Consumption of Galactose by Trypanosoma cruzi Epimastigotes Generates Resistance against Oxidative Stress
Abstract
:1. Introduction
2. Results
2.1. Epimastigotes Supplemented with Galactose Showed Higher Resistance against Oxidative Stress Produced by Exposure to Hydrogen Peroxide than Those Supplemented with Glucose
2.2. Epimastigotes Supplemented with Galactose Showed Higher Resistance against Oxidative Stress Produced by Methylene Blue as Compared to Those Grown with Glucose and Those Grown in the Absence of Glucose
2.3. Phosphoglucomutase Activity Is Localized in Both Glycosomes and the Cytosol, but Is Mainly Cytosolic
2.4. Determination of the Generation Time, Specific Activities of Some Enzymes of the Intermediary Metabolism, and the Consumption Rates of Glucose, Galactose, and Amino Acids in Epimastigotes Grown in the Presence of These Three Carbon Sources
2.5. Epimastigotes That Have Been Partially Permeabilized with Digitonin Consume Galactose and Mainly Produce Glucose-1-Phosphate
3. Discussion
4. Materials and Methods
4.1. Parasites, Culture Media, and Growth Conditions
4.2. Determination of the Generation Time, and Measurement of Hexose Consumption and Ammonium Excretion Rates
4.3. Determination of the Oxidative Stress Resistance of Epimastigotes Grown in Different Carbon Sources Using Hydrogen Peroxide and Methylene Blue as Oxidant Agents
4.4. Counting Viable Cells Using the Trypan Blue Exclusion Method
4.5. Determination of Hydrogen Peroxide, Methylene Blue, Hexoses, Hexose Phosphates, and Ammonium Concentrations
4.6. Determination of Hexose Consumption and Hexose Phosphate Production in Intact Glycosomes from Epimastigotes Partially Permeabilized with Digitonin
4.7. Enzymatic Assays and the Measurement of Enzyme-Specific Activities
4.8. Subcellular Localization of Phosphoglucomutase Activity
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rassi, A., Jr.; Rassi, A.; Marin-Neto, J.A. Chagas disease. Lancet 2010, 375, 1388–1402. [Google Scholar] [CrossRef]
- Menna-Barreto, R.; De Castro, S. Clear Shot at Primary Aim: Susceptibility of Trypanosoma cruzi Organelles, Structures and Molecular Targets to Drug Treatment. Curr. Top. Med. Chem. 2017, 17, 1212–1234. [Google Scholar] [CrossRef] [PubMed]
- Andrade, M.; Murta, S.M.F.; Chapeaurouge, A.; Perales, J.; Nirdé, P.; Romanha, A.J. Proteomic analysis of Trypanosoma cruzi resistance to Benznidazole. J. Proteome Res. 2008, 7, 2357–2367. [Google Scholar] [CrossRef] [PubMed]
- Sueth-Santiago, V.; Decote-Ricardo, D.; Morrot, A.; Freire-De-Lima, C.G.; Lima, M.E.F. Challenges in the chemotherapy of Chagas disease: Looking for possibilities related to the differences and similarities between the parasite and host. World J. Biol. Chem. 2017, 8, 57–80. [Google Scholar] [CrossRef]
- Piacenza, L.; Peluffo, G.; Alvarez, M.N.; Martínez, A.; Radi, R. Trypanosoma cruzi Antioxidant Enzymes as Virulence Factors in Chagas Disease. Antioxid. Redox Signal. 2013, 19, 723–734. [Google Scholar] [CrossRef] [Green Version]
- Peluffo, G.; Radi, R. Nitric Oxide-Derived Oxidants with a Focus on Peroxynitrite: Molecular Targets, Cellular Responses and Therapeutic Implications. Curr. Pharm. Des. 2011, 17, 3905–3932. [Google Scholar] [CrossRef]
