Ecological Niche Model of Bacillus cereus Group Isolates Containing a Homologue of the pXO1 Anthrax Toxin Genes Infecting Metalworkers in the United States
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Human Case Information
4.2. Environmental Variables and Model Calibration Region
Case No. | County/Parish | State | Age/Sex | Date | Strain | Reference |
---|---|---|---|---|---|---|
1 | Assumption | LA | 42/M | 1994 | G9241 | [2] |
2 | Hall | TX | 39/M | 2003 | 03BB87 | [1,3] |
3 | Comal | TX | 56/M | 2003 | 03BB102 | [1,3] |
4 | LaFourche | LA | 47/F | 2007 | B. cereus LA 2007 | [42] |
5 | Wharton | TX | 39/M | 2012 | Elc2 | [4] |
6 | St. James | LA | 39/M | 2020 | B. cereus LA 2020 | [6,32] |
7 | Harris | TX | 34/M | 2020 | B. cereus TX 2020 | [6,32] |
Variables | Units | Resolution |
---|---|---|
Set 1 | ||
Annual Mean Temperature (bio1) | C° | ~1 km |
Mean Diurnal Range (Mean of Monthly (Max Temp–Min Temp)) (bio2) | C° | ~1 km |
Isothermality (bio2/bio7) (bio3) | C° | ~1 km |
Temperature Seasonality (Stand. Dev.) (bio4) | C° | ~1 km |
Max Temperature of Warmest Month (bio5) | C° | ~1 km |
Min Temperature of Coldest Month (bio6) | C° | ~1 km |
Temperature Annual Range (bio5–bio6) (bio7) | C° | ~1 km |
Mean Temperature of Wettest Quarter (bio8) | C° | ~1 km |
Mean Temperature of Driest Quarter (bio9) | C° | ~1 km |
Mean Temperature of Warmest Quarter (bio10) | C° | ~1 km |
Mean Temperature of Coldest Quarter (bio11) | C° | ~1 km |
Set 2 | ||
Annual Precipitation (bio12) | mm | ~1 km |
Precipitation of Wettest Month (bio13) | mm | ~1 km |
Precipitation of Driest Month (bio14) | mm | ~1 km |
Precipitation Seasonality (Coefficient of Variation) (bio15) | mm | ~1 km |
Precipitation of Wettest Quarter (bio16) | mm | ~1 km |
Precipitation of Driest Quarter (bio17) | mm | ~1 km |
Precipitation of Warmest Quarter (bio18) | mm | ~1 km |
Precipitation of Coldest Quarter (bio19) | mm | ~1 km |
Set 3 | ||
Cation Exchange Capacity (at ph7) | at pH 7 | ~1 km |
Soil Organic Carbon | dg/kg | ~1 km |
Soil pH water | pH*10 | ~1 km |
Set 4 | ||
Enhanced Vegetation Index (EVI) | 0–5.1 | ~1 km |
Land Surface Temperature (LST) | C° | ~1 km |
4.3. Principal Component Analysis (PCA)
4.4. Ecological Niche Modeling
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Avashia, S.B.; Riggins, W.; Lindley, C.; Hoffmaster, A.; Drumgoole, R.; Nekomoto, T.; Jackson, P.J.; Hill, K.K.; Williams, K.; Lehman, L. Fatal Pneumonia among Metalworkers Due to Inhalation Exposure to Bacillus Cereus Containing Bacillus Anthracis Toxin Genes. Clin. Infect. Dis. 2007, 44, 414–416. [Google Scholar] [CrossRef] [PubMed]
- Hoffmaster, A.R.; Ravel, J.; Rasko, D.A.; Chapman, G.D.; Chute, M.D.; Marston, C.K.; De, B.K.; Sacchi, C.T.; Fitzgerald, C.; Mayer, L.W. Identification of Anthrax Toxin Genes in a Bacillus Cereus Associated with an Illness Resembling Inhalation Anthrax. Proc. Natl. Acad. Sci. USA 2004, 101, 8449–8454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffmaster, A.R.; Hill, K.K.; Gee, J.E.; Marston, C.K.; De, B.K.; Popovic, T.; Sue, D.; Wilkins, P.P.; Avashia, S.B.; Drumgoole, R. Characterization of Bacillus Cereus Isolates Associated with Fatal Pneumonias: Strains Are Closely Related to Bacillus Anthracis and Harbor B. Anthracis Virulence Genes. J. Clin. Microbiol. 2006, 44, 3352–3360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, A.M.; Beres, S.B.; Consamus, E.N.; Long, S.; Flores, A.R.; Barrios, R.; Richter, G.S.; Oh, S.-Y.; Garufi, G.; Maier, H. Rapidly Progressive, Fatal, Inhalation Anthrax-like Infection in a Human: Case Report, Pathogen Genome Sequencing, Pathology, and Coordinated Response. Arch. Pathol. Lab. Med. 2011, 135, 1447–1459. [Google Scholar] [CrossRef]
