Monitoring Wind-Borne Particle Matter Entering Poultry Farms via the Air-Inlet: Highly Pathogenic Avian Influenza Virus and Other Pathogens Risk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Poultry Farms
2.1.1. Broiler Farm
2.1.2. Layer Farm
2.2. Air-Inlet Measurements
2.3. Video-Camera Monitoring
2.4. Testing for Pathogens
2.5. Descriptive Statistical Analysis
3. Results
3.1. PM via Broiler House Air-Inlets
3.2. PM via Layer House Air-Inlets
3.3. Arthropods via Broiler House Air-Inlets
3.4. Arthropods via Layer House Air-Inlets
3.5. Wild and Domestic Animals Visiting the Direct Area around the Broiler House
3.6. Wild and Domestic Animals Visiting the Direct Area around the Layer House
3.7. Diagnostic Testing Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Swayne, D.E.; Suarez, D.L.; Sims, L.D. Influenza. In Diseases of Poultry, 14th ed.; Swayne, D.E., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2020; pp. 210–256. [Google Scholar]
- Bouwstra, R.J.; Koch, G.; Heutink, R.; Harders, F.; van der Spek, A.; Elbers, A.R.W.; Bossers, A. Phylogenetic analysis of highly pathogenic avian influenza A(H5N8) virus outbreak strains provides evidence for four separate introductions and one between-poultry farm transmission in the Netherlands, November 2014. Eurosurveillance 2015, 20, 21174. [Google Scholar] [CrossRef] [Green Version]
- Beerens, N.; Koch, G.; Heutink, R.; Harders, F.; Vries, D.P.; Ho, C.; Bossers, A.; Elbers, A.R.W. Novel Highly Pathogenic Avian Influenza A(H5N6) Virus in the Netherlands, December 2017. Emerg. Infect. Dis. 2018, 24, 770–773. [Google Scholar] [CrossRef]
- Beerens, N.; Heutink, R.; Harders, F.; Roose, M.; Pritz-Verschuren, S.B.E.; Germeraad, E.A.; Engelsma, M. Incursion of Novel Highly Pathogenic Avian Influenza A(H5N8) Virus, the Netherlands, October 2020. Emerg. Infect. Dis. 2021, 27, 1750–1753. [Google Scholar] [CrossRef]
- Filaire, F.; Lebre, L.; Foret-Lucas, C.; Vergne, T.; Daniel, P.; Lelièvre, A.; de Barros, A.; Jbenyeni, A.; Bolon, P.; Paul, M.; et al. Highly Pathogenic Avian Influenza A(H5N8) Clade 2.3.4.4b Virus in Dust Samples from Poultry Farms, France, 2021. Emerg. Infect. Dis. 2022, 28, 1446–1450. [Google Scholar] [CrossRef]
- Ssematimba, A.; Hagenaars, T.J.; de Jong, M.C.M. Modelling the wind-borne spread of highly pathogenic avian influenza virus between farms. PLoS ONE 2012, 7, e31114. [Google Scholar] [CrossRef] [Green Version]
- Ypma, R.J.F.; Jonges, M.; Bataille, A.; Stegeman, A.; Koch, G.; van Boven, M.; Koopmans, M.; van Ballegooijen, W.M.; Wallinga, J. Genetic Data Provide Evidence for Wind-Mediated Transmission of Highly Pathogenic Avian Influenza. J. Infect. Dis. 2012, 207, 730–735. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.L.; Chen, Z.-Y.; Lin, S.-L.; King, C.-C.; Chen, C.C.; Chen, P.-S. Airborne avian influenza virus in ambient air in winter habitats of migratory birds. Environ. Sci. Technol. 2022, 56, 04528. [Google Scholar] [CrossRef]
- Elbers, A.R.W.; Gonzales, J.L. Quantification of visits of wild fauna to a commercial free-range layer farm in the Netherlands located in an avian influenza hot-spot area assessed by video-camera monitoring. Transbound. Emerg. Dis. 2019, 67, 661–677. [Google Scholar] [CrossRef] [Green Version]
- Dohoo, I.; Martin, W.; Stryhn, H. Sampling. In Veterinary Epidemiologic Research, 1st ed.; Dohoo, I., Martin, W., Stryhn, H., Eds.; AVC Inc., University of Prince Edward Island: Charlottetown, PE, Canada, 2003; pp. 39–47. [Google Scholar]
- Josefsen, M.H.; Jacobsen, N.R.; Hoorfar, J. Enrichment Followed by Quantitative PCR both for Rapid Detection and as a Tool for Quantitative Risk Assessment of Food-Borne Thermotolerant Campylobacters. Appl. Environ. Microbiol. 2004, 70, 3588–3592. [Google Scholar] [CrossRef] [Green Version]
- Van der Poel, W.H.; Parlevliet, J.M.; Verstraten, E.R.; Kooi, E.A.; Hakze-Van Der Honing, R.; Stockhofe, N. Schmallenberg virus detection in bovine semen after experimental infection of bulls. Epidemiol. Infect. 2014, 142, 1495–1500. [Google Scholar] [CrossRef]
- Jöst, H.; Bialonski, A.; Maus, D.; Sambri, V.; Eiden, M.; Groschup, M.H.; Günther, S.; Becker, N.; Schmidt-Chanasit, J. Isolation of Usutu virus in Germany. Am. J. Trop. Med. Hyg. 2011, 85, 551–553. [Google Scholar] [CrossRef] [Green Version]
- Vloet, R.P.M.; Vogels, C.B.F.; Koenraadt, C.J.M.; Pijlman, G.P.; Eiden, M.; Gonzales, J.L.; van Keulen, L.J.M.; Wichers Schreur, P.J.; Kortekaas, J. Transmission of Rift Valley fever virus from European-breed lambs to Culex pipiens mosquitoes. PLoS Negl. Trop. Dis. 2017, 11, e0006145. [Google Scholar] [CrossRef] [Green Version]
- Statistix, Analytical Software. Version 10. Tallahassee, FL, USA. 2018. Available online: www.statistix.com (accessed on 23 April 2022).