- Ferrer-Sueta, G.; Radi, R. Chemical Biology of Peroxynitrite: Kinetics, Diffusion and Radicals. ACS Chem. Biol. 2009, 4, 161–177. [Google Scholar] [CrossRef]
- Naviliat, M.; Gualco, G.; Cayota, A.; Radi, R. Protein 3-nitrotyrosine formation during Trypanosoma cruzi infection in mice. Braz. J. Med. Biol. Res. 2005, 38, 1825–1834. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, M.S.; Reis-Cunha, J.L.; Bartholomeu, D.C. Evasion of the Immune Response by Trypanosoma cruzi during Acute Infection. Front. Immunol. 2016, 6, 659. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.; Wen, J.-J.; Garg, N.J. Oxidative Stress in Chagas Disease. Interdiscip. Perspect. Infect. Dis. 2009, 2009, 1–8. [Google Scholar] [CrossRef]
- Lillig, C.H.; Holmgren, A. Thioredoxin and Related Molecules–From Biology to Health and Disease. Antioxid. Redox Signal. 2007, 9, 25–47. [Google Scholar] [CrossRef]
- Fairlamb, A.H.; Blackburn, P.; Ulrich, P.; Chait, B.T.; Cerami, A. Trypanothione: A Novel Bis (glutathionyl) spermidine Cofactor for Glutathione Reductase in Trypanosomatids. Science 1985, 227, 1485–1487. [Google Scholar] [CrossRef]
- Henderson, G.B.; Yamaguchi, M.; Novoa, L.; Fairlamb, A.H.; Cerami, A. Biosynthesis of the trypanosomatid metabolite trypanothione: Purification and characterization of trypanothione synthetase from Crithidia fasciculata. Biochemistry 1990, 29, 3924–3929. [Google Scholar] [CrossRef]
- Fiorillo, A.; Colotti, G.; Boffi, A.; Baiocco, P.; Ilari, A. The Crystal Structures of the Tryparedoxin-Tryparedoxin Peroxidase Couple Unveil the Structural Determinants of Leishmania Detoxification Pathway. PLoS Negl. Trop. Dis. 2012, 6, e1781. [Google Scholar] [CrossRef] [Green Version]
- Krauth-Siegel, R.L.; Comini, M.A. Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2008, 1780, 1236–1248. [Google Scholar] [CrossRef]
- Olin-Sandoval, V.; Moreno-Sánchez, R.; Saavedra, E. Targeting trypanothione metabolism in trypanosomatid human parasites. Curr. Drug Targets 2010, 11, 1614–1630. [Google Scholar] [CrossRef]
- Flohé, L. The trypanothione system and the opportunities it offers to create drugs for the neglected kinetoplast diseases. Biotechnol. Adv. 2012, 30, 294–301. [Google Scholar] [CrossRef]
- Krauth-Siegel, R.L.; Schirmer, R.H.; Schöllhammer, T. Trypanothione reductase from Trypanosoma cruzi: Purification and characterization of the crystalline enzyme. Eur. J. Biochem. 1987, 164, 123–128. [Google Scholar] [CrossRef]
- Smith, K.; Opperdoes, F.R.; Fairlamb, A.H. Subcellular distribution of trypanothione reductase in bloodstream and procyclic forms of Trypanosoma brucei. Mol. Biochem. Parasitol. 1991, 48, 109–112. [Google Scholar] [CrossRef]
- Irigoín, F.; Cibils, L.; Comini, M.A.; Wilkinson, S.R.; Flohé, L.; Radi, R. Insights into the redox biology of Trypanosoma cruzi: Trypanothione metabolism and oxidant detoxification. Free Radic. Biol. Med. 2008, 45, 733–742. [Google Scholar] [CrossRef]
- Manta, B.; Comini, M.; Medeiros, A.; Hugo, M.; Trujillo, M.; Radi, R. Trypanothione: A unique bis-glutathionyl derivative in trypanosomatids. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2013, 1830, 3199–3216. [Google Scholar] [CrossRef]