- Marston, C.K.; Ibrahim, H.; Lee, P.; Churchwell, G.; Gumke, M.; Stanek, D.; Gee, J.E.; Boyer, A.E.; Gallegos-Candela, M.; Barr, J.R.; et al. Anthrax Toxin-Expressing Bacillus Cereus Isolated from an Anthrax-Like Eschar. PLoS ONE 2016, 11, e0156987. [Google Scholar] [CrossRef] [Green Version]
- Dawson, P.; Schrodt, C.; Feldmann, K.; Traxler, R.; Gee, J.; Kolton, C.; Marston, C.K.; Gulvik, C.; Antonini, J.; Negrón, M.; et al. Highly Fatal Anthrax Pneumonia in Welders and Other Metalworkers Due to Bacillus Cereus Group Bacteria Containing Anthrax Toxin Genes—U.S. Gulf Coast States, 1994–2020. Morb. Mortal. Wkly. Rep. 2021, 70, 1453. [Google Scholar] [CrossRef]
- Liu, Y.; Du, J.; Lai, Q.; Zeng, R.; Ye, D.; Xu, J.; Shao, Z. 2017 Proposal of Nine Novel Species of the Bacillus Cereus Group. Int. J. Syst. Evol. Microbiol. 2017, 67, 2499–2508. [Google Scholar] [CrossRef]
- Kaiser, J. UPDATED: University of Chicago Microbiologist Infected from Possible Lab Accident. Available online: https://www.sciencemag.org/news/2011/09/updated-university-chicago-microbiologist-infected-possible-lab-accident (accessed on 30 August 2021).
- de Perio, M.; Hendricks, K.; Dowell, C.; Bower, W.A.; Burton, N.; Dawson, P.; Schrodt, C.; Salzer, J.S.; Marston, C.K.; Feldmann, K.; et al. Welder’s Anthrax: A Review of an Occupational Disease. Prep. Manuscr. 2022, 11, 402. [Google Scholar] [CrossRef]
- Escobar, L.E.; Craft, M.E. Advances and Limitations of Disease Biogeography Using Ecological Niche Modeling. Front. Microbiol. 2016, 7, 1174. [Google Scholar] [CrossRef] [Green Version]
- Peterson, A.T. Mapping Disease Transmission Risk: Enriching Models Using Biogeography and Ecology; JHU Press: Baltimore, MD, USA, 2014; ISBN 1-4214-1473-2. [Google Scholar]
- Romero-Alvarez, D.; Peterson, A.T.; Salzer, J.S.; Pittiglio, C.; Shadomy, S.; Traxler, R.; Vieira, A.R.; Bower, W.A.; Walke, H.; Campbell, L.P. Potential Distributions of Bacillus Anthracis and Bacillus Cereus Biovar Anthracis Causing Anthrax in Africa. PLoS Negl. Trop. Dis. 2020, 14, e0008131. [Google Scholar] [CrossRef] [Green Version]
- Blackburn, J.K.; McNyset, K.M.; Curtis, A.; Hugh-Jones, M.E. Modeling the Geographic Distribution of Bacillus Anthracis, the Causative Agent of Anthrax Disease, for the Contiguous United States Using Predictive Ecological [Corrected] Niche Modeling. Am. J. Trop. Med. Hyg. 2007, 77, 1103–1110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlson, C.J.; Kracalik, I.T.; Ross, N.; Alexander, K.A.; Hugh-Jones, M.E.; Fegan, M. The Global Distribution of Bacillus Anthracis and Associated Anthrax Risk to Humans, Livestock and Wildlife. Nat. Microbiol. 2019, 4, 1337–1343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parihar, H.S. Bacillus Cereus. In Reference Module in Biomedical Sciences Encyclopedia of Toxicology, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Luo, Y.; Vilain, S.; Voigt, B.; Albrecht, D.; Hecker, M.; Brözel, V.S. Proteomic Analysis of Bacillus Cereus Growing in Liquid Soil Organic Matter. FEMS Microbiol. Lett. 2007, 271, 40–47. [Google Scholar] [CrossRef] [PubMed]