- Germeraad, E.A.; Sanders, P.; Hagenaars, T.J.; de Jong, M.C.M.; Beerens, N.; Gonzales, J.L. Virus Shedding of Avian Influenza in Poultry: A Systematic Review and Meta-Analysis. Viruses 2019, 11, 812. [Google Scholar] [CrossRef] [Green Version]
- Torremorell, M.; Alonso, C.; Davies, P.R.; Raynor, P.C.; Patnayak, D.; Torchetti, M.; McCluskey, B. Investigation into the Airborne Dissemination of H5N2 Highly Pathogenic Avian Influenza Virus During the 2015 Spring Outbreaks in the Midwestern United States. Avian. Dis. 2016, 60, 637–643. [Google Scholar] [CrossRef]
- Scoizec, A.; Niqueux, E.; Thomas, R.; Daniel, P.; Schmitz, A.; Le Bouquin, S. Airborne Detection of H5N8 Highly Pathogenic Avian Influenza Virus Genome in Poultry Farms, France. Front. Vet. Sci. 2018, 5, 15. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Richardson, B.; Takle, E.; Chai, L.; Schmitt, D.; Xin, H. Airborne transmission may have played a role in the spread of 2015 highly pathogenic avian influenza outbreaks in the United States. Sci. Rep. 2019, 9, 11755. [Google Scholar] [CrossRef] [Green Version]
- Verhagen, J.H.; van der Jeugd, H.P.; Nolet, B.A.; Slaterus, R.; Kharitonov, S.P.; de Vries, P.P.; Vuong, O.; Majoor, F.; Kuiken, T.; Fouchier, R.A. Wild bird surveillance around outbreaks of highly pathogenic avian influenza A(H5N8) virus in the Netherlands, 2014, within the context of global flyways. Eurosurveillance 2015, 20, 21069. [Google Scholar] [CrossRef] [Green Version]
- Poen, M.J.; Verhagen, J.H.; Manvell, R.J.; Brown, I.; Bestebroer, T.M.; van der Vliet, S.; Vuong, O.; Scheuer, R.D.; van der Jeugd, H.P.; Nolet, B.A.; et al. Lack of virological and serological evidence for continued circulation of highly pathogenic avian influenza H5N8 virus in wild birds in the Netherlands, 14 November 2014 to 31 January 2016. Eurosurveillance 2016, 21, 30349. [Google Scholar] [CrossRef] [Green Version]
- Poen, M.J.; Bestebroer, T.M.; Vuong, O.; Scheuer, R.D.; van der Jeugd, H.P.; Kleyheeg, E.; Eggink, D.; Lexmond, P.; van den Brand, J.M.A.; Begeman, L.; et al. Local amplification of of highly pathogenic avian influenza H5N8 viruses in wild birds in the Netherlands, 2016 to 2017. Eurosurveillance 2018, 23, 17–00449. [Google Scholar] [CrossRef] [Green Version]
- National Farm Biosecurity Manual—Poultry Production. Australian Government. 2009. Available online: https://farmbiosecurity.com.au/wp-content/uploads/2019/03/National-Farm-Biosecurity-Manual-Poultry-Production.pdf (accessed on 23 April 2022).