- Maugeri, D.A.; Cazzulo, J.J. The pentose phosphate pathway in Trypanosoma cruzi. FEMS Microbiol. Lett. 2004, 234, 117–123. [Google Scholar] [CrossRef]
- Allmann, S.; Morand, P.; Ebikeme, C.; Gales, L.; Biran, M.; Hubert, J.; Brennand, A.; Mazet, M.; Franconi, J.-M.; Michels, P.A.; et al. Cytosolic NADPH Homeostasis in Glucose-starved Procyclic Trypanosoma brucei Relies on Malic Enzyme and the Pentose Phosphate Pathway Fed by Gluconeogenic Flux. J. Biol. Chem. 2013, 288, 18494–18505. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.K.; Sardar, A.H.; Mandal, A.; Saini, S.; Abhishek, K.; Kumar, A.; Purkait, B.; Singh, R.; Das, S.; Mukhopadhyay, R.; et al. Metabolic reconfiguration of the central glucose metabolism: A crucial strategy of Leishmania donovani for its survival during oxidative stress. FASEB J. 2015, 29, 2081–2098. [Google Scholar] [CrossRef]
- Kovářová, J.; Barrett, M.P. The Pentose Phosphate Pathway in Parasitic Trypanosomatids. Trends Parasitol. 2016, 32, 622–634. [Google Scholar] [CrossRef]
- Penha, L.L.; Sant’Anna, C.B.; Mendonça-Previato, L.; Cunha-E-Silva, N.L.; Previato, J.O.; Lima, A.P.C.A. Sorting of phosphoglucomutase to glycosomes in Trypanosoma cruzi is mediated by an internal domain. Glycobiology 2009, 19, 1462–1472. [Google Scholar] [CrossRef] [Green Version]
- Penha, L.L.; Mendonça-Previato, L.; Previato, J.O.; Scharfstein, J.; Heise, N.; de Lima, A.P.C.A. Cloning and characterization of the phosphoglucomutase of Trypanosoma cruzi and functional complementation of a Saccharomyces cerevisiae PGM null mutant. Glycobiology 2005, 15, 1359–1367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damerow, S.; Hoppe, C.; Bandini, G.; Zarnovican, P.; Buettner, F.F.; Ferguson, M.A.; Routier, F.H. Leishmania major UDP-sugar pyrophosphorylase salvages galactose for glycoconjugate biosynthesis. Int. J. Parasitol. 2015, 45, 783–790. [Google Scholar] [CrossRef] [Green Version]
- Damerow, S.; Hoppe, C.; Bandini, G.; Zarnovican, P.; Buettner, F.R.; Lüder, C.G.K.; Ferguson, M.A.J.; Routier, F.H. Depletion of UDP-glucose and UDP-galactose using a degron system leads to growth cessation of Leishmania major. PLoS Negl. Trop. Dis. 2015, 9, e0004205. [Google Scholar] [CrossRef] [Green Version]
- Damerow, S.; Lamerz, A.-C.; Haselhorst, T.; Führing, J.; Zarnovican, P.; von Itzstein, M.; Routier, F.H. Leishmania UDP-sugar pyrophosphorylase: The missing link in galactose salvage? J. Biol. Chem. 2010, 285, 878–887. [Google Scholar] [CrossRef]
- Yang, T.; Bar-Peled, M. Identification of a novel UDP-sugar pyrophosphorylase with a broad substrate specificity in Trypanosoma cruzi. Biochem. J. 2010, 429, 533–543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamerz, A.-C.; Damerow, S.; Kleczka, B.; Wiese, M.; van Zandbergen, G.; Lamerz, J.; Wenzel, A.; Hsu, F.-F.; Turk, J.; Beverley, S.M.; et al. Deletion of UDP-glucose pyrophosphorylase reveals a UDP-glucose independent UDP-galactose salvage pathway in Leishmania major. Glycobiology 2010, 20, 872–882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lobo-Rojas, E.; González-Marcano, E.B.; Valera-Vera, E.A.; Acosta, H.R.; Quiñones, W.A.; Burchmore, R.J.; Concepción, J.L.; Cáceres, A.J. Trypanosoma cruzi contains two galactokinases; molecular and biochemical characterization. Parasitol. Int. 2016, 65, 472–482. [Google Scholar] [CrossRef]