- West, A.; Burges, H.; Dixon, T.; Wyborn, C. Survival of Bacillus Thuringiensis and Bacillus Cereus Spore Inocula in Soil: Effects of PH, Moisture, Nutrient Availability and Indigenous Microorganisms. Soil Biol. Biochem. 1985, 17, 657–665. [Google Scholar] [CrossRef]
- Gilbert, R.; Kramer, J.; Cliver, D.; Cochrane, B. Progress in Food Safety; Food Research Institute, University of Wisconsin: Madison, WI, USA, 1986. [Google Scholar]
- Von Stetten, F.; Mayr, R.; Scherer, S. Climatic Influence on Mesophilic Bacillus Cereus and Psychrotolerant Bacillus Weihenstephanensis Populations in Tropical, Temperate and Alpine Soil. Environ. Microbiol. 1999, 1, 503–515. [Google Scholar] [CrossRef] [PubMed]
- Schoeni, J.L.; Lee, A.C.W. Bacillus Cereus Food Poisoning and Its Toxins. J. Food Prot. 2005, 68, 636–648. [Google Scholar] [CrossRef]
- Yang, A.; Mullins, J.C.; Van Ert, M.; Bowen, R.A.; Hadfield, T.L.; Blackburn, J.K. Predicting the Geographic Distribution of the Bacillus Anthracis A1.a/Western North American Sub-Lineage for the Continental United States: New Outbreaks, New Genotypes, and New Climate Data. Am. J. Trop. Med. Hyg. 2020, 102, 392–402. [Google Scholar] [CrossRef]
- Mullins, J.; Lukhnova, L.; Aikimbayev, A.; Pazilov, Y.; Van Ert, M.; Blackburn, J.K. Ecological Niche Modelling of the Bacillus Anthracis A1.a Sub-Lineage in Kazakhstan. BMC Ecol. 2011, 11, 32. [Google Scholar] [CrossRef] [Green Version]
- Blackburn, J.K.; Goodin, D.G. Differentiation of Springtime Vegetation Indices Associated with Summer Anthrax Epizootics in West Texas, USA, Deer. J. Wildl. Dis. 2013, 49, 699–703. [Google Scholar] [CrossRef] [Green Version]
- Otieno, F.T.; Gachohi, J.; Gikuma-Njuru, P.; Kariuki, P.; Oyas, H.; Canfield, S.A.; Blackburn, J.K.; Njenga, M.K.; Bett, B. Modeling the Spatial Distribution of Anthrax in Southern Kenya. PLoS Negl. Trop. Dis. 2021, 15, e0009301. [Google Scholar] [CrossRef]
- Chikerema, S.M.; Murwira, A.; Matope, G.; Pfukenyi, D.M. Spatial Modelling of Bacillus Anthracis Ecological Niche in Zimbabwe. Prev. Vet. Med. 2013, 111, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Ricieto, A.P.S.; Fazion, F.A.P.; Carvalho Filho, C.D.; Vilas-Boas, L.A.; Vilas-Bôas, G.T. Effect of Vegetation on the Presence and Genetic Diversity of Bacillus Thuringiensis in Soil. Can. J. Microbiol. 2013, 59, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Deka, M.A. Predictive Risk Mapping of Schistosomiasis in Madagascar Using Ecological Niche Modeling and Precision Mapping. Trop. Med. Infect. Dis. 2022, 7, 15. [Google Scholar] [CrossRef] [PubMed]
- Suresh, K.; Hemadri, D.; Patil, S.; Krishnamoorthy, P.; Siju, S.; Shome, B. Livestock Disease Risk Forewarning Bulletin-March 2022. ICAR-NIVEDI Bengaluru 2022, 10, 1–126. [Google Scholar]
- Suma, A.P.; Suresh, K.P.; Gajendragad, M.R.; Kavya, B. A Forecasting Anthrax in Livestock in Karnataka State Using Remote Sensing and Climatic Variables. Int. J. Sci. Res. 2017, 6, 1891–1897. [Google Scholar]
- Kracalik, I.T.; Malania, L.; Tsertsvadze, N.; Manvelyan, J.; Bakanidze, L.; Imnadze, P.; Tsanava, S.; Blackburn, J.K. Evidence of Local Persistence of Human Anthrax in the Country of Georgia Associated with Environmental and Anthropogenic Factors. PLOS Negl. Trop. Dis. 2013, 7, e2388. [Google Scholar] [CrossRef] [Green Version]
- ASM; APHL. ASM and APHL’S New Interim Recommendations for Bacillus Identification. Available online: https://www.asm.org/index.php/statements-and-testimony/item/5900-b-cereus-biovar-anthracis (accessed on 1 December 2021).