- Halvorson, D.A. Biosecurity on a multi-age egg production complex: A 15-year experience. Avian. Dis. 2011, 55, 139–142. [Google Scholar] [CrossRef]
- Racicot, M.; Venne, D.; Durivage, A.; Vaillancourt, J.-P. Evaluation of strategies to enhance biosecurity compliance on poultry farms in Quebec: Effect of audits and cameras. Prev. Vet. Med. 2012, 103, 208–218. [Google Scholar] [CrossRef]
- Yoo, D.-S.; Lee, K.-N.; Chun, B.-C.; Lee, H.-S.; Park, H.; Kim, J.-K. Preventive effect of on-farm biosecurity practices against highly pathogenic avian influenza (HPAI) H5N6 infection on commercial layer farms in the republic of Korea during the 2016-17 epidemic: A case-control study. Prev. Vet. Med. 2022, 99, 105556. [Google Scholar] [CrossRef]
- Racicot, M.; Venne, D.; Durivage, A.; Vaillancourt, J.-P. Description of 44 biosecurity errors while entering and exiting poultry barns based on video surveillance in Quebec, Canada. Prev. Vet. Med. 2011, 100, 193–199. [Google Scholar] [CrossRef]
- Nuradja, H.; Bingham, J.; Payne, J.; Harper, J.; Lowther, S.; Wibawa, H.; Long, N.T.; Meers, J. Virus in Feathers: Tropism and pathology of virus-infected feathers of infected ducks and chickens. Vet. Path. 2017, 54, 226–233. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Nakamura, K.; Yamada, M.; Mase, M. Persistence of avian influenza virus (H5N1) in feathers detached from bodies of infected domestic ducks. Appl. Environ. Microbiol. 2010, 76, 5496–5499. [Google Scholar] [CrossRef] [Green Version]
- Karunakaran, A.C.; Murugkar, H.V.; Kumar, M.; Nagarajan, S.; Tosh, C.; Pathak, A.; Rajendrakumar, A.M.; Agarwal, R.K. Survivability of highly pathogenic avian influenza virus (H5N1) in naturally preened duck feathers at different temperatures. Transbound. Emerg. Dis. 2019, 66, 1306–1313. [Google Scholar] [CrossRef]
- Sawabe, K.; Hoshino, K.; Isawa, H.; Sasaki, T.; Hayashi, T.; Tsuda, Y.; Kurahashi, H.; Tanabayashi, K.; Hotta, A.; Saito, T.; et al. Detection and isolation of highly pathogenic H5N1 avian influenza A viruses from blow flies collected in the vicinity of an infected poultry farm in Kyoto, Japan, 2004. Am. J. Trop. Med. Hyg. 2006, 75, 327–332. [Google Scholar] [CrossRef] [Green Version]
- Barbazan, P.; Thitithanyanont, A.; Missé, D.; Dubot, A.; Bosc, P.; Luangsri, N.; Gonzalez, J.P.; Kittayapong, P. Detection of H5N1 avian influenza virus from mosquitoes collected in an infected poultry farm in Thailand. Vector Borne Zoonotic Dis. 2008, 8, 105–109. [Google Scholar] [CrossRef]
- Salamatian, I.; Moshaverinia, A.; Razmyar, J.; Ghaemi, M. In vitro Acquisition and Retention of Low-Pathogenic Avian Influenza H9N2 by Musca domestica (Diptera: Muscidae). J. Med. Entomol. 2020, 57, 563–567. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elbers, A.R.W.; Gonzales, J.L.; Koene, M.G.J.; Germeraad, E.A.; Hakze-van der Honing, R.W.; van der Most, M.; Rodenboog, H.; Velkers, F.C. Monitoring Wind-Borne Particle Matter Entering Poultry Farms via the Air-Inlet: Highly Pathogenic Avian Influenza Virus and Other Pathogens Risk. Pathogens 2022, 11, 1534. https://doi.org/10.3390/pathogens11121534
Elbers ARW, Gonzales JL, Koene MGJ, Germeraad EA, Hakze-van der Honing RW, van der Most M, Rodenboog H, Velkers FC. Monitoring Wind-Borne Particle Matter Entering Poultry Farms via the Air-Inlet: Highly Pathogenic Avian Influenza Virus and Other Pathogens Risk. Pathogens. 2022; 11(12):1534. https://doi.org/10.3390/pathogens11121534
Chicago/Turabian StyleElbers, Armin R. W., José L. Gonzales, Miriam G. J. Koene, Evelien A. Germeraad, Renate W. Hakze-van der Honing, Marleen van der Most, Henk Rodenboog, and Francisca C. Velkers. 2022. "Monitoring Wind-Borne Particle Matter Entering Poultry Farms via the Air-Inlet: Highly Pathogenic Avian Influenza Virus and Other Pathogens Risk" Pathogens 11, no. 12: 1534. https://doi.org/10.3390/pathogens11121534
APA StyleElbers, A. R. W., Gonzales, J. L., Koene, M. G. J., Germeraad, E. A., Hakze-van der Honing, R. W., van der Most, M., Rodenboog, H., & Velkers, F. C. (2022). Monitoring Wind-Borne Particle Matter Entering Poultry Farms via the Air-Inlet: Highly Pathogenic Avian Influenza Virus and Other Pathogens Risk. Pathogens, 11(12), 1534. https://doi.org/10.3390/pathogens11121534