Serotyping and Antimicrobial Susceptibility Profiling of Glaesserella parasuis Isolated from Diseased Swine in Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Bacterial Isolation
2.2. G. parasuis Identification
2.3. Serotyping
2.4. Antibiotic Susceptibility Profiling
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oliveira, S.; Pijoan, C. Haemophilus parasuis: New trends on diagnosis, epidemiology and control. Vet. Microbiol. 2004, 99, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Bak, H.; Riising, H.-J. Protection of vaccinated pigs against experimental infections with homologous and heterologous Haemophilus parasuis. Vet. Rec. 2002, 151, 502–505. [Google Scholar] [CrossRef] [PubMed]
- Karriker, L.A.; Coetzee, J.F.; Friendship, R.M.; Apley, M.D. Drug pharmacology, therapy, and prophylaxis. In Diseases of Swine, 11th ed.; Wiley-Blackwell: Chichester, UK, 2019; pp. 158–170. [Google Scholar] [CrossRef]
- Dayao, D.A.E.; Kienzle, M.; Gibson, J.S.; Blackall, P.J.; Turni, C. Use of a proposed antimicrobial susceptibility testing method for Haemophilus parasuis. Vet. Microbiol. 2014, 172, 586–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nedbalcová, K.; Kučerová, Z. Antimicrobial susceptibility of Pasteurella multocida and Haemophilus parasuis isolates associated with porcine pneumonia. Acta Vet. Brno. 2013, 82, 3–7. [Google Scholar] [CrossRef] [Green Version]
- Miani, M.; Lorenson, M.S.; Guizzo, J.A.; Espíndola, J.P.; Rodríguez-Ferri, E.F.; Gutiérrez-Martín, C.B.; Kreutz, L.C.; Frondoloso, R. Antimicrobial susceptibility patterns of brazilian Haemophilus parasuis field isolates. Pesq. Vet. Bras. 2017, 37, 1187–1192. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Xu, X.; Zhao, Y.; Chen, P.; Zhang, X.; Chen, H.; Cai, X. Distribution of antimicrobial resistance among different serovars of Haemophilus parasuis isolates. Vet. Microbiol. 2010, 141, 168–173. [Google Scholar] [CrossRef]
- de la Fuente, A.J.; Tucker, A.W.; Navas, J.; Blanco, M.; Morris, S.J.; Gutiérrez-Martín, C.B. Antimicrobial susceptibility patterns of Haemophilus parasuis from pigs in the United Kingdom and Spain. Vet. Microbiol. 2007, 120, 184–191. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, S.; Galina, L.; Pijoan, C. Development of a PCR test to diagnose Haemophilus parasuis infections. J. Vet. Diagn. Investig. 2001, 13, 495–501. [Google Scholar] [CrossRef] [Green Version]
- Olvera, A.; Pina, S.; Macedo, N.; Oliveira, S.; Aragon, V.; Bensaid, A. Identification of potentially virulent strains of Haemophilus parasuis using a multiplex PCR for virulence-associated autotransporters (vtaA). Vet. J. 2012, 191, 213–218. [Google Scholar] [CrossRef]
- Howell, K.J.; Peters, S.E.; Wang, J.; Hernandez-Garcia, J.; Weinert, L.A.; Luan, S.L.; Chaudhuri, R.R.; Angen, Ø.; Aragon, V.; Williamson, S.M.; et al. Development of a multiplex PCR assay for rapid molecular serotyping of Haemophilus parasuis. J. Clin. Microbiol. 2015, 53, 3812–3821. [Google Scholar] [CrossRef] [Green Version]
- Prüller, S.; Turni, C.; Blackall, P.J.; Beyerbach, M.; Klein, G.; Kreienbrock, L.; Strutzberg-Minder, K.; Kaspar, H.; Meemken, D.; Kehrenberg, C. Towards a standardized method for broth microdilution susceptibility testing of Haemophilus parasuis. J. Clin. Microbiol. 2017, 55, 264–273. [Google Scholar] [CrossRef] [Green Version]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 5th ed.; CLSI Supplement VET01S; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020; ISBN 978-1-68440-092-8. [Google Scholar]