- Dawson, P.; Salzer, J.S.; Schrodt, C.; Feldmann, K.; Kolton, C.; Gee, J.E.; Marston, C.K.; Gulvik, C.; Glass-Elrod, M.; Villarma, A.; et al. Epidemiologic Investigation of Two Welder’s Anthrax Cases Caused by Bacillus Cereus Group Bacteria: Occupational Link Established by Environmental Detection. Prep. Manuscr. 2022; will be included in upcoming B.cereus special issue. [Google Scholar]
- Kakpo, S.B.; Aoudji, A.K.N.; Gnanguènon-Guéssè, D.; Gbètoho, A.J.; Koura, K.; Djotan, G.K.; Ganglo, J.C. Spatial Distribution and Impacts of Climate Change on Milicia Excelsa in Benin, West Africa. J. For. Res. 2021, 32, 143–150. [Google Scholar] [CrossRef] [Green Version]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and Future Köppen-Geiger Climate Classification Maps at 1-Km Resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [Green Version]
- Karger, D.N.; Conrad, O.; Böhner, J.; Kawohl, T.; Kreft, H.; Soria-Auza, R.W.; Zimmermann, N.E.; Linder, H.P.; Kessler, M. Climatologies at High Resolution for the Earth’s Land Surface Areas. Sci. Data 2017, 4, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Walsh, M.G.; de Smalen, A.W.; Mor, S.M. Climatic Influence on Anthrax Suitability in Warming Northern Latitudes. Sci. Rep. 2018, 8, 9269. [Google Scholar] [CrossRef] [Green Version]
- Assefa, A.; Bihon, A.; Tibebu, A. Anthrax in the Amhara Regional State of Ethiopia; Spatiotemporal Analysis and Environmental Suitability Modeling with an Ensemble Approach. Prev. Vet. Med. 2020, 184, 105155. [Google Scholar] [CrossRef] [PubMed]
- Driciru, M.; Rwego, I.B.; Ndimuligo, S.A.; Travis, D.A.; Mwakapeje, E.R.; Craft, M.; Asiimwe, B.; Alvarez, J.; Ayebare, S.; Pelican, K. Environmental Determinants Influencing Anthrax Distribution in Queen Elizabeth Protected Area, Western Uganda. PLoS ONE 2020, 15, e0237223. [Google Scholar] [CrossRef] [PubMed]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Hengl, T. WorldGrids Archived Layers at 1 km to 20 km Spatial Resolution. 2018. Available online: https://zenodo.org/record/1637816#.Y1bLoJHMI2w. (accessed on 3 December 2021).