- Finzi, J. Trypanosoma cruzi response to the oxidative stress generated by hydrogen peroxide. Mol. Biochem. Parasitol. 2004, 133, 37–43. [Google Scholar] [CrossRef]
- Buchholz, K.; Comini, M.A.; Wissenbach, D.; Schirmer, R.H.; Krauth-Siegel, R.L.; Gromer, S. Cytotoxic interactions of methylene blue with trypanosomatid-specific disulfide reductases and their dithiol products. Mol. Biochem. Parasitol. 2008, 160, 65–69. [Google Scholar] [CrossRef]
- Rengelshausen, J.; Tayrouz, Y.; Singh, S.K.; Riedel, K.-D.; Hoppe-Tichy, T.; Haefeli, W.; Mikus, G.; Walter-Sack, I. Pharmacokinetic interaction of chloroquine and methylene blue combination against malaria. Eur. J. Clin. Pharmacol. 2004, 60, 709–715. [Google Scholar] [CrossRef]
- Buchholz, K.; Schirmer, R.H.; Eubel, J.K.; Akoachere, M.B.; Dandekar, T.; Becker, K.; Gromer, S. Interactions of Methylene Blue with Human Disulfide Reductases and Their Orthologues from Plasmodium falciparum. Antimicrob. Agents Chemother. 2008, 52, 183–191. [Google Scholar] [CrossRef] [Green Version]
- Roper, J.R.; Güther, M.L.S.; MacRae, J.I.; Prescott, A.R.; Hallyburton, I.; Acosta-Serrano, A.; Ferguson, M.A.J. The Suppression of Galactose Metabolism in Procylic Form Trypanosoma brucei Causes Cessation of Cell Growth and Alters Procyclin Glycoprotein Structure and Copy Number. J. Biol. Chem. 2005, 280, 19728–19736. [Google Scholar] [CrossRef] [Green Version]
- Mariño, K.; Güther, M.L.S.; Wernimont, A.K.; Amani, M.; Hui, R.; Ferguson, M.A. Identification, subcellular localization, biochemical properties and high-resolution crystal structure of Trypanosoma brucei UDP-glucose pyrophosphorylase. Glycobiology 2010, 20, 1619–1630. [Google Scholar] [CrossRef] [Green Version]
- Taylor, M.B.; Gutteridge, W.E. Trypanosoma cruzi: Subcellular distribution of glycolytic and some related enzymes of epimastigotes. Exp. Parasitol. 1987, 63, 84–97. [Google Scholar] [CrossRef]
- Opperdoes, F.R. Compartmentation of carbohydrate metabolism in trypanosomes. Annu. Rev. Microbiol. 1987, 41, 127–151. [Google Scholar] [CrossRef]
- Cáceres, A.J.; Portillo, R.; Acosta, H.; Rosales, D.; Quiñones, W.; Avilan, L.; Salazar, L.; Dubourdieu, M.; Michels, P.A.; Concepción, J.L. Molecular and biochemical characterization of hexokinase from Trypanosoma cruzi. Mol. Biochem. Parasitol. 2003, 126, 251–262. [Google Scholar] [CrossRef]
- Concepcion, J.L.; Chataing, B.; Dubourdieu, M. Purification and properties of phosphoglucose isomerases of Trypanosoma cruzi. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 1999, 122, 211–222. [Google Scholar] [CrossRef]
- Cannata, J.J.; Cazzulo, J.J. Glycosomal and mitochondrial malate dehydrogenases in epimastigotes of Trypanosoma cruzi. Mol. Biochem. Parasitol. 1984, 11, 37–49. [Google Scholar] [CrossRef]
- Cazzulo, J.J.; de Cazzulo, B.M.F.; Higa, A.I.; Segura, E.L. NAD-linked glutamate dehydrogenase in Trypanosoma cruzi. Comp. Biochem. Physiol. Part B Comp. Biochem. 1979, 64, 129–131. [Google Scholar] [CrossRef]
- Cazzulo, J.J.; de Cazzulo, B.M.F.; Engel, J.C.; Cannata, J.J. End products and enzyme levels of aerobic glucose fermentation in trypanosomatids. Mol. Biochem. Parasitol. 1985, 16, 329–343. [Google Scholar] [CrossRef]