- Schwarz, S.; Silley, P.; Simjee, S.; Woodford, N.; van Duijkeren, E.; Johnson, A.P.; Gaastra, W. Editorial: Assessing the antimicrobial susceptibility of bacteria obtained from animals. J. Antimicrob. Chemother. 2010, 65, 601–604. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect Off. Public Eur. Soc. Clin. Microbiol. Infect. Dis. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing, 32nd ed.; CLSI supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2022; ISBN 978-1-68440-134-5. [Google Scholar]
- Hu, Y.; Liu, L.; Zhang, X.; Feng, Y.; Zong, Z. In vitro activity of neomycin, streptomycin, paromomycin and apramycin against carbapenem-resistant Enterobacteriaceae clinical strains. Front. Microbiol. 2017, 8, 2275. [Google Scholar] [CrossRef] [Green Version]
- Rønne, H.; Szancer, J. In Vitro Susceptibility of Danish Field Isolates of Treponema hyodysenteriae to chemotherapeutics in Swine Dysentery (SD) Therapy. Interpretation of MIC Results Based on the Pharmacokinetic Properties of the Antibacterial Agents. In Proceedings of the 11th International Pig Veterinary Society Congress, Swiss Association of Swine Medicine, Berne, Switzerland, 1–5 July 1990; p. 1126. [Google Scholar]
- Castilla, K.S.; de Gobbi, D.D.S.; Moreno, L.Z.; Paixão, R.; Coutinho, T.A.; Dos Santos, J.L.; Moreno, A.M. Characterization of Haemophilus parasuis isolated from Brazilian swine through serotyping, AFLP and PFGE. Res. Vet. Sci. 2012, 92, 366–371. [Google Scholar] [CrossRef]
- Macedo, N.; Cheeran, M.C.; Rovira, A.; Holtcamp, A.; Torremorell, M. Effect of enrofloxacin on Haemophilus parasuis infection, disease, and immune response. Vet. Microbiol. 2017, 199, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Moreno, L.Z.; Castilla, K.S.; de Gobbi, D.D.S.; Coutinho, T.A.; Ferreira, T.S.P.; Moreno, A.M. ERIC-PCR genotypic characterization of Haemophilus parasuis isolated from Brazilian swine. Braz. J. Microbiol. 2011, 42, 1420–1426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espíndola, J.P.; Balbinott, N.; Gressler, L.T.; Machado, G.; Klein, C.S.; Rebelatto, R.; Martín, C.B.G.; Kreutz, L.C.; Schryvers, A.B.; Frandoloso, R. Molecular serotyping of clinical strains of Haemophilus (Glaesserella) parasuis brings new insights regarding Glässer’s disease outbreaks in Brazil. PeerJ 2019, 7, e6817. [Google Scholar] [CrossRef] [Green Version]
- Luppi, A.; Bonilauri, P.; Dottori, M.; Iodice, G.; Gherpelli, Y.; Merialdi, G.; Maioli, G.; Martelli, P. Haemophilus parasuis serovars isolated from pathological samples in Northern Italy. Transbound. Emerg. Dis. 2013, 60, 140–142. [Google Scholar] [CrossRef]
- Schuwerk, L.; Hoeltig, D.; Waldmann, K.H.; Strutzberg-Minder, K.; Valentin-Weigand, P.; Rohde, J. Serotyping and pathotyping of Glaesserella parasuis isolated 2012–2019 in Germany comparing different PCR-based methods. Vet. Res. 2020, 51, 137. [Google Scholar] [CrossRef]
- Aarestrup, F.M.; Seyfarth, A.M.; Angen, Ø. Antimicrobial susceptibility of Haemophilus parasuis and Histophilus somni from pigs and cattle in Denmark. Vet. Microbiol. 2004, 101, 143–146. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Guo, L.; Li, J.; Huang, X.; Fang, B. Characterization of antimicrobial resistance genes in Haemophilus parasuis isolated from pigs in China. PeerJ. 2018, 4, e4613. [Google Scholar] [CrossRef] [Green Version]
