No Correlation between Biofilm-Forming Capacity and Antibiotic Resistance in Environmental Staphylococcus spp.: In Vitro Results
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Isolates
2.2. Re-Identification of Isolates
2.3. Antimicrobial Susceptibility Testing and Resistotyping
2.4. Detection of Biofilm Formation by the Congo Red Agar (CRA) Method
2.5. Detection of Biofilm Production by the Crystal Violet Microtiter Plate (CV-MTP) Method
2.6. Statistical Analysis
3. Results
3.1. Identification and Antibiotic Susceptibility of Staphylococcus spp. Isolates Included in the Study
3.2. Biofilm-Forming Capacity of the Isolates in CRA and CV-MTP-Based Assays
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Madhaiyan, M.; Wirth, J.S.; Saravanan, V.S. Phylogenomic analyses of the Staphylococcaceae family suggest the reclassification of five species within the genus Staphylococcus as heterotypic synonyms, the promotion of five subspecies to novel species, the taxonomic reassignment of five Staphylococcus species to Mammaliicoccus gen. nov., and the formal assignment of Nosocomiicoccus to the family Staphylococcaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 5926–5936. [Google Scholar] [PubMed]
- Zielinski, W.; Kornzeniewska, E.; Harnisz, M.; Hubeny, J.; Buta, M.; Rolbiecki, D. The prevalence of drug-resistant and virulent Staphylococcus spp. in a municipal wastewater treatment plant and their spread in the environment. Environ. Int. 2020, 143, e105914. [Google Scholar] [CrossRef] [PubMed]
- Piette, A.; Verschraegen, G.E. Role of coagulase-negative staphylococci in human disease. Vet. Microbiol. 2009, 134, 45–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farran, E.L.; Sekar, A.; Balakrishnan, A.; Shanmugam, S.; Arumugam, P.; Gopalswamy, J. Prevalence of biofilm-producing Staphylococcus epidermidis in the healthy skin of individuals in Tamil Nadu, India. Indian J. Med. Microbiol. 2013, 31, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Alarjani, K.M.; Almutairi, A.M.; Al-Qahtany, F.S.; Soundharrajan, I. Methicillin and multidrug resistant pathogenic Staphylococcus aureus associated sepsis in hospitalized neonatal infections and antibiotic susceptibility. J. Infect. Public Health 2021, 14, 1630–1634. [Google Scholar] [CrossRef] [PubMed]
- Wahaibi, L.; Al-Sudairi, R.; Balkhair, A.; Al-Awaisi, H.; Mabruk, M. Methicillin-resistant Staphylococcus aureus colonization among healthcare workers in Oman. J. Infect. Dev. Ctries. 2021, 15, 1426–1435. [Google Scholar] [CrossRef] [PubMed]
- Güngör, S.; Karagöz, A.; Kocak, N.; Arslantas, T. Methicillin-resistant Staphylococcus aureus in a Turkish hospital: Characterization of clonal types and antibiotic susceptibility. J. Infect. Dev. Ctries. 2021, 15, 1854–1860. [Google Scholar] [CrossRef]
- Aratani, T.; Tsukamoto, H.; Higashi, T.; Kodawara, T.; Yano, R.; Hida, Y.; Iwasaki, H.; Goto, N. Association of methicillin resistance with mortality of hospital-acquired Staphylococcus aureus bacteremia. J. Int. Med. Res. 2021, 49, 3000605211058872. [Google Scholar] [CrossRef]
- Tegegne, H.A.; Kolackova, I.; Florianova, M.; Gelbicova, T.; Madec, J.Y.; Haenni, M.; Karpiskova, R. Detection and molecular characterisation of methicillin-resistant Staphylococcus aureus isolated from raw meat in the retail market. J. Glob. Antimicrob. Resist. 2021, 26, 233–238. [Google Scholar] [CrossRef]
- Smith, T.C. Livestock-Associated Staphylococcus aureus: The United States Experience. PLoS Pathog. 2015, 11, e1004564. [Google Scholar] [CrossRef]
- Schnitt, A.; Lienen, T.; Wichmann-Schauer, H.; Tenhagen, B.A. The occurrence of methicillin-resistant non-aureus staphylococci in samples from cows, young stock, and the environment on German dairy farms. J. Dairy Sci. 2020, 104, 4606–4614. [Google Scholar] [CrossRef] [PubMed]