- Urbina, J.A.; Azavache, V. Regulation of energy metabolism in Trypanosoma (schizotrypanum) cruzi epimastigotes. II. NAD+-dependent ǵlutamate dehydrogenase. Mol. Biochem. Parasitol. 1984, 11, 241–255. [Google Scholar] [CrossRef]
- Gupta, S.; Igoillo-Esteve, M.; Michels, P.A.M.; Cordeiro, A.T. Glucose-6-Phosphate Dehydrogenase of Trypanosomatids: Characterization, Target Validation, and Drug Discovery. Mol. Biol. Int. 2011, 2011, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Acosta, H.; Dubourdieu, M.; Quiñones, W.; Cáceres, A.; Bringaud, F.; Concepción, J.L. Pyruvate phosphate dikinase and pyrophosphate metabolism in the glycosome of Trypanosoma cruzi epimastigotes. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2004, 138, 347–356. [Google Scholar] [CrossRef]
- Sanz-Rodriguez, C.; Concepción, J.L.; Pekerar, S.; Oldfield, E.; Urbina, J.A. Bisphosphonates as Inhibitors of Trypanosoma cruzi Hexokinase. J. Biol. Chem. 2007, 282, 12377–12387. [Google Scholar] [CrossRef]
- Linka, N.; Weber, A.P. Intracellular Metabolite Transporters in Plants. Mol. Plant 2010, 3, 21–53. [Google Scholar] [CrossRef] [PubMed]
- Rolletschek, H.; Nguyen, T.H.; Häusler, R.E.; Rutten, T.; Göbel, C.; Feussner, I.; Radchuk, R.; Tewes, A.; Claus, B.; Klukas, C.; et al. Antisense inhibition of the plastidial glucose-6-phosphate/phosphate translocator in Vicia seeds shifts cellular differentiation and promotes protein storage. Plant J. 2007, 51, 468–484. [Google Scholar] [CrossRef] [PubMed]
- Fettke, J.; Malinova, I.; Albrecht, T.; Hejazi, M.; Steup, M. Glucose-1-Phosphate Transport into Protoplasts and Chloroplasts from Leaves of Arabidopsis. Plant Physiol. 2010, 155, 1723–1734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malinova, I.; Kössler, S.; Orawetz, T.; Matthes, U.; Orzechowski, S.; Koch, A.; Fettke, J. Identification of Two Arabidopsis thaliana Plasma Membrane Transporters Able to Transport Glucose 1-Phosphate. Plant Cell Physiol. 2019, 61, 381–392. [Google Scholar] [CrossRef]
- Kammerer, B.; Fischer, K.; Hilpert, B.; Schubert, S.; Gutensohn, M.; Weber, A.; Flügge, U.-I. Molecular Characterization of a Carbon Transporter in Plastids from Heterotrophic Tissues: The Glucose 6-Phosphate/Phosphate Antiporter. Plant Cell 1998, 10, 105–117. [Google Scholar] [CrossRef] [Green Version]
- Pan, C.-J.; Chen, S.-Y.; Jun, H.S.; Lin, S.R.; Mansfield, B.C.; Chou, J.Y. SLC37A1 and SLC37A2 are Phosphate-Linked, Glucose-6-Phosphate Antiporters. PLoS ONE 2011, 6, e23157. [Google Scholar] [CrossRef] [Green Version]
- Chou, J.Y.; Mansfield, B.C. The SLC37 Family of Sugar-Phosphate/Phosphate Exchangers. Curr. Top. Membr. 2014, 73, 357–382. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, S.R.; Obado, S.O.; Mauricio, I.L.; Kelly, J.M. Trypanosoma cruzi expresses a plant-like ascorbate-dependent hemoperoxidase localized to the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 2002, 99, 13453–13458. [Google Scholar] [CrossRef] [Green Version]
- Gadelha, F.; Gonçalves, C.; Mattos, E.; Alves, M.; Piñeyro, M.; Robello, C.; Peloso, E. Release of the cytosolic tryparedoxin peroxidase into the incubation medium and a different profile of cytosolic and mitochondrial peroxiredoxin expression in H2O2-treated Trypanosoma cruzi tissue culture-derived trypomastigotes. Exp. Parasitol. 2013, 133, 287–293. [Google Scholar] [CrossRef]