- Dutra, M.C.; Moreno, L.Z.; Dias, R.A.; Moreno, A.M. Antimicrobial use in Brazilian Swine Herds: Assessment of Use and Reduction Examples. Microorganism 2021, 9, 881. [Google Scholar] [CrossRef] [PubMed]
- Brogden, S.; Pavlović, A.; Tegeler, R.; Kaspar, H.; De Vaan, N.; Kehrenberg, C. Antimicrobial susceptibility of Haemophilus parasuis isolates from Germany by use of a proposed standard method for harmonized testing. Vet. Microbiol. 2018, 217, 32–35. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Zhang, Y.; Wei, J.; Shao, D.; Liu, K.; Shi, Y.; Qiu, Y.; Ma, Z. Characterization of a novel small plasmid carrying the florfenicol resistance gene floR in Haemophilus parasuis. J. Antimicrob. Chemother. 2015, 70, 3159–3161. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Fan, K.; Lin, W.; Wang, J.; Lin, M.; Yang, S.; Jiang, Y.; Huang, X.; Chen, W.; Huang, C. Identification of a multiple drug-resistance gene island in the Haemophilus parasuis chromosome. J. Glob. Antimicrob. Resist. 2020, 22, 422–425. [Google Scholar] [CrossRef]
- Costa-Hurtado, M.; Barba-Vidal, E.; Maldonado, J.; Aragon, V. Update on Glässer’s disease: How to control the disease under restrictive use of antimicrobials. Vet. Microbiol. 2020, 242, 108595. [Google Scholar] [CrossRef]
- Correa-Fiz, F.; Gonçalves dos Santos, J.M.; Illas, F.; Aragon, V. Antimicrobial removal on piglets promotes health and higher bacterial diversity in the nasal microbiota. Sci. Rep. 2019, 9, 6545. [Google Scholar] [CrossRef]
Antimicrobial | MIC Range (µg/mL) | MIC Breakpoints | ||
---|---|---|---|---|
Susceptible | Intermediary | Resistant | ||
Penicillin | ≤0.12–2.0 | ≤0.25 | 0.5 | ≥1.0 |
Ampicillin | ≤0.25–1.0 | ≤0.5 | 1.0 | ≥2.0 |
Ceftiofur | ≤0.25–8.0 | ≤2.0 | 4.0 | ≥8.0 |
Chlortetracycline | ≤0.5–8.0 | ≤0.5 | 1.0 | ≥2.0 |
Oxytetracycline | ≤0.5–8.0 | ≤0.5 | 1.0 | ≥2.0 |
Danofloxacin | ≤0.12–1.0 | ≤0.25 | - | - |
Enrofloxacin | ≤0.12–2.0 | ≤0.25 | 0.5 | ≥1.0 |
Florfenicol | ≤0.25–8.0 | ≤2.0 | 4.0 | ≥8.0 |
Spectinomycin | ≤8.0–64.0 | ≤32.0 | 64 | ≥128 |
Gentamicin | ≤1.0–16.0 | ≤2.0 | 4.0 | ≥8.0 |
Neomycin | ≤4.0–32.0 | ≤8.0 | - | - |
Sulfadimethoxine | 256 | ≤256 | - | >256.0 |
Trimethoprim/sulfamethoxazole | 2/38 | ≤2/38 | - | ≥4/76 |
Clindamycin | ≤0.25–16.0 | ≤0.5 | 1.0–2.0 | ≥4.0 |
Tylosin | ≤0.5–32.0 | ≤1.0 | 2.0–4.0 | ˃4.0 |
Tilmicosin | ≤4.0–64.0 | ≤16.0 | - | ≥32.0 |
Tulathromycin | ≤1.0–64.0 | ≤16 | 32 | ≥64.0 |
Tiamulin | ≤0.5–32.0 | ≤16.0 | - | ≥32.0 |
Year | Serotype | Total | |||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 9 | 13 | 14 | ||
2009 | 1 (8.3) | 0 | 0 | 1 (3.4) | 0 | 0 | 3 (15.8) | 0 | 5 (4.8) |
2010 | 1 (8.3) | 2 (66.7) | 0 | 11 (37.9) | 7 (26.9) | 0 | 5 (26.3) | 6 (42.9) | 32 (30.5) |
2011 | 3 (25.0) | 0 | 0 | 10 (34.5) | 12 (46.2) | 0 | 6 (31.6) | 6 (42.9) | 37 (35.2) |
2012 | 4 (33.3) | 0 | 0 | 2 (6.9) | 3 (11.5) | 0 | 1 (5.3) | 1 (7.1) | 11 (10.5) |
2013 | 3 (25.0) | 1 (33.3) | 1 (100) | 3 (10.3) | 4 (15.4) | 1 (100) | 4 (21.1) | 1 (7.1) | 18 (17.1) |
2014 | 0 | 0 | 0 | 2 (6.9) | 0 | 0 | 0 | 0 | 2 (1.9) |
Total | 12 (100) | 3 (100) | 1 (100) | 29 (100) | 26 (100) | 1 (100) | 19 (100) | 14 (100) | 105 (100) |
Antimicrobial | N° of Isolates with MIC of (µg/mL) | MIC50 (µg/mL) | MIC90 (µg/mL) | Resistance N (%) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | ||||