- Correia, S.; Silva, V.; Garcia-Diez, J.; Teixeira, P.; Pimenta, K.; Pereira, J.E.; Oliveira, S.; Rocha, J.; Manaia, C.M.; Igrejas, G.; et al. One Health Approach Reveals the Absence of Methicillin-Resistant Staphylococcus aureus in Autochthonous Cattle and Their Environments. Front. Microbiol. 2019, 10, e2735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jevons, M.P. “Celbenin”—Resistant Staphylococci. Br. Med. J. 1961, 1, 124–125. [Google Scholar] [CrossRef]
- Dulon, M.; Haarnmann, F.; Peters, C.; Schablon, A.; Nienhaus, A. MRSA prevalence in European healthcare settings: A review. BMC Infect Dis. 2011, 11, e138. [Google Scholar] [CrossRef] [Green Version]
- Kalantar-Neyestanaki, D.; Mansouri, S.; Tadjrobehkar, O.; Pardakhty, A.; Tabatabaeifar, F.; Morones-Ramírez, J.R.; Jamali, Z.; Isaei, E. High prevalence of multi-drug resistant and different SCCmec types among coagulase-negative Staphylococci spp. collected from clinical samples and skin of healthcare workers in Kerman, Southeast Iran. Gene Rep. 2022, 26, e101428. [Google Scholar] [CrossRef]
- Uehara, Y. Current Status of Staphylococcal Cassette Chromosome mec (SCCmec). Antibiotics 2022, 11, 86. [Google Scholar] [CrossRef]
- Becker, K.; van Alen, S.; Idelevich, E.A.; Schleimer, N.; Seggewiss, J.; Mellmann, A.; Kaspar, U.; Peters, G. Plasmid-Encoded Transferable mecB-Mediated Methicillin Resistance in Staphylococcus aureus. Emerg. Infect. Dis. 2018, 24, 242–248. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Chen, D.; Peters, B.M.; Li, L.; Li, B.; Xu, Z.; Shirliff, M.E. Staphylococcal chromosomal cassettes mec (SCCmec): A mobile genetic element in methicillin-resistant Staphylococcus aureus. Microb. Pathogen. 2016, 101, 56–567. [Google Scholar] [CrossRef]
- Gerken, T.J.; Roberts, M.C.; Dykema, P.; Melly, G.; Lucas, D.; Los Santos, V.; Gonzales, J.; Butaye, P.; Wiegner, T.N. Environmental Surveillance and Characterization of Antibiotic Resistant Staphylococcus aureus at Coastal Beaches and Rivers on the Island of Hawai‘i. Antibiotics 2021, 11, 980. [Google Scholar]
- Whittard, E.; Redfem, J.; Xia, G.; Millard, A.; Ragupathy, R.; Malic, S.; Enright, M.C. Phenotypic and Genotypic Characterization of Novel Polyvalent Bacteriophages With Potent In Vitro Activity Against an International Collection of Genetically Diverse Staphylococcus aureus. Front. Cell. Infect. Microbiol. 2021, 11, e698909. [Google Scholar] [CrossRef]
- Roshan, M.; Parmanand, P.; Arora, D.; Behera, M.; Vats, A.; Gautam, D.; Deb, R.; Parkunan, T.; De, S. Virulence and enterotoxin gene profile of methicillin-resistant Staphylococcus aureus isolates from bovine mastitis. Comp. Immunol. Microbiol. Infect. Dis. 2022, 80, e101724. [Google Scholar] [CrossRef] [PubMed]
- Jamal, M.; Ahmad, W.; Andleeb, S.; Jalil, F.; Imran, M.; Nawaz, M.A.; Hussain, T.; Ali, M.; Rafiq, M.; Kamil, M.A. Bacterial biofilm and associated infections. J. Chin. Med. Assoc. 2018, 81, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Cifou, O.; Rojo-Molinero, E.; Macia, M.D.; Oliver, A. Antibiotic treatment of biofilm infections. APMIS 2017, 125, 304–319. [Google Scholar] [CrossRef] [PubMed]
- Pompilio, A.; Scribano, D.; Sarshar, M.; Di Bonaventura, G.; Palamara, A.T.; Ambrosi, C. Gram-Negative Bacteria Holding Together in a Biofilm: The Acinetobacter baumannii Way. Microorganisms 2021, 9, 1353. [Google Scholar] [CrossRef]
- Azeredo, J.; Azevedo, N.F.; Briandet, R.; Cerca, N.; Coenye, T.; Costa, A.R.; Desvaux, M.; Di Bonaventura, G.; Hébraud, M.; Jaglic, Z.; et al. Critical review on biofilm methods. Crit. Rev. Microbiol. 2017, 43, 313–351. [Google Scholar] [CrossRef] [Green Version]
- Schilcher, K.; Horswill, A.R. Staphylococcal Biofilm Development: Structure, Regulation, and Treatment Strategies. Microbiol. Mol. Biol. Rev. 2020, 84, e00026-19. [Google Scholar] [CrossRef]
- Leroy, S.; Lebert, I.; Andant, C.; Micheau, P.; Talon, R. Investigating Extracellular DNA Release in Staphylococcus xylosus Biofilm In Vitro. Microorganisms 2021, 9, 2192. [Google Scholar] [CrossRef]