- Soberón, J.; Peterson, A.T. Interpretation of Models of Fundamental Ecological Niches and Species’ Distributional Areas. Biodiv. Inf. Biodivers. Inform. 2005, 2, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Pena-Gonzalez, A.; Marston, C.K.; Rodriguez, R.L.; Kolton, C.B.; Garcia-Diaz, J.; Theppote, A.; Frace, M.; Konstantinidis, K.T.; Hoffmaster, A.R. Draft Genome Sequence of Bacillus Cereus LA2007, a Human-Pathogenic Isolate Harboring Anthrax-Like Plasmids. Genome Announc. 2017, 5, e00181-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiao, H.; Peterson, A.T.; Campbell, L.P.; Soberón, J.; Ji, L.; Escobar, L.E. NicheA: Creating Virtual Species and Ecological Niches in Multivariate Environmental Scenarios. Ecography 2016, 39, 805–813. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum Entropy Modeling of Species Geographic Distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2013. [Google Scholar]
- Kass, J.M.; Muscarella, R.; Galante, P.J.; Bohl, C.L.; Pinilla-Buitrago, G.E.; Boria, R.A.; Soley-Guardia, M.; Anderson, R.P. ENMeval 2.0: Redesigned for Customizable and Reproducible Modeling of Species’ Niches and Distributions. Methods Ecol. Evol. 2021, 12, 1602–1608. [Google Scholar] [CrossRef]
- Aidoo, O.F.; Cunze, S.; Guimapi, R.A.; Arhin, L.; Ablormeti, F.K.; Tettey, E.; Dampare, F.; Afram, Y.; Bonsu, O.; Obeng, J.; et al. Lethal Yellowing Disease: Insights from Predicting Potential Distribution under Different Climate Change Scenarios. J. Plant Dis. Prot. 2021, 128, 1313–1325. [Google Scholar] [CrossRef]
- Santos, A.A.; Hancox, T.J.J.; Picanço, M.C.; Delaporte, K.; Hogendoorn, K. Potential Distribution of Leptospermum Species (Myrtaceae) in Australia for Bioactive Honey Production Purposes. N. Z. J. Crop Hortic. Sci. 2021, 1–12. [Google Scholar] [CrossRef]
- Hageer, Y.; Esperón-Rodríguez, M.; Baumgartner, J.B.; Beaumont, L.J. Climate, Soil or Both? Which Variables Are Better Predictors of the Distributions of Australian Shrub Species? Peer J. 2017, 5, e3446. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Amat, E.; Mateo, R.G.; Nieto-Lugilde, D.; Morueta-Holme, N.; Svenning, J.-C.; García-Amorena, I. Impact of Model Complexity on Cross-Temporal Transferability in Maxent Species Distribution Models: An Assessment Using Paleobotanical Data. Ecol. Model. 2015, 312, 308–317. [Google Scholar] [CrossRef]
- Elith, J.; Phillips, S.J.; Hastie, T.; Dudík, M.; Chee, Y.E.; Yates, C.J. A Statistical Explanation of MaxEnt for Ecologists. Divers. Distrib. 2011, 17, 43–57. [Google Scholar] [CrossRef]
- Akaike, H. A New Look at the Statistical Model Identification. IEEE Trans. Autom. Control. 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Peterson, A.T.; Papeş, M.; Soberón, J. Rethinking Receiver Operating Characteristic Analysis Applications in Ecological Niche Modeling. Ecol. Model. 2008, 213, 63–72. [Google Scholar] [CrossRef]
- Van Aelst, S.; Rousseeuw, P. Minimum Volume Ellipsoid. Wiley Interdiscip. Rev. Comput. Stat. 2009, 1, 71–82. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deka, M.A.; Marston, C.K.; Garcia-Diaz, J.; Drumgoole, R.; Traxler, R.M. Ecological Niche Model of Bacillus cereus Group Isolates Containing a Homologue of the pXO1 Anthrax Toxin Genes Infecting Metalworkers in the United States. Pathogens 2022, 11, 470. https://doi.org/10.3390/pathogens11040470
Deka MA, Marston CK, Garcia-Diaz J, Drumgoole R, Traxler RM. Ecological Niche Model of Bacillus cereus Group Isolates Containing a Homologue of the pXO1 Anthrax Toxin Genes Infecting Metalworkers in the United States. Pathogens. 2022; 11(4):470. https://doi.org/10.3390/pathogens11040470
Chicago/Turabian StyleDeka, Mark A., Chung K. Marston, Julia Garcia-Diaz, Rahsaan Drumgoole, and Rita M. Traxler. 2022. "Ecological Niche Model of Bacillus cereus Group Isolates Containing a Homologue of the pXO1 Anthrax Toxin Genes Infecting Metalworkers in the United States" Pathogens 11, no. 4: 470. https://doi.org/10.3390/pathogens11040470
APA StyleDeka, M. A., Marston, C. K., Garcia-Diaz, J., Drumgoole, R., & Traxler, R. M. (2022). Ecological Niche Model of Bacillus cereus Group Isolates Containing a Homologue of the pXO1 Anthrax Toxin Genes Infecting Metalworkers in the United States. Pathogens, 11(4), 470. https://doi.org/10.3390/pathogens11040470