- Turnock, D.C.; Ferguson, M.A.J. Sugar Nucleotide Pools of Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major. Eukaryot. Cell 2007, 6, 1450–1463. [Google Scholar] [CrossRef]
- Acosta, H.; Burchmore, R.; Naula, C.; Gualdrón-López, M.; Quintero-Troconis, E.; Cáceres, A.J.; Michels, P.A.; Concepción, J.L.; Quiñones, W. Proteomic analysis of glycosomes from Trypanosoma cruzi epimastigotes. Mol. Biochem. Parasitol. 2019, 229, 62–74. [Google Scholar] [CrossRef]
- Zmuda, F.; Shepherd, S.M.; Ferguson, M.A.J.; Gray, D.W.; Torrie, L.S.; De Rycker, M. Trypanosoma cruzi phosphoman-nomutase and guanosine diphosphate-mannose pyrophophorylase ligandability assessment. Antimicrob. Agents Chemother. 2019, 63, e01082–e01119. [Google Scholar] [CrossRef] [Green Version]
- Bandini, G.; Mariño, K.; Güther, M.L.S.; Wernimont, A.K.; Kuettel, S.; Qiu, W.; Afzal, S.; Kelner, A.; Hui, R.; Ferguson, M.A.J. Phosphoglucomutase is absent in Trypanosoma brucei and redundantly substituted by phosphomannomutase and phospho-N-acetylglucosamine mutase. Mol. Microbiol. 2012, 85, 513–534. [Google Scholar] [CrossRef] [Green Version]
- Dormeyer, M.; Reckenfelderbäumer, N.; Lüdemann, H.; Krauth-Siegel, R.L. Trypanothione-dependent Synthesis of Deoxyribonucleotides by Trypanosoma brucei Ribonucleotide Reductase. J. Biol. Chem. 2001, 276, 10602–10606. [Google Scholar] [CrossRef] [Green Version]
- Guerrero, S.A.; Lopez, J.A.; Steinert, P.; Montemartini, M.; Kalisz, H.M.; Colli, W.; Singh, M.; Alves, M.J.M.; Flohé, L. His-tagged tryparedoxin peroxidase of Trypanosoma cruzi as a tool for drug screening. Appl. Microbiol. Biotechnol. 2000, 53, 410–414. [Google Scholar] [CrossRef]
- Beltrán-Hortelano, I.; Perez-Silanes, S.; Galiano, S. Trypanothione Reductase and Superoxide Dismutase as Current Drug Targets for Trypanosoma cruzi: An Overview of Compounds with Activity against Chagas Disease. Curr. Med. Chem. 2017, 24, 1066–1138. [Google Scholar] [CrossRef]
- Martínez, A.; Prolo, C.; Estrada, D.; Rios, N.; Alvarez, M.N.; Piñeyro, M.D.; Robello, C.; Radi, R.; Piacenza, L. Cytosolic Fe-superoxide dismutase safeguards Trypanosoma cruzi from macrophage-derived superoxide radical. Proc. Natl. Acad. Sci. USA 2019, 116, 8879–8888. [Google Scholar] [CrossRef] [Green Version]
- Bistrian, B.R. Modern Nutrition in Health and Disease (Tenth Edition). Crit. Care Med. 2006, 34, 2514. [Google Scholar] [CrossRef]
- Coleman, J.W. Nitric oxide in immunity and inflammation. Int. Immunopharmacol. 2001, 1, 1397–1406. [Google Scholar] [CrossRef]
- Brunet, L.R. Nitric oxide in parasitic infections. Int. Immunopharmacol. 2001, 1, 1457–1467. [Google Scholar] [CrossRef]
- Fridovich, I. Superoxide Radical and Superoxide Dismutases. Annu. Rev. Biochem. 1995, 64, 97–112. [Google Scholar] [CrossRef]
- Radi, R. Peroxynitrite, a Stealthy Biological Oxidant. J. Biol. Chem. 2013, 288, 26464–26472. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, M.N.; Peluffo, G.; Piacenza, L.; Radi, R. Intraphagosomal Peroxynitrite as a Macrophage-derived Cytotoxin against Internalized Trypanosoma cruzi. J. Biol. Chem. 2011, 286, 6627–6640. [Google Scholar] [CrossRef] [Green Version]