Penicillin | 25 | 40 | 25 | 4 | 3 | 0 | 0 | 8 | ≤0.25 | 1.0 | 15 (14.3) | |||
Ampicillin | 71 | 13 | 10 | 2 | 0 | 3 | 3 | 3 | ≤0.25 | 1.0 | 11 (10.5) | |||
Ceftiofur | 89 | 5 | 4 | 4 | 0 | 0 | 3 | ≤0.25 | 0.5 | 3 (2.9) | ||||
Chlortetracycline | 58 | 19 | 13 | 10 | 5 | ≤0.5 | 4.0 | 28 (26.7) | ||||||
Oxytetracycline | 32 | 31 | 26 | 11 | 3 | 2 | 1.0 | 4.0 | 42 (40.0) | |||||
Danofloxacin | 4 | 17 | 22 | 8 | 54 | >1.0 | >1.0 | 84 (80.0) | ||||||
Enrofloxacin | 20 | 21 | 7 | 9 | 20 | 28 | 1.0 | >2.0 | 57 (54.3) | |||||
Florfenicol | 18 | 67 | 11 | 5 | 2 | 2 | 0.5 | 1.0 | 2 (1.9) | |||||
Spectinomycin | 96 | 3 | 0 | 4 | 2 | ≤8.0 | ≤8.0 | 2 (1.9) | ||||||
Gentamicin | 54 | 47 | 4 | 0 | 0 | 1.0 | 2.0 | 0 (0) | ||||||
Neomycin | 88 | 13 | 2 | 0 | 2 | ≤4.0 | 8.0 | 4 (3.8) | ||||||
Clindamycin | 0 | 3 | 9 | 40 | 35 | 10 | 3 | 5 | 2.0 | 8.0 | 53 (50.5) | |||
Tylosin | 0 | 1 | 1 | 1 | 34 | 33 | 15 | 20 | 16 | >32.0 | 102 (97.1) | |||
Tilmicosin | 79 | 6 | 2 | 6 | 8 | 4 | ≤4.0 | 64.0 | 18 (17.1) | |||||
Tulathromycin | 44 | 34 | 7 | 5 | 1 | 7 | 3 | 4 | 2.0 | 32.0 | 7(6.7) | |||
Tiamulin | 2 | 0 | 3 | 24 | 46 | 29 | 1 | 8.0 | 16.0 | 1 (1.0) | ||||
Antimicrobial | N° of Isolates with MIC of (µg/mL) | MIC50 (µg/mL) | MIC90 (µg/mL) | Resistance % | ||||||||||
Sulfadimethoxine | ≤256 | >256 | ||||||||||||
11 | 94 | >256 | >256 | 89.5 | ||||||||||
N° of Isolates with MIC of (µg/mL) | MIC50 | MIC90 | Resistance | |||||||||||
Trimethoprim/sulfamethoxazole | ≤2/38 | >2/38 | (µg/mL) | (µg/mL) | % | |||||||||
39 | 66 | >2/38 | >2/38 | 62.9 |
Resistance Profiles | N | (%) |
---|---|---|
Susceptible | 2 | 1.9 |
≤2 antimicrobial classes | 9 | 8.6 |
3 antimicrobial classes | 27 | 27.7 |
4 antimicrobial classes | 42 | 40.0 |
5 antimicrobial classes | 18 | 17.1 |
6 antimicrobial classes | 4 | 3.8 |
7 antimicrobial classes | 3 | 2.9 |
Total | 105 | 100.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, G.F.R.; Moreno, L.Z.; Matajira, C.E.C.; Silva, A.P.S.; Araújo, K.M.; Gomes, V.T.M.; Barbosa, M.R.F.; Sato, M.I.Z.; Moreno, A.M. Serotyping and Antimicrobial Susceptibility Profiling of Glaesserella parasuis Isolated from Diseased Swine in Brazil. Pathogens 2022, 11, 1443. https://doi.org/10.3390/pathogens11121443
Silva GFR, Moreno LZ, Matajira CEC, Silva APS, Araújo KM, Gomes VTM, Barbosa MRF, Sato MIZ, Moreno AM. Serotyping and Antimicrobial Susceptibility Profiling of Glaesserella parasuis Isolated from Diseased Swine in Brazil. Pathogens. 2022; 11(12):1443. https://doi.org/10.3390/pathogens11121443
Chicago/Turabian StyleSilva, Givago Faria Ribeiro, Luisa Zanolli Moreno, Carlos Emílio Cabrera Matajira, Ana Paula Santos Silva, Kawany Miyazaki Araújo, Vasco Túlio Moura Gomes, Mikaela Renata Funada Barbosa, Maria Inês Zanolli Sato, and Andrea Micke Moreno. 2022. "Serotyping and Antimicrobial Susceptibility Profiling of Glaesserella parasuis Isolated from Diseased Swine in Brazil" Pathogens 11, no. 12: 1443. https://doi.org/10.3390/pathogens11121443
APA StyleSilva, G. F. R., Moreno, L. Z., Matajira, C. E. C., Silva, A. P. S., Araújo, K. M., Gomes, V. T. M., Barbosa, M. R. F., Sato, M. I. Z., & Moreno, A. M. (2022). Serotyping and Antimicrobial Susceptibility Profiling of Glaesserella parasuis Isolated from Diseased Swine in Brazil. Pathogens, 11(12), 1443. https://doi.org/10.3390/pathogens11121443