- Cepas, V.; López, Y.; Munoz, E.; Rolo, D.; Ardanuy, C.; Martí, M.; Xercavins, M.; Horcajada, J.P.; Bosch, J.; Soto, S.M. Relationship Between Biofilm Formation and Antimicrobial Resistance in Gram-Negative Bacteria. Microb. Drug Res. 2019, 25, 72–83. [Google Scholar] [CrossRef] [Green Version]
- Roizman, D.; Vidaillac, C.; Givskov, M.; Yang, L. In Vitro Evaluation of Biofilm Dispersal as a Therapeutic Strategy To Restore Antimicrobial Efficacy. Antimicrob. Agents Chemother. 2017, 61, e01088-17. [Google Scholar] [CrossRef] [Green Version]
- Wozniak-Biel, A.; Bugla-Bloskonska, G.; Burdzy, J.; Korzekwa, K.; Ploch, S.; Wieliczko, A. Antimicrobial Resistance and Biofilm Formation in Enterococcus spp. Isolated from Humans and Turkeys in Poland. Microb. Drug Res. 2019, 25, 277–286. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.Y.; Ho, C.F.; Chen, C.J.; Su, L.H.; Lin, T.Y. Comparative molecular analysis of community-associated and healthcare-associated methicillin-resistant Staphylococcus aureus isolates from children in northern Taiwan. Clin. Microbiol. Infect. 2008, 14, 1167–1172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shadkam, S.; Goli, H.R.; Mirzaei, B.; Gholami, M.; Ahanjan, M. Correlation between antimicrobial resistance and biofilm formation capability among Klebsiella pneumoniae strains isolated from hospitalized patients in Iran. Ann. Clin. Microbiol. Antimicrob. 2021, 20, e13. [Google Scholar] [CrossRef] [PubMed]
- Avila-Novoa, M.G.; Solís-Velázquez, O.A.; Rangel-López, D.E.; González-Gómez, J.P.; Guerrero-Medin, P.J.; Gutiérez-Lomelí, M. Biofilm Formation and Detection of Fluoroquinolone- and Carbapenem-Resistant Genes in Multidrug-Resistant Acinetobacter baumannii. Can. J. Infect. Dis. Med. Microbiol. 2019, 2019, e3454907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamani, L.; Alamri, A.; Alsultan, A.; Alfifi, S.; Ansari, M.A.; Alnimr, A. Inverse correlation between biofilm production efficiency and antimicrobial resistance in clinical isolates of Pseudomonas aeruginosa. Microb. Pathog. 2021, 157, 104989. [Google Scholar] [CrossRef] [PubMed]
- Pandey, R.; Mishra, S.K.; Shrestha, A. Characterisation of ESKAPE Pathogens with Special Reference to Multidrug Resistance and Biofilm Production in a Nepalese Hospital. Infect. Drug Res. 2021, 14, 2201–2212. [Google Scholar] [CrossRef]
- Zhao, F.; Yang, H.; Bi, D.; Khaledi, A.; Qiao, M. A systematic review and meta-analysis of antibiotic resistance patterns, and the correlation between biofilm formation with virulence factors in uropathogenic E. coli isolated from urinary tract infections. Microb. Pathogen. 2020, 144, e104196. [Google Scholar] [CrossRef]
- Gajdács, M.; Kárpáti, K.; Nagy, Á.L.; Gugolya, M.; Stájer, A.; Burián, K. Association between biofilm-production and antibiotic resistance in Escherichia coli isolates: A laboratory-based case study and a literature review. Acta Microbiol. Immunol. Hung. 2021, 68, 217–226. [Google Scholar] [CrossRef]
- Azizi, O.; Shahcheraghi, F.; Salimizand, H.; Modarresi, F.; Shakibaie, M.R.; Mansouri, S.; Ramazanzadeh, R.; Badmasti, F.; Nikbin, V. Molecular Analysis and Expression of bap Gene in Biofilm-Forming Multi-Drug-Resistant Acinetobacter baumannii. Rep. Biochem. Mol. Biol. 2016, 5, 62–72. [Google Scholar]
- Perez, L.R.R.; Costa, M.C.N.; Freitas, A.L.P.; Barth, A.L. Evaluation of biofilm production by Pseudomonas aeruginosa isolates recovered from cystic fibrosis and non-cystic fibrosis patients. Braz. J. Microbiol. 2011, 42, 476–479. [Google Scholar] [CrossRef] [Green Version]
- Gallant, C.V.; Daniels, C.; Leung, J.M.; Ghosh, A.S.; Young, K.D.; Kotra, L.P.; Burrows, L.L. Common β-lactamases inhibit bacterial biofilm formation. Mol. Microbiol. 2005, 58, 1012–1024. [Google Scholar] [CrossRef] [Green Version]
- Zeighami, H.; Valadkhani, F.; Shapouri, R.; Samadi, E.; Haghi, F. Virulence characteristics of multidrug resistant biofilm forming Acinetobacter baumannii isolated from intensive care unit patients. BMC Infect. Dis. 2019, 19, e629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hacker, J.; Blum-Oehler, G.; Muhldorfer, I.; Tschape, H. Pathogenicity islands of virulent bacteria: Structure, function and impact on microbial evolution. Mol. Microbiol. 1997, 23, 1089–1097. [Google Scholar] [CrossRef] [PubMed]
- Tahaei, S.A.; Stájer, A.; Barrak, I.; Ostorházi, E.; Szabó, D.; Gajdács, M. Correlation Between Biofilm-Formation and the Antibiotic Resistant Phenotype in Staphylococcus aureus Isolates: A Laboratory-Based Study in Hungary and a Review of the Literature. Infect. Drug Res. 2021, 14, 1155–1168. [Google Scholar] [CrossRef] [PubMed]
- Madsen, A.M.; Phan, U.T.H.; Laursen, M.; White, J.K.; Uhrbrand, K. Evaluation of Methods for Sampling of Staphylococcus aureus and other Staphylococcus species from Indoor Surfaces. Ann. Work Expo. Health 2020, 64, 1020–1034. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Bae, Y.M.; Han, A.; Lee, S.Y. Development of Congo red broth method for the detection of biofilm-forming or slime-producing Staphylococcus sp. Food. Sci. Technol. 2016, 73, 707–714. [Google Scholar] [CrossRef]
- Gajdács, M.; Bátori, Z.; Burián, K. Interplay between Phenotypic Resistance to Relevant Antibiotics in Gram-Negative Urinary Pathogens: A Data-Driven Analysis of 10 Years’ Worth of Antibiogram Data. Life 2021, 11, 1059. [Google Scholar] [CrossRef]
- Schubert, S.; Kostrzewa, M. MALDI-TOF MS in the microbiology laboratory: Current trends. Curr. Issues Mol. Biol. 2017, 23, 17–20. [Google Scholar] [CrossRef] [Green Version]
- European Committee on Antimicrobial Susceptibility Testing (EUCAST). Clinical Breakpoints and Dosing. Available online: https://www.eucast.org/clinical_breakpoints/ (accessed on 15 December 2021).
- Chavez-Bueno, S.; Bozdogan, B.; Katz, K.; Bowlware, K.L.; Cushion, N.; Cavuoti, D.; Ahmed, N.; McCracken, G.H.; Appelbaum, P.C. Inducible Clindamycin Resistance and Molecular Epidemiologic Trends of Pediatric Community-Acquired Methicillin-Resistant Staphylococcus aureus in Dallas, Texas. Antimicrob. Agents Chemother. 2005, 49, 2283–2288. [Google Scholar] [CrossRef] [Green Version]
- European Committee on Antimicrobial Susceptibility Testing (EUCAST). New Definitions of S, I and R from 2019. Available online: https://www.eucast.org/newsiandr/ (accessed on 15 December 2021).
- Gajdács, M.; Ábrók, M.; Lázár, A.; Burián, K. Increasing relevance of Gram-positive cocci in urinary tract infections: A 10-year analysis of their prevalence and resistance trends. Sci. Rep. 2020, 10, e17658. [Google Scholar] [CrossRef]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Paterson, D.L. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [Green Version]
- Gajdács, M.; Baráth, Z.; Kárpáti, K.; Szabó, D.; Usai, D.; Zanetti, S.; Donadu, M.G. No Correlation between Biofilm Formation, Virulence Factors, and Antibiotic Resistance in Pseudomonas aeruginosa: Results from a Laboratory-Based In Vitro Study. Antibiotics 2021, 10, 1134. [Google Scholar] [CrossRef] [PubMed]
- Sadat, A.; El-Sherbiny, H.; Zakaria, A.; Ramadan, H.; Awad, A. Prevalence, antibiogram and virulence characterization of Vibrio isolates from fish and shellfish in Egypt: A possible zoonotic hazard to humans. J. Appl. Microbiol. 2021, 131, 485–498. [Google Scholar] [CrossRef] [PubMed]
- Melo, P.C.; Ferreira, L.M.; Filho, A.N.; Zafalon, L.F.; Vicente, H.I.G.; de Souza, V. Comparison of methods for the detection of biofilm formation by Staphylococcus aureus isolated from bovine subclinical mastitis. Braz. J. Microbiol. 2013, 44, 119–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassan, A.; Usman, J.; Kaleem, F.; Omair, M.; Khalid, A.; Iqbal, M. Evaluation of different detection methods of biofilm formation in the clinical isolates. Braz. J. Infect. Dis. 2011, 15, 305–311. [Google Scholar] [CrossRef] [Green Version]
- Ramos-Vivas, J.; Chapartegui-González, I.; Fernández-Martínez, M.; González-Rico, C.; Fortún, J.; Escudero, R.; Marco, F.; Linares, L.; Montejo, M.; Aranzamendi, M.; et al. Biofilm formation by multidrug resistant Enterobacteriaceae strains isolated from solid organ transplant recipients. Sci. Rep. 2019, 9, e8928. [Google Scholar] [CrossRef] [Green Version]
- Mirzaei, R.; Alikhani, M.Y.; Aricola, C.R.; Sedighi, I.; Yousefimashouf, R.; Bagheri, K.P. Prevention, inhibition, and degradation effects of melittin alone and in combination with vancomycin and rifampin against strong biofilm producer strains of methicillin-resistant Staphylococcus epidermidis. Biomed. Pharmacol. 2022, 147, e112670. [Google Scholar] [CrossRef]
- Stepanovic, S.; Vukovic, D.; Hola, V.; Di Bonaventura, G.; Djukovic, S.; Cirkovic, I.; Ruzicka, F. Quantification of biofilm in microtiter plates: Overview of testing conditions and practical recommendations for assessment of biofilm production by Staphylococci. APMIS 2007, 115, 891–899. [Google Scholar] [CrossRef]
- Elward, A.M.; McAndrews, J.M.; Young, V.L. Methicillin-Sensitive and Methicillin-Resistant Staphylococcus aureus: Preventing Surgical Site Infections Following Plastic Surgery. Aesthet. Surg. J. 2009, 29, 232–244. [Google Scholar] [CrossRef]
- Hidalgo-Tenorio, C.; Gálvez, J.; Martínez-Marcos, F.J.; Plata-Ciezar, A.; La Torre-Lima, D.; López-Cortés, L.E.; Noureddine, M.; Reguera, J.M.; Vinuesa, D.; García, M.V.; et al. Clinical and prognostic differences between methicillin-resistant and methicillin-susceptible Staphylococcus aureus infective endocarditis. BMC Infect. Dis. 2020, 20, e160. [Google Scholar] [CrossRef] [Green Version]
- Hajikhani, B.; Gourdarzi, M.; Kakavandi, S.; Amini, S.; Zamani, S.; van Belkum, A.; Gourdarzi, H.; Dadashi, M. The global prevalence of fusidic acid resistance in clinical isolates of Staphylococcus aureus: A systematic review and meta-analysis. Antimicrob. Res. Infect. Control 2021, 10, e75. [Google Scholar] [CrossRef]
- Shariati, A.; Dadshi, M.; van Belkum, A.; Mirzaii, M.; Khoramrooz, S.S.; Darban-Sarkohalil, D. The global prevalence of Daptomycin, Tigecycline, Quinupristin/Dalfopristin, and Linezolid-resistant Staphylococcus aureus and coagulase–negative Staphylococci strains: A systematic review and meta-analysis. Antimicrob. Res. Infect. Control 2020, 9, e56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Z.; Chen, M.; Yu, Y.; Liu, B.; Liu, Y. In vitro activity of ceftaroline and comparators against Staphylococcus aureus isolates: Results from 6 years of the ATLAS program (2012 To 2017). Infect. Drug Res. 2019, 12, e3349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teodoro, C.R.S.; Mattos, C.S.; Cavalcante, F.S.; Pereira, E.M.; dos Santos, K.R.N. Characterization of MLS(b) resistance among Staphylococcus aureus and Staphylococcus epidermidis isolates carrying different SCCmec types. Microbiol. Immunol. 2012, 56, 647–650. [Google Scholar] [CrossRef] [PubMed]
- Sierra, J.M.; Marco, F.; Ruiz, J.; Jiménez de Anta, M.T.; Vila, J. Correlation between the activity of different fluoroquinolones and the presence of mechanisms of quinolone resistance in epidemiologically related and unrelated strains of methicillin-susceptible and-resistant Staphylococcus aureus. Clin. Microbiol. Infect. 2002, 8, 781–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miguel, C.P.V.; Mejias, A.; Sanchez, P.J. A decade of antimicrobial resistance in Staphylococcus aureus: A single center experience. PLoS ONE 2019, 14, e0212029. [Google Scholar]
- Zimmerli, W.; Sendi, P. Role of Rifampin against Staphylococcal Biofilm Infections In Vitro, in Animal Models, and in Orthopedic-Device-Related Infections. Antimicrob. Agents Chemother. 2019, 63, e017746-18. [Google Scholar] [CrossRef] [Green Version]
- Penesyan, A.; Paulsen, I.T.; Gillings, M.R.; Kjelleberg, S.; Manefieldm, M.J. Secondary effects of antibiotics on microbial biofilms. Front Microbiol. 2020, 11, e2109. [Google Scholar] [CrossRef]
- Lima-e-Silva, A.A.; Silva-Filho, R.G.; Fernandes, H.M.Z.; Saramago, C.S.M.; Viana, A.S.; Souza, M.J.; Noguiera, E.M. Sub-inhibitory concentrations of rifampicin strongly stimulated biofilm production in S. aureus. Open Microbiol. J. 2017, 11, 142–151. [Google Scholar] [CrossRef] [Green Version]
- Rachid, S.; Ohlsen, K.; Witte, W.; Hacker, J.; Ziebuhr, W. Effect of subinhibitory antibiotic concentrations on polysaccharide intercellular adhesin expression in biofilm-forming Staphylococcus epidermidis. Antimicrob. Agents Chemother. 2000, 44, 3357–3363. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.S.; Girija, A.S.S.; Srilatha, B.N. Characterization of biofilm producing methicillin resistant coagulase negative Staphylococci from India. Acta Microbiol. Immunol. Hung. 2022, 69, 35–40. [Google Scholar] [CrossRef]
- Arslan, S.; Ozkardes, F. Slime production and antibiotic susceptibility in Staphylococci isolated from clinical samples. Memórias Inst. Oswaldo Cruz 2007, 102, 29–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghasemian, A.; Najar Peerayeh, S.; Bakhshi, B.; Mirzaee, M. Comparison of biofilm formation between Methicillin-resistant and methicillin-susceptible isolates of Staphylococcus aureus. Iran. Biomed. J. 2016, 20, 175–181. [Google Scholar] [PubMed]
- Knobloch, J.K.M.; Horstkotte, M.A.; Rodhe, H.; Mack, D. Evaluation of different detection methods of biofilm formation in Staphylococcus aureus. Med. Microbiol. Immunol. 2002, 191, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Mathur, T.; Singhal, S.; Khan, S.; Upadhyay, D.J.; Fatma, T.; Rattan, A. Detection of biofilm formation among the clinical isolates of Staphylococci: An evaluation of three different screening methods. Indian J. Med. Microbiol. 2006, 24, 25–29. [Google Scholar] [CrossRef]
- Rodríguez-Lopez, P.; Filipello, V.; Di Ciccio, P.A.; Pitozzi, A.; Ghidini, S.; Scali, F.; Ianeri, A.; Zanardi, E.; Losio, M.N.; Simon, A.C.; et al. Assessment of the antibiotic resistance profile, genetic heterogeneity and biofilm production of Methicillin-Resistant Staphylococcus aureus (MRSA) isolated from the Italian swine production chain. Foods 2020, 9, 1141. [Google Scholar] [CrossRef] [PubMed]
- Piechota, M.; Kot, B.; Frankowska-Maciejewska, A.; Gruzewska, A.; Wozniak-Kosek, A. Biofilm formation by methicil-lin-resistant and methicillin-sensitive Staphylococcus aureus strains from hospitalized patients in Poland. BioMed. Res. Int. 2018, 2018, e4657396. [Google Scholar] [CrossRef] [Green Version]
- De Araujo, G.L.; Coelho, R.L.; de Carvalho, C.B.; Maciel, R.M.; Coronado, A.Z.; Rozenbaum, R.; Ferraira-Carvalho, B.T.; Figueiredo, A.M.S.; Teixeria, L.A. Commensal isolates of methicillin-resistant Staphylococcus epidermidis are also well equipped to produce biofilm on polystyrene surfaces. J. Antimicrob. Chemother. 2006, 57, 855–864. [Google Scholar] [CrossRef] [Green Version]
- Jain, A.; Agarwal, A. Biofilm production, a marker of pathogenic potential of colonizing and commensal Staphylococci. J. Microbiol. Method. 2009, 76, 88–92. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Bir, R.; Majumdar, T. Evaluation of multidrug resistant Staphylococcus aureus and their association with biofilm production in a Tertiary Care Hospital, Tripura, Northeast India. J. Clin. Diagn. Microbiol. 2015, 9, DC01–DC04. [Google Scholar] [CrossRef]
- Da Fonseca Batistao, D.W.; de Campos, P.A.; Camilo, N.C.; Royer, S.; Araújo, B.F.; Naves, K.S.C.; Martins, M.; Pereira, M.O.; Henriques, M.; Gontijo-Filho, P.P.; et al. Biofilm formation of Brazilian meticillin-resistant Staphylococcus aureus strains: Prevalence of biofilm determinants and clonal profiles. J. Med. Microbiol. 2016, 65, 286–297. [Google Scholar] [CrossRef] [Green Version]
- Lim, Y.; Shin, H.J.; Kwon, A.S.; Reu, J.H.; Park, G.; Kim, J. Predictive genetic risk markers for strong biofilm-forming Staphylococcus aureus: fnbB gene and SCCmec type III. Diagn. Microbiol. Infect. Dis. 2013, 76, 539–541. [Google Scholar] [CrossRef] [PubMed]
- Pozzi, C.; Waters, E.M.; Rudkin, J.K.; Schaeffer, C.R.; Lohan, A.J.; Tong, P.; Loftus, B.J.; Pier, G.B.; Fey, P.D.; Massey, R.C.; et al. Methicillin resistance alters the biofilm phenotype and attenuates virulence in Staphylococcus aureus device-associated infections. PLoS Pathog. 2012, 8, e1002626. [Google Scholar] [CrossRef] [PubMed]
- Croes, S.; Deurenberg, R.H.; Boumans, M.L.; Beisser, P.S.; Neef, C.; Stobberingh, E.E. Staphylococcus aureus biofilm formation at the physiologic glucose concentration depends on the S. aureus lineage. BMC Microbiol. 2009, 9, e229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luther, M.K.; Parente, D.M.; Caffrey, A.R.; Daffinee, K.E.; Lopes, V.V.; Martin, E.T.; LaPlante, K.L. Clinical and genetic risk factors for biofilm-forming Staphylococcus aureus. Antimicrob. Agents Chemother. 2018, 62, e02217–e02252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Gara, J.P. ica and beyond: Biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. FEMS Microbiol. Lett. 2007, 270, 179–188. [Google Scholar] [CrossRef] [Green Version]
- Tolker-Nielsen, T.; Sternberg, C. Growing and analyzing biofilms in flow chambers. Curr. Protoc. Microbiol. 2011, 1, 1B–2B. [Google Scholar] [CrossRef]
- Sultan, A.R.; Tavakol, M.; Lemmens-den Toom, N.A.; Croughs, P.D.; Verkaik, N.J.; Verbon, A.; van Wamel, W.J.B. Real time monitoring of Staphylococcus aureus biofilm sensitivity towards antibiotics with isothermal microcalorimetry. PLoS ONE 2022, 17, e0260272. [Google Scholar] [CrossRef]
- Barrak, I.; Baráth, Z.; Tián, T.; Venkei, A.; Gajdács, M.; Urbán, E.; Stájer, A. Effects of different decontaminating solutions used for the treatment of peri-implantitis on the growth of Porphyromonas gingivalis—An in vitro study. Acta Microbiol. Immunol. Hung. 2021, 68, 40–47. [Google Scholar] [CrossRef]
- Pinna, A.; Donadu, M.G.; Usai, D.; Dore, S.; Boscia, F.; Zanetti, S. In Vitro Antimicrobial Activity of a New Ophthalmic Solution Containing Hexamidine Diisethionate 0.05% (Keratosept). Cornea 2020, 39, 1415–1418. [Google Scholar] [CrossRef]
Control Strain | Resistance Status | Biofilm Formation | ica Genes |
---|---|---|---|
S. aureus ATCC 29213 | MSSA | Biofilm producer | icaAB gene positive |
S. aureus ATCC 43300 | MRSA | Biofilm producer | icaAB gene positive |
S. aureus ATCC 12600 | MSSA | Non-biofilm producer | icaAB gene negative |
S. epidermidis ATCC 35984 | MS-NAS | Biofilm producer | icaAB gene positive |
S. epidermidis ATCC 12224 | MS-NAS | Non-biofilm producer | icaAB gene negative |
S. aureus | Non-aureus staphylococci (NAS) | Overall (n = 299) | |||||
---|---|---|---|---|---|---|---|
AB a | MSSA (n = 76) | MRSA (n = 67) | Sum (n = 143) | MS-NAS (n = 72) | MR-NAS (n = 84) | Sum (n = 156) | |
ERY | 26 (34.2%) | 50 (74.6%) | 76 (53.1%) | 23 (31.9%) | 57 (67.9%) | 80 (51.3%) | 156 (52.2%) |
CLI b | 29 (38.2%) | 60 (89.6%) | 89 (62.2%) | 24 (33.3%) | 60 (71.4%) | 84 (53.8%) | 173 (57.9%) |
NOR c | 10 (13.2%) | 49 (73.1%) | 59 (41.2%) | 6 (8.3%) | 37 (44.0%) | 43 (27.6%) | 102 (34.1%) |
GEN | 15 (19.7%) | 35 (52.2%) | 50 (34.9%) | 9 (12.5%) | 30 (35.7%) | 39 (25.0%) | 89 (29.8%) |
SXT | 24 (31.6%) | 53 (79.1%) | 77 (53.8%) | 17 (23.6%) | 59 (70.2%) | 76 (48.7%) | 153 (51.1%) |
TIG | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 1 (1.2%) | 1 (0.6%) | 1 (0.3%) |
LZD | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
FUS | 0 (0%) | 1 (1.5%) | 1 (0.7%) | 0 (0%) | 1 (1.2%) | 1 (0.6%) | 2 (0.7%) |
QDP | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
RIF | 14 (18.4%) | 29 (43.2%) | 43 (30.1%) | 12 (16.7%) | 21 (25.0%) | 33 (21.1%) | 76 (25.4%) |
CFT | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
VAN | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) | 0 (0%) |
Resistotype | Resistance Patterns a | MAR Index | Ratio of Isolates (n, %) |
---|---|---|---|
0 | None | 0 | 118 (39.52%) |
I | CLI | 0.077 | 5 (1.67%) |
II | SXT | 0.077 | 2 (0.67%) |
III | ERY, CLI | 0.154 | 7 (2.34%) |
IV | CLI, MR | 0.154 | 15 (5.02%) |
V | ERY, CLI, SXT | 0.231 | 14 (4.68%) |
VI | ERY, CLI, GEN | 0.231 | 2 (0.67%) |
VII | ERY, CLI, RIF | 0.231 | 1 (0.33%) |
VIII | ERY, CLI, NOR | 0.231 | 4 (1.33%) |
IX | CLI, SXT, MR | 0.231 | 2 (0.67%) |
X | ERY, CLI, MR | 0.231 | 8 (2.68%) |
XI | ERY, CLI, SXT, RIF | 0.308 | 3 (1.00%) |
XII | ERY, CLI, NOR, MR | 0.308 | 10 (3.34%) |
XIII | ERY, CLI, SXT, MR | 0.308 | 5 (1.67%) |
XIV | ERY, CLI, RIF, MR | 0.308 | 3 (1.00%) |
XV | ERY, CLI, SXT, GEN, RIF | 0.385 | 6 (2.00%) |
XVI | ERY, CLI, SXT, NOR, MR | 0.385 | 10 (3.34%) |
XVII | ERY, CLI, GEN, NOR, MR | 0.385 | 6 (2.00%) |
XVIII | ERY, CLI, SXT, RIF, MR | 0.385 | 7 (2.34%) |
XIX | ERY, CLI, SXT, GEN, RIF, NOR | 0.462 | 12 (4.01%) |
XX | ERY, CLI, SXT, GEN, RIF, MR | 0.462 | 14 (4.68%) |
XXI | ERY, CLI, SXT, NOR, GEN, MR | 0.462 | 19 (6.35%) |
XXII | ERY, CLI, SXT, NOR, GEN, RIF, MR | 0.538 | 24 (8.03%) |
XXIII | ERY, CLI, NOR, GEN, SXT, RIF, FUS, MR | 0.615 | 1 (0.33%) |
XXIV | ERY, CLI, NOR, GEN, SXT, RIF, FUS, TIG, MR | 0.692 | 1 (0.33%) |
S. aureus (n = 143) | NAC (n = 156) | |||
---|---|---|---|---|
Biofilm Categories | CRA (−) n = 99 | CRA (+) n = 44 | CRA (−) n = 86 | CRA (+) n = 70 |
Non-biofilm producer | n = 22 | n = 0 | n = 10 | n = 0 |
Weak biofilm producer | n = 16 | n = 0 | n = 11 | n = 0 |
Moderate biofilm producer | n = 27 | n = 4 | n = 31 | n = 6 |
Strong biofilm producer | n = 34 | n = 40 | n = 34 | n = 64 |
Antibiotics a | Biofilm-Forming Capacity (OD570) | ||
---|---|---|---|
Susceptible (S) | Resistant (R) | Statistics | |
Methicillin (FOX) | 0.824 ± 0.325 | 0.896 ± 0.367 | p = 0.101 |
ERY | 0.802 ± 0.398 | 0.899 ± 0.302 | p = 0.78 |
CLI | 0.856 ± 0.329 | 0.913 ± 0.228 | p = 0.69 |
NOR | 0.793 ± 0.401 | 0.888 ± 0.254 | p = 0.19 |
GEN | 0.844 ± 0.321 | 0.908 ± 0.266 | p = 0.89 |
SXT | 0.875 ± 0.235 | 0.892 ± 0.356 | p = 0.113 |
RIF | 0.784 ± 0.281 | 1.239 ± 0.286 | p = 0.011 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Donadu, M.G.; Ferrari, M.; Mazzarello, V.; Zanetti, S.; Kushkevych, I.; Rittmann, S.K.-M.R.; Stájer, A.; Baráth, Z.; Szabó, D.; Urbán, E.; et al. No Correlation between Biofilm-Forming Capacity and Antibiotic Resistance in Environmental Staphylococcus spp.: In Vitro Results. Pathogens 2022, 11, 471. https://doi.org/10.3390/pathogens11040471
Donadu MG, Ferrari M, Mazzarello V, Zanetti S, Kushkevych I, Rittmann SK-MR, Stájer A, Baráth Z, Szabó D, Urbán E, et al. No Correlation between Biofilm-Forming Capacity and Antibiotic Resistance in Environmental Staphylococcus spp.: In Vitro Results. Pathogens. 2022; 11(4):471. https://doi.org/10.3390/pathogens11040471
Chicago/Turabian StyleDonadu, Matthew Gavino, Marco Ferrari, Vittorio Mazzarello, Stefania Zanetti, Ivan Kushkevych, Simon K.-M. R. Rittmann, Anette Stájer, Zoltán Baráth, Dóra Szabó, Edit Urbán, and et al. 2022. "No Correlation between Biofilm-Forming Capacity and Antibiotic Resistance in Environmental Staphylococcus spp.: In Vitro Results" Pathogens 11, no. 4: 471. https://doi.org/10.3390/pathogens11040471
APA StyleDonadu, M. G., Ferrari, M., Mazzarello, V., Zanetti, S., Kushkevych, I., Rittmann, S. K. -M. R., Stájer, A., Baráth, Z., Szabó, D., Urbán, E., & Gajdács, M. (2022). No Correlation between Biofilm-Forming Capacity and Antibiotic Resistance in Environmental Staphylococcus spp.: In Vitro Results. Pathogens, 11(4), 471. https://doi.org/10.3390/pathogens11040471