- Paiva, C.N.; Feijó, D.F.; Dutra, F.F.; Carneiro, V.; De Freitas, G.; Alves, L.S.; Mesquita, J.; Fortes, G.B.; Figueiredo, R.; de Souza, H.; et al. Oxidative stress fuels Trypanosoma cruzi infection in mice. J. Clin. Investig. 2012, 122, 2531–2542. [Google Scholar] [CrossRef]
- Vazquez, B.P.; Vazquez, T.P.; Miguel, C.B.; Rodrigues, W.F.; Mendes, M.T.; De Oliveira, C.J.F.; Chica, J.E.L. Inflammatory responses and intestinal injury development during acute Trypanosoma cruzi infection are associated with the parasite load. Parasites Vectors 2015, 8, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Lemos, J.R.D.; Rodrigues, W.F.; Miguel, C.B.; Parreira, R.C.; Miguel, R.B.; Rogerio, A.D.P.; Oliveira, C.J.F.; Chica, J.E.L. Influence of Parasite Load on Renal Function in Mice Acutely Infected with Trypanosoma cruzi. PLoS ONE 2013, 8, e71772. [Google Scholar] [CrossRef] [Green Version]
- Rassi, A., Jr.; Rassi, A.; Marin-Neto, J.A. Chagas heart disease: Pathophysiologic mechanisms, prognostic factors and risk stratification. Mem. Inst. Oswaldo. Cruz. 2009, 104, 152–158. [Google Scholar] [CrossRef] [Green Version]
- Paucar, R.; Moreno-Viguri, E.; Pérez-Silanes, S. Challenges in Chagas Disease Drug Discovery: A Review. Curr. Med. Chem. 2016, 23, 3154–3170. [Google Scholar] [CrossRef] [Green Version]
- Mercaldi, G.F.; Ranzani, A.T.; Cordeiro, A.T. Discovery of New Uncompetitive Inhibitors of Glucose-6-Phosphate Dehydrogenase. SLAS Discov. Adv. Sci. Drug Discov. 2014, 19, 1362–1371. [Google Scholar] [CrossRef] [Green Version]
- Naciuk, F.F.; Faria, J.d.N.; Eufrásio, A.G.; Cordeiro, A.T.; Bruder, M. Development of Selective Steroid Inhibitors for the Glucose-6-phosphate Dehydrogenase from Trypanosoma cruzi. ACS Med. Chem. Lett. 2020, 11, 1250–1256. [Google Scholar] [CrossRef]
- Presti, M.S.L.; Bazán, P.C.; Strauss, M.; Báez, A.L.; Rivarola, H.W.; Paglini-Oliva, P.A. Trypanothione reductase inhibitors: Overview of the action of thioridazine in different stages of Chagas disease. Acta Trop. 2015, 145, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Camargo, E.P. Growth and differentiation in Trypanosoma cruzi; I. Origin of metacyclic trypanosomes in liquid media. Rev. Inst. Med. Trop. São Paulo 1964, 6, 93–100. [Google Scholar] [PubMed]
- González-Chávez, Z.; Vázquez, C.; Mejia-Tlachi, M.; Márquez-Dueñas, C.; Manning-Cela, R.; Encalada, R.; Rodríguez-Enríquez, S.; Michels, P.A.; Moreno-Sánchez, R.; Saavedra, E. Gamma-glutamylcysteine synthetase and tryparedoxin 1 exert high control on the antioxidant system in Trypanosoma cruzi contributing to drug resistance and infectivity. Redox Biol. 2019, 26, 101231. [Google Scholar] [CrossRef] [PubMed]
- Stouthamer, A.; Bettenhaussen, C. Utilization of energy for growth and maintenance in continuous and batch cultures of microorganisms: A reevaluation of the method for the determination of ATP production by measuring molar growth yields. Biochim. Biophys. Acta (BBA)-Rev. Bioenerg. 1973, 301, 53–70. [Google Scholar] [CrossRef]
- Haanstra, J.R.; van Tuijl, A.; van Dam, J.; van Winden, W.; Tielens, A.G.; van Hellemond, J.J.; Bakker, B.M. Proliferating bloodstream-form Trypanosoma brucei use a negligible part of consumed glucose for anabolic processes. Int. J. Parasitol. 2012, 42, 667–673. [Google Scholar] [CrossRef]
- Bergmeyer, H.U. Methods of Enzymatic Analysis; Academic Press: New York, NY, USA, 1983. [Google Scholar] [CrossRef]
- Quintero-Troconis, E.; Buelvas, N.; Carrasco-López, C.; Domingo-Sananes, M.; Gonzalez-Gonzalez, L.; Ramírez-Molina, R.; Osorio, L.; Lobo-Rojas, A.; Caceres, A.; Michels, P.; et al. Enolase from Trypanosoma cruzi is inhibited by its interaction with metallocarboxypeptidase-1 and a putative acireductone dioxygenase. Biochim. Biophys. Acta (BBA)-Proteins Proteom. 2018, 1866, 651–660. [Google Scholar] [CrossRef]
- Heise, N.; Opperdoes, F.R. Purification, localisation and characterisation of glucose-6-phosphate dehydrogenase of Trypanosoma brucei. Mol. Biochem. Parasitol. 1999, 99, 21–32. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef]
- Concepcion, J.L.; Gonzalez-Pacanowska, D.; Urbina, J.A. 3-Hydroxy-3-methyl-glutaryl-CoA Reductase in Trypanosoma (Schizotrypanum) cruzi: Subcellular Localization and Kinetic Properties. Arch. Biochem. Biophys. 1998, 352, 114–120. [Google Scholar] [CrossRef]
Specific Activity (nmol × min−1 × mg−1) | |||
---|---|---|---|
Enzymes | Glucose 20 mM | Glucose 1.5 mM | Galactose 20 mM |
Hexokinase | 409.0 ± 67.0 | 408.0 ± 42.0 | 381.0 ± 24.0 |
Glucose-6-phosphate dehydrogenase | 31.1 ± 2.8 | 20.1 ± 2.8 | 30.2 ± 3.3 |
Galactokinase | 38.4 ± 4.3 | 28.7 ± 1.4 | 125.8 ± 11.3 |
Phosphoglucomutase | 3.8 ± 0.1 | 2.5 ± 0.2 | 7.0 ± 0.6 |
NAD(H)-dependent L-glutamate dehydrogenase | 179.5 ± 5.3 | 72.5 ± 5.9 | 224 ± 27.9 |
LIT Medium Type | Generation Time (Hours) | Hexose Consumption Rate (q) (nmol × min−1 × mg−1) | Ammonium Excretion Rate (q) (nmol × min−1 × mg−1) |
---|---|---|---|
Glucose 20 mM | 18.79 ± 0.49 | 5.41 ± 0.58 | 2.95 ± 0.78 |
Glucose 1.5 mM | 54.56 ± 4.95 | −−−− | 5.99 ± 1.14 |
Galactose 20 mM | 20.13 ± 0.69 | 2.73 ± 0.58 | 9.72 ± 1.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lobo-Rojas, Á.; Quintero-Troconis, E.; Rondón-Mercado, R.; Pérez-Aguilar., M.C.; Concepción, J.L.; Cáceres, A.J. Consumption of Galactose by Trypanosoma cruzi Epimastigotes Generates Resistance against Oxidative Stress. Pathogens 2022, 11, 1174. https://doi.org/10.3390/pathogens11101174
Lobo-Rojas Á, Quintero-Troconis E, Rondón-Mercado R, Pérez-Aguilar. MC, Concepción JL, Cáceres AJ. Consumption of Galactose by Trypanosoma cruzi Epimastigotes Generates Resistance against Oxidative Stress. Pathogens. 2022; 11(10):1174. https://doi.org/10.3390/pathogens11101174
Chicago/Turabian StyleLobo-Rojas, Ángel, Ender Quintero-Troconis, Rocío Rondón-Mercado, Mary Carmen Pérez-Aguilar., Juan Luis Concepción, and Ana Judith Cáceres. 2022. "Consumption of Galactose by Trypanosoma cruzi Epimastigotes Generates Resistance against Oxidative Stress" Pathogens 11, no. 10: 1174. https://doi.org/10.3390/pathogens11101174
APA StyleLobo-Rojas, Á., Quintero-Troconis, E., Rondón-Mercado, R., Pérez-Aguilar., M. C., Concepción, J. L., & Cáceres, A. J. (2022). Consumption of Galactose by Trypanosoma cruzi Epimastigotes Generates Resistance against Oxidative Stress. Pathogens, 11(10), 1174. https://doi.org/10.3390/pathogens11101174