9), 1156. https://doi.org/10.3390/pathogens